
PARALLEL MATRIX MULTIPLICATION:
A SYSTEMATIC JOURNEY

MARTIN D. SCHATZ† , ROBERT A. VAN DE GEIJN† , AND JACK POULSON§

Abstract. We expose a systematic approach for developing distributed memory parallel matrix-
matrix multiplication algorithms. The journey starts with a description of how matrices are dis-
tributed to meshes of nodes (e.g., MPI processes), relates these distributions to scalable parallel
implementation of matrix-vector multiplication and rank-1 update, continues on to reveal a fam-
ily of matrix-matrix multiplication algorithms that view the nodes as a two-dimensional mesh, and
finishes with extending these 2D algorithms to so-called 3D algorithms that view the nodes as a
three-dimensional mesh. A cost analysis shows that the 3D algorithms can attain the (order of
magnitude) lower bound for the cost of communication. The paper introduces a taxonomy for the
resulting family of algorithms and explains how all algorithms have merit depending on parameters
like the sizes of the matrices and architecture parameters. The techniques described in this paper
are at the heart of the Elemental distributed memory linear algebra library. Performance results
from implementation within and with this library are given on a representative distributed memory
architecture, the IBM Blue Gene/P supercomputer.

1. Introduction. This paper serves a number of purposes:
• Parallel∗ implementation of matrix-matrix multiplication is a standard topic

in a course on parallel high-performance computing. However, rarely is the
student exposed to the algorithms that are used in practical cutting-edge
parallel dense linear algebra (DLA) libraries. This paper exposes a system-
atic path that leads from parallel algorithms for matrix-vector multiplication
and rank-1 update to a practical, scalable family of parallel algorithms for
matrix-matrix multiplication, including the classic result in [1] and those im-
plemented in the Elemental parallel DLA library [28].

• This paper introduces a set notation for describing the data distributions
that underlie the Elemental library. The notation is motivated using par-
allelization of matrix-vector operations and matrix-matrix multiplication as
the driving examples.

• Recently, research on parallel matrix-matrix multiplication algorithms have
revisited so-called 3D algorithms, which view (processing) nodes as a logical
three-dimensional mesh. These algorithms are known to attain theoretical
(order of magnitude) lower bounds on communication. This paper exposes
a systematic path from algorithms for two-dimensional meshes to their ex-
tensions for three-dimensional meshes. Among the resulting algorithms are
classic results [2].

• A taxonomy is given for the resulting family of algorithms which are all
related to what is often called the Scalable Universal Matrix Multiplication
Algorithm (SUMMA) [33].

Thus, the paper simultaneously serves a pedagogical role, explains abstractions that
underlie the Elemental library, advances the state of science for parallel matrix-matrix
multiplication by providing a framework to systematically derive known and new algo-
rithms for matrix-matrix-multiplication when computing on two-dimensional or three-

†Department of Computer Science, Institute for Computational Engineering and Sciences, The
University of Texas at Austin, Austin, TX.
Emails: martin.schatz@utexas.edu, ltm@cs.utexas.edu, rvdg@cs.utexas.edu.
§Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

94305, poulson@stanford.edu.
∗Parallel in this paper implicitly means distributed memory parallel.

1



dimensional meshes. While much of the new innovation for this paper concerns the
extension of parallel matrix-matrix multiplication algorithms from two-dimensional
to three-dimensional meshes, we believe that developing the reader’s intuition for al-
gorithms on two-dimensional meshes renders most of this new innovation much like a
corollary to a theorem.

2. Background. The parallelization of dense matrix-matrix multiplication is a
well-studied subject. Cannon’s algorithm (sometimes called roll-roll-compute) dates
back to 1969 [9] and Fox’s algorithm (sometimes called broadcast-roll-compute) dates
back to the 1980s [15]. Both suffer from a number of shortcomings:

• They assume that p processes are viewed as an d0 × d1 grid, with d0 = d1 =√
p. Removing this constraint on d0 and d1 is nontrivial for these algorithms.

• They do not deal well with the case where one of the matrix dimensions
becomes relatively small. This is the most commonly encountered case in li-
braries like LAPACK [3] and libflame [35, 36], and their distributed-memory
counterparts: ScaLAPACK [11], PLAPACK [34], and Elemental [28].

Attempts to generalize [12, 21, 22] led to implementations that were neither simple
nor effective.

A practical algorithm, which also results from the systematic approach discussed
in this paper, can be described as “allgather-allgather-multiply” [1]. It does not suffer
from the shortcomings of Cannon’s and Fox’s algorithms. It did not gain in popularity
in part because libraries like ScaLAPACK and PLAPACK used a 2D block-cyclic
distribution, rather than the 2D elemental distribution advocated by that paper. The
arrival of the Elemental library, together with what we believe is our more systematic
and extensible explanation, will hopefully elevate awareness of this result.

The Scalable Universal Matrix Multiplication Algorithm [33] is another algorithm
that overcomes all shortcomings of Cannon’s algorithm and Fox’s algorithm. We
believe it is a more widely known result in part because it can already be explained
for a matrix that is distributed with a 2D blocked (but not cyclic) distribution and
in part because it was easy to support in the ScaLAPACK and PLAPACK libraries.
The original SUMMA paper gives four algorithms:

• For C := AB + C, SUMMA casts the computation in terms of multiple
rank-k updates. This algorithm is sometimes called the broadcast-broadcast-
multiply algorithm, a label we will see is somewhat limiting. We also call this
algorithm “stationary C” for reasons that will become clear later. By design,
this algorithm continues to perform well in the case where the width of A is
small relative to the dimensions of C.

• For C := ATB + C, SUMMA casts the computation in terms of multiple
panel of rows times matrix multiplies, so performance is not degraded in the
case where the height of A is small relative to the dimensions of B. We have
also called this algorithm “stationary B” for reasons that will become clear
later.

• For C := ABT + C, SUMMA casts the computation in terms of multiple
matrix-panel (of columns) multiplies, and so performance does not deteriorate
when the width of C is small relative to the dimensions of A. We call this
algorithm “stationary A” for reasons that will become clear later.

• For C := ATBT + C, the paper sketches an algorithm that is actually not
practical.

In [17], it was shown how stationary A, B, and C algorithms can be formulated for
each of the four cases of matrix-matrix multiplication, including for C := ATBT +

2



C. This then yielded a general, practical family of 2D matrix-matrix multiplication
algorithms all of which were incorporated into PLAPACK and Elemental, and some of
which are supported by ScaLAPACK. Some of the observations about developing 2D
algorithms in the current paper can already be found in that paper, but our exposition
is much more systematic and we use the matrix distribution that underlies Elemental
to illustate the basic principles. Although the work by Agarwal et al. describes
algorithms for the different matrix-matrix multiplication transpose variants, it does
not describe how to create stationary A and B variants.

In the 1990s, it was observed that for the case where matrices were relatively small
(or, equivalently, a relatively large number of nodes were available), better theoretical
and practical performance resulted from viewing the p nodes as a d0 × d1 × d2 mesh,
yielding a 3D algorithm [2]. More recently, a 3D algorithm for computing the LU
factorization of a matrix was devised in Tiskin [27] and Solomonik and Demmel [31].
In addition to the LU factorization algorithm devised in [31], a 3D algorithm for
matrix-matrix multiplication was given for nodes arranged as an d0 × d1 × d2 mesh,
with d0 = d1 and 0 ≤ d2 < 3

√
p. This was labeled a 2.5D algorithm. Although the

primary contribution of that work was LU-related, the 2.5D algorithm for matrix-
matrix multiplication is the relevant portion to this paper. The focus of that study
on 3D algorithms was the simplest case of matrix-matrix multiplication, C := AB.

In [25], an early attempt was made to combine multiple algorithms for computing
C = AB into a poly-algorithm, which refers to “the use of two or more algorithms to
solve the same problem with a high level decision-making process determining which
of a set of algorithms performs best in a given situation.” That paper was published
right at the time when SUMMA algorithms first became popular and when it was not
yet completely understood that these SUMMA algorithm are inherently more practical
than the Cannon’s and Fox’s algorithms. It already talked about “stationary A, B, and
C” algorithms. In the paper, an attempt was made to combine all these approaches,
including SUMMA, targeting general 2D Cartesian data distributions, which was (and
still would be) a very ambitious goal. Our paper benefits from decades of experience
with the more practical SUMMA algorithms and their variants. It purposely limits
the data distribution to simple distributions, namely elemental distributions. This, we
hope, allows the reader to gain a deep understanding in a simpler setting so that even
if elemental distribution is not best for an encountered situation, a generalization
can be easily derived. The family of presented 2D algorithms is a poly-algorithm
implemented in Elemental.

3. Notation. Although the focus of this paper is parallel distributed-memory
matrix-matrix multiplication, the notation used is designed to be extensible to com-
putation with higher-dimensional objects (tensors), on higher-dimensional grids. Be-
cause of this, the notation used may seem overly complex when restricted to matrix-
matrix-multiplication only. In this section, we describe the notation used and the
reasoning behind the choice of notation.

Grid dimension: dx. Since we focus on algorithms for distributed-memory ar-
chitectures, we must describe information about the grid on which we are computing.
To support arbitrary-dimensional grids, we must express the shape of the grid in an
extensible way. For this reason, we have chosen the subscripted letter d to indicate the
size of a particular dimension of the grid. Thus, dx refers to the number of processes
comprising the xth dimension of the grid. In this paper, the grid is typically d0 × d1.

3



Process location: sx. In addition to describing the shape of the grid, it is useful
to be able to refer to a particular process’s location within the mesh of processes. For
this, we use the subscripted s letter to refer to a process’s location within some given
dimension of the mesh of processes. Thus, sx refers to a particular process’s location
within the xth dimension of the mesh of processes. In this paper, a typical process is
labeled with (s0, s1).

Distribution: D(x0,x1,...,xk−1). In subsequent sections, we will introduce a nota-
tion for describing how data is distributed among processes of the grid. This notation
will require a description of which dimensions of the grid are involved in defining
the distribution. We use the symbol D(x0,x1,...,xk−1) to indicate a distribution which
involves dimensions x0, x1, . . . , xk−1 of the mesh.

For example, when describing a distribution which involves the column and row
dimension of the grid, we refer to this distribution as D(0,1). Later, we will explain
why the symbol D(0,1) describes a different distribution from D(1,0).

4. Of Matrix-Vector Operations and Distribution. In this section, we dis-
cuss how matrix and vector distributions can be linked to parallel 2D matrix-vector
multiplication and rank-1 update operations, which then allows us to eventually de-
scribe the stationary C, A, and B 2D algorithms for matrix-matrix multiplication
that are part of the Elemental library.

4.1. Collective communication. Collectives are fundamental to the paral-
lelization of dense matrix operations. Thus, the reader must be (or become) familiar
with the basics of these communications and is encouraged to read Chan et al. [10],
which presents collectives in a systematic way that dovetails with the present paper.

To make this paper self-contained, Figure 4.1 (similar to Figure 1 in [10]) sum-
marizes the collectives. In Figure 4.2 we summarize lower bounds on the cost of the
collective communications, under basic assumptions explained in [10] (see [8] for an
analysis of all-to-all), and the cost expressions that we will use in our analyses.

4.2. Motivation: matrix-vector multiplication. Suppose A ∈ Rm×n, x ∈
Rn, and y ∈ Rm, and label their individual elements so that

A =


α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1

...
...

. . .
...

αm−1,0 αm−1,1 · · · αm−1,n−1

 , x =


χ0

χ1

...
χn−1

 , and y =


ψ0

ψ1

...
ψm−1

 .

Recalling that y = Ax (matrix-vector multiplication) is computed as

ψ0 = α0,0χ0 + α0,1χ1 + · · ·+ α0,n−1χn−1
ψ1 = α1,0χ0 + α1,1χ1 + · · ·+ α1,n−1χn−1
...

...
...

...
ψm−1 = αm−1,0χ0 + αm−1,1χ1 + · · ·+ αm−1,n−1χn−1

4



Operation Before After

Permute
Node 0 Node 1 Node 2 Node 3
x0 x1 x2 x3

Node 0 Node 1 Node 2 Node 3
x1 x0 x3 x2

Broadcast
Node 0 Node 1 Node 2 Node 3

x
Node 0 Node 1 Node 2 Node 3

x x x x

Reduce(-

to-one)

Node 0 Node 1 Node 2 Node 3

x(0) x(1) x(2) x(3)
Node 0 Node 1 Node 2 Node 3∑

j x
(j)

Scatter

Node 0 Node 1 Node 2 Node 3
x0
x1
x2
x3

Node 0 Node 1 Node 2 Node 3
x0

x1
x2

x3

Gather

Node 0 Node 1 Node 2 Node 3
x0

x1
x2

x3

Node 0 Node 1 Node 2 Node 3
x0
x1
x2
x3

Allgather

Node 0 Node 1 Node 2 Node 3
x0

x1
x2

x3

Node 0 Node 1 Node 2 Node 3
x0 x0 x0 x0
x1 x1 x1 x1
x2 x2 x2 x2
x3 x3 x3 x3

Reduce-

scatter

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3∑
j x

(j)
0 ∑

j x
(j)
1 ∑

j x
(j)
2 ∑

j x
(j)
3

Allreduce
Node 0 Node 1 Node 2 Node 3

x(0) x(1) x(2) x(3)
Node 0 Node 1 Node 2 Node 3∑

j x
(j)

∑
j x

(j)
∑

j x
(j)

∑
j x

(j)

All-to-all

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(1)
0 x

(1)
1 x

(1)
2 x

(1)
3

x
(2)
0 x

(2)
1 x

(2)
2 x

(2)
3

x
(3)
0 x

(3)
1 x

(3)
2 x

(3)
3

Fig. 4.1. Collective communications considered in this paper.

5



Communication Latency Bandw. Comput. Cost used for analysis

Permute α nβ – α+ nβ
Broadcast dlog2(p)eα nβ – log2(p)α+ nβ

Reduce(-to-one) dlog2(p)eα nβ p−1
p nγ log2(p)α+ n(β + γ)

Scatter dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Gather dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Allgather dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Reduce-scatter dlog2(p)eα p−1
p nβ p−1

p nγ log2(p)α+ p−1
p n(β + γ)

Allreduce dlog2(p)eα 2p−1p nβ p−1
p nγ 2 log2(p)α+ p−1

p n(2β + γ)

All-to-all dlog2(p)eα p−1
p nβ – log2(p)α+ p−1

p nβ

Fig. 4.2. Lower bounds for the different components of communication cost. Conditions for
the lower bounds are given in [10] and [8]. The last column gives the cost functions that we use
in our analyses. For architectures with sufficient connectivity, simple algorithms exist with costs
that remain within a small constant factor of all but one of the given formulae. The exception is
the all-to-all, for which there are algorithms that achieve the lower bound for the α and β term
separately, but it is not clear whether an algorithm that consistently achieves performance within a
constant factor of the given cost function exists.

we notice that element αi,j multiplies χj and contributes to ψi. Thus we may sum-
marize the interactions of the elements of x, y, and A by

χ0 χ1 · · · χn−1
ψ0 α0,0 α0,1 · · · α0,n−1
ψ1 α1,0 α1,1 · · · α1,n−1
...

...
...

. . .
...

ψm−1 αm−1,0 αm−1,1 · · · αm−1,n−1

(4.1)

which is meant to indicate that χj must be multiplied by the elements in the jth
column of A while the ith row of A contributes to ψi.

4.3. Two-Dimensional Elemental Cyclic Distribution. It is well estab-
lished that (weakly) scalable implementations of DLA operations require nodes to be
logically viewed as a two-dimensional mesh [32, 20].

It is also well established that to achieve load balance for a wide range of matrix
operations, matrices should be cyclically “wrapped” onto this logical mesh. We start
with these insights and examine the simplest of matrix distributions that result: 2D
elemental cyclic distribution [28, 19]. Denoting the number of nodes by p, a d0 × d1
mesh must be chosen such that p = d0d1.

Matrix distribution. The elements of A are assigned using an elemental cyclic
(round-robin) distribution where αi,j is assigned to node (i mod d0, j mod d1). Thus,
node (s0, s1) stores submatrix

A(s0 :d0 :m−1, s1 :d1 :n−1) =

 αs0,s1 αs0,s1+d1 · · ·
αs0+d0,s1 αs0+d0,s1+d1 · · ·

...
...

. . .

 ,

where the left-hand side of the expression uses the MATLAB convention for express-
ing submatrices, starting indexing from zero instead of one. This is illustrated in
Figure 4.3.

6



χ0 · · ·

ψ0

.

.

.

α0,0 α0,3 α0,6 · · ·

α2,0 α2,3 α2,6 · · ·

α4,0 α4,3 α4,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ1 · · ·

ψ2

α0,1 α0,4 α0,7 · · ·

α2,1 α2,4 α2,7 · · ·

α4,1 α4,4 α4,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ2 · · ·

ψ4

α0,2 α0,5 α0,8 · · ·

α2,2 α2,5 α2,8 · · ·

α4,2 α4,5 α4,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ3

ψ1

.

.

.

α1,0 α1,3 α1,6 · · ·

α3,0 α3,3 α3,6 · · ·

α5,0 α5,3 α5,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ4

ψ3

α1,1 α1,4 α1,7 · · ·

α3,1 α3,4 α3,7 · · ·

α5,1 α5,4 α5,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ5

ψ5

α1,2 α1,5 α1,8 · · ·

α3,2 α3,5 α3,8 · · ·

α5,2 α5,5 α5,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

Fig. 4.3. Distribution of A, x, and y within a 2 × 3 mesh. Redistributing a column of A in
the same manner as y requires simultaneous scatters within rows of nodes while redistributing a row
of A consistently with x requires simultaneous scatters within columns of nodes. In the notation of
Section 5, here the distribution of x and y are given by x [(1, 0), ()] and y [(0, 1), ()], respectively, and
A by A [(0), (1)].

χ0 χ3 χ6 · · ·

ψ0

ψ2

ψ4

.

.

.

α0,0 α0,3 α0,6 · · ·

α2,0 α2,3 α2,6 · · ·

α4,0 α4,3 α4,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ1 χ4 χ7 · · ·

ψ0

ψ2

ψ4

.

.

.

α0,1 α0,4 α0,7 · · ·

α2,1 α2,4 α2,7 · · ·

α4,1 α4,4 α4,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ2 χ5 χ8 · · ·

ψ0

ψ2

ψ4

.

.

.

α0,2 α0,5 α0,8 · · ·

α2,2 α2,5 α2,8 · · ·

α4,2 α4,5 α4,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ0 χ3 χ6 · · ·

ψ1

ψ3

ψ5

.

.

.

α1,0 α1,3 α1,6 · · ·

α3,0 α3,3 α3,6 · · ·

α5,0 α5,3 α5,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ1 χ4 χ7 · · ·

ψ1

ψ3

ψ5

.

.

.

α1,1 α1,4 α1,7 · · ·

α3,1 α3,4 α3,7 · · ·

α5,1 α5,4 α5,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ2 χ5 χ8 · · ·

ψ1

ψ3

ψ5

.

.

.

α1,2 α1,5 α1,8 · · ·

α3,2 α3,5 α3,8 · · ·

α5,2 α5,5 α5,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

Fig. 4.4. Vectors x and y respectively redistributed as row-projected and column-projected vec-
tors. The column-projected vector y [(0), ()] here is to be used to compute local results that will
become contributions to a column vector y [(0, 1), ()] which will result from adding these local contri-
butions within rows of nodes. By comparing and contrasting this figure with Figure 4.3 it becomes
obvious that redistributing x [(1, 0), ()] to x [(1), ()] requires an allgather within columns of nodes
while y [(0, 1), ()] results from scattering y [(0), ()] within process rows.

7



Column-major vector distribution. A column-major vector distribution views the
d0×d1 mesh of nodes as a linear array of p nodes, numbered in column-major order. A
vector is distributed with this distribution if it is assigned to this linear array of nodes
in a round-robin fashion, one element at a time. In other words, consider vector y.
Its element ψi is assigned to node (i mod d0, (i/d0) mod d1), where / denotes integer
division. Or, equivalently in MATLAB-like notation, node (s0, s1) stores subvector
y(u(s0, s1) :p :m−1), where u(s0, s1) = s0 +s1d0 equals the rank of node (s0, s1) when
the nodes are viewed as a one-dimensional array, indexed in column-major order. This
distribution of y is illustrated in Figure 4.3.

Row-major vector distribution. Similarly, a row-major vector distribution views
the d0 × d1 mesh of nodes as a linear array of p nodes, numbered in row-major
order. In other words, consider vector x. Its element χj is assigned to node (j mod
d1, (j/d1) mod d0). Or, equivalently, node (s0, s1) stores subvector x(v(s0, s1) :p :n−1),
where v(s0, s1) = s0d1 +s1 equals the rank of node (s0, s1) when the nodes are viewed
as a one-dimensional array, indexed in row-major order. The distribution of x is
illustrated in Figure 4.3.

4.4. Parallelizing matrix-vector operations. In the following discussion, we
assume that A, x, and y are distributed as discussed above†. At this point, we suggest
comparing (4.1) with Figure 4.3.

Computing y := Ax. The relation between the distributions of a matrix, column-
major vector, and row-major vector is illustrated by revisiting the most fundamental
of computations in linear algebra, y := Ax, already discussed in Section 4.2. An
examination of Figure 4.3 suggests that the elements of x must be gathered within
columns of nodes (allgather within columns) leaving elements of x distributed as
illustrated in Figure 4.4. Next, each node computes the partial contribution to vector
y with its local matrix and copy of x. Thus, in Figure 4.4, ψi in each node becomes
a contribution to the final ψi. These must be added together, which is accomplished
by a summation of contributions to y within rows of nodes. An experienced MPI
programmer will recognize this as a reduce-scatter within each row of nodes.

Under our communication cost model, the cost of this parallel algorithm is given
by

Ty=Ax(m,n, r, c) = 2

⌈
m

d0

⌉⌈
n

d1

⌉
︸ ︷︷ ︸ γ
local mvmult

+ log2(d0)α+
d0 − 1

d0

⌈
n

d1

⌉
β︸ ︷︷ ︸

allgather x

+ log2(d1)α+
d1 − 1

d1

⌈
m

d0

⌉
β +

d1 − 1

d1

⌈
m

d0

⌉
γ︸ ︷︷ ︸

reduce-scatter y

≈ 2
mn

p
γ + C0

m

d0
γ + C1

n

d1
γ︸ ︷︷ ︸

load imbalance

+ log2(p)α+
d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β +

d1 − 1

d1

m

d0
γ

†We suggest the reader print copies of Figures 4.3 and 4.4 for easy referral while reading the rest
of this section.

8



for some constants C0 and C1. We simplify this further to

2
mn

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β +

d1 − 1

d1

m

d0
γ︸ ︷︷ ︸

T+
y:=Ax(m,n, d0, d1)

(4.2)

since the load imbalance contributes a cost similar to that of the communication‡.
Here, T+

y:=Ax(m,n, k/h, d0, d1) is used to refer to the overhead associated with the
above algorithm for the y = Ax operation. In Appendix A we use these estimates to
show that this parallel matrix-vector multiplication is, for practical purposes, weakly
scalable if d0/d1 is kept constant, but not if d0 × d1 = p× 1 or d0 × d1 = 1× p.

Computing x := AT y. Let us next discuss an algorithm for computing x := AT y,
where A is an m×n matrix and x and y are distributed as before (x with a row-major
vector distribution and y with a column-major vector distribution).

Recall that x = AT y (transpose matrix-vector multiplication) means

χ0 = α0,0ψ0 + α1,0ψ1 + · · ·+ αn−1,0ψn−1
χ1 = α0,1ψ0 + α1,1ψ1 + · · ·+ αn−1,1ψn−1
...

...
...

...
χm−1 = α0,m−1ψ0 + α1,m−1ψ1 + · · ·+ αn−1,m−1ψn−1

or,

χ0 = χ1 = · · · χm−1 =
α0,0ψ0+ α0,1ψ0+ · · · α0,n−1ψ0+
α1,0ψ1+ α1,1ψ1+ · · · α1,n−1ψ1+

...
...

...
αn−1,0ψn−1 αn−1,1ψn−1 · · · αn−1,n−1ψn−1

(4.3)

An examination of (4.3) and Figure 4.3 suggests that the elements of y must be
gathered within rows of nodes (allgather within rows) leaving elements of y distributed
as illustrated in Figure 4.4. Next, each node computes the partial contribution to
vector x with its local matrix and copy of y. Thus, in Figure 4.4 χj in each node
becomes a contribution to the final χj . These must be added together, which is
accomplished by a summation of contributions to x within columns of nodes. We
again recognize this as a reduce-scatter, but this time within each column of nodes.

The cost for this algorithm, approximating as we did when analyzing the algo-
rithm for y = Ax, is

2
mn

p
γ + log2(p)α+

d1 − 1

d1

n

d0
β +

d0 − 1

d0

m

d1
β +

d0 − 1

d0

m

d1
γ︸ ︷︷ ︸

T+
x:=ATy(m,n, d1, d0)

where, as before, we ignore overhead due to load imbalance since terms of the same
order appear in the terms that capture communication overhead.

‡It is tempting to approximate x−1
x

by 1, but this would yield formulae for the cases where the
mesh is p× 1 (d1 = 1) or 1× p (d0 = 1) that are overly pessimistic.

9



Computing y := ATx. What if we wish to compute y := ATx, where A is an m×n
matrix and y is distributed with a column-major vector distribution and x with a row-
major vector distribution? Now x must first be redistributed to a column-major vector
distribution, after which the algorithm that we just discussed can be executed, and
finally the result (in row-major vector distribution) must be redistributed to leave it
as y in column-major vector distribution. This adds the cost of the permutation that
redistributes x and the cost of the permutation that redistributes the result to y to
the cost of y := ATx.

Other cases. What if, when computing y := Ax the vector x is distributed like a
row of matrix A? What if the vector y is distributed like a column of matrix A? We
leave these cases as an exercise to the reader.

The point is that understanding the basic algorithms for multiplying with A and
AT allows one to systematically derive and analyze algorithms when the vectors that
are involved are distributed to the nodes in different ways.

Computing A := yxT +A. A second commonly encountered matrix-vector oper-
ation is the rank-1 update: A := αyxT + A. We will discuss the case where α = 1.
Recall that

A+ yxT =


α0,0 + ψ0χ0 α0,1 + ψ0χ1 · · · α0,n−1 + ψ0χn−1

α1,0 + ψ1χ0 α1,1 + ψ1χ1 · · · α1,n−1 + ψ1χn−1

...
...

. . .
...

αm−1,0 + ψm−1χ0 αm−1,1 + ψm−1χ1 · · · αm−1,n−1 + ψm−1χn−1

 ,

which, when considering Figures 4.3 and 4.4, suggests the following parallel algorithm:
All-gather of y within rows. All-gather of x within columns. Update of the local
matrix on each node.

The cost for this algorithm, approximating as we did when analyzing the algo-
rithm for y = Ax, yields

2
mn

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β︸ ︷︷ ︸

T+
A:=yxT+A(m,n, d0, d1)

where, as before, we ignore overhead due to load imbalance since terms of the same
order appear in the terms that capture communication overhead. Notice that the cost
is the same as a parallel matrix-vector multiplication, except for the “γ” term that
results from the reduction within rows.

As before, one can modify this algorithm when the vectors start with different
distributions building on intuition from matrix-vector multiplication. A pattern is
emerging.

5. Generalizing the Theme. The reader should now have an understanding
how vector and matrix distribution are related to the parallelization of basic matrix-
vector operations. We generalize the insights using sets of indices as “filters” to
indicate what parts of a matrix or vector a given process owns.

The insights in this section are similar to those that underlie Physically Based
Matrix Distribution [14] which itself also underlies PLAPACK. However, we formalize
the notation beyond that used by PLAPACK. The link between distribution of vectors
and matrices was first observed by Bisseling [6, 7], and, around the same time, in [24].

5.1. Vector distribution. The basic idea is to use two different partitions of
the natural numbers as a means of describing the distribution of the row and column
indices of a matrix.

10



Definition 5.1 (Subvectors and submatrices). Let x ∈ Rn and S ⊂ N. Then
x [S] equals the vector with elements from x with indices in the set S, in the order
in which they appear in vector x. If A ∈ Rm×n and S, T ⊂ N, then A [S, T ] is the
submatrix formed by keeping only the elements of A whose row-indices are in S and
column-indices are in T , in the order in which they appear in matrix A.

We illustrate this idea with simple examples:

Example 1. Let x =


χ0

χ1

χ2

χ3

 and A =


α0,0 α0,1 α0,2 α0,3 α0,4

α1,0 α1,1 α1,2 α1,3 α1,4

α2,0 α2,1 α2,2 α2,3 α2,4

α3,0 α3,1 α3,2 α3,3 α3,4

α4,0 α4,1 α4,2 α4,3 α4,4

.

If S = {0, 2, 4, ...} and T = {1, 3, 5, ...}, then

x [S] =

(
χ0

χ2

)
and A [S, T ] =

 α0,1 α0,3

α2,1 α2,3

α4,1 α4,3

 .

We now introduce two fundamental ways to distribute vectors relative to a logical
d0 × d1 process grid.

Definition 5.2 (Column-major vector distribution). Suppose that p ∈ N
processes are available, and define

Vσp (q) = {N ∈ N : N ≡ q + σ (mod p)}, q ∈ {0, 1, ..., p− 1},

where σ ∈ {0, 1, ..., p − 1} is an arbitrary alignment parameter. When p is implied
from context and σ is unimportant to the discussion, we will simply denote the above
set by V(q).

If the p processes have been configured into a logical d0×d1 grid, a vector x is said to
be in a column-major vector distribution if process (s0, s1), where s0 ∈ {0, . . . , d0−1}
and s1 ∈ {0, . . . , d1−1}, is assigned the subvector x(Vσp (s0+s1d0)). This distribution
is represented via the d0 × d1 array of indices

D(0,1)(s0, s1) ≡ V(s0 + s1d0), (s0, s1) ∈ {0, . . . , d0 − 1} × {0, . . . , d1 − 1},

and the shorthand x[(0, 1)] will refer to the vector x distributed such that process
(s0, s1) stores x(D(0,1)(s0, s1)).

Definition 5.3 (Row-major vector distribution). Similarly, the d0× d1 array

D(1,0) ≡ V(s1 + s0d1), (s0, s1) ∈ {0, . . . , d0 − 1} × {0, . . . , d1 − 1},

is said to define a row-major vector distribution. The shorthand y[(1, 0)] will refer
to the vector y distributed such that process (s0, s1) stores y(D(1,0)(s0, s1)).

11



The members of any column-major vector distribution, D(0,1), or row-major vec-
tor distribution, D(1,0), form a partition of N. The names column-major vector dis-
tribution and row-major vector distribution come from the fact that the mappings
(s0, s1) 7→ s0 + s1d0 and (s0, s1) 7→ s1 + s0d1 respectively label the d0 × d1 grid with
a column-major and row-major ordering.

As row-major and column-major distributions differ only by which dimension of
the grid is considered first when assigning an order to the processes in the grid, we
can give one general definition for a vector distribution with two-dimensional grids.
We give this definition now.

Definition 5.4 (Vector distribution). We call the d0 × d1 array D(i,j) a vector
distribution if i, j ∈ {0, 1}, i 6= j, and there exists some alignment parameter σ ∈
{0, . . . , p−1} such that, for every grid position (s0, s1) ∈ {0, . . . , d0−1}×{0, . . . , d1−
1},

D(i,j)(s0, s1) = Vσp (si + sjdi).(5.1)

The shorthand y [(i, j)] will refer to the vector y distributed such that process (s0, s1)
stores y(D(i,j)(s0, s1)).

Figure 4.3 illustrates that to redistribute y [(0, 1)] to y [(1, 0)], and vice versa, re-
quires a permutation communication (simultaneous point-to-point communications).
The effect of this redistribution can be seen in Figure 5.2. Via a permutation commu-
nication, the vector y distributed as y [(0, 1)], can be redistributed as y [(1, 0)] which
is the same distribution as the vector x.

In the preceding discussions, our definitions of D(0,1) and D(1,0) allowed for ar-
bitrary alignment parameters. For the rest of the paper, we will only treat the case
where all alignments are zero, i.e., the top-left entry of every (global) matrix and top
entry of every (global) vector is owned by the process in the top-left of the process
grid.

5.2. Induced matrix distribution. We are now ready to discuss how matrix
distributions are induced by the vector distributions. For this, it pays to again consider
Figure 4.3. The element αi,j of matrix A, is assigned to the row of processes in
which ψi exists and the column of processes in which χj exists. This means that in
y = Ax elements of x need only be communicated within columns of processes and
local contributions to y need only be summed within rows of processes. This induces
a Cartesian matrix distribution: Column j of A is assigned to the same column of
processes as is χj . Row i of A is assigned to the same row of processes as ψi. We now
answer the related questions “What is the set D(0)(s0) of matrix row indices assigned
to process row s0?” and “What is the set D(1)(s1) of matrix column indices assigned
to process column s1?”

12



Elemental symbol Introduced symbol
MC (0)
MR (1)
VC (0, 1)
VR (1, 0)
∗ ()

Fig. 5.1. The relationships between distribution symbols found in the Elemental library im-
plementation and those introduced here. For instance, the distribution A[MC ,MR] found in the
Elemental library implementation corresponds to the distribution A [(0), (1)].

Definition 5.5. Let

D(0)(s0) =

d1−1⋃
s1=0

D(0,1)(s0, s1) and D(1)(s1) =

d0−1⋃
s1=0

D(1,0)(s0, s1).

Given matrix A, A
[
D(0)(s0),D(1)(s1)

]
denotes the submatrix of A with row indices

in the set D(0)(s0) and column indices in D(1)(s1). Finally, A [(0), (1)] denotes the

distribution of A that assigns A
[
D(0)(s0),D(1)(s1)

]
to process (s0, s1).

We say that D(0) and D(1) are induced respectively by D(0,1) and D(1,0) because
the process to which αi,j is assigned is determined by the row of processes, s0, to which
yi is assigned and the column of processes, s1, to which xj is assigned, so that it is
ensured that in the matrix-vector multiplication y = Ax communication needs only be
within rows and columns of processes. Notice in Figure 5.2 that to redistribute indices
of the vector y as the matrix column indices in A requires a communication within
rows of processes. Similarly, to redistribute indices of the vector x as matrix row
indices requires a communication within columns of processes. The above definition
lies at the heart of our communication scheme.

5.3. Vector duplication. Two vector distributions, encountered in Section 4.4
and illustrated in Figure 4.4, still need to be specified with our notation. The vector
x, duplicated as needed for the matrix-vector multiplication y = Ax, can be specified
as x [(0)] or, viewing x as a n × 1 matrix, x [(0), ()]. The vector y, duplicated so as
to store local contributions for y = Ax, can be specified as y [(1)] or, viewing y as a
n × 1 matrix, y [(1), ()]. Here the () should be interpreted as “all indices”. In other
words, D() ≡ N.

5.4. Notation in Elemental library. Readers familiar with the Elemental li-
brary will notice that the distribution symbols defined within that library’s implemen-
tation follow a different convention than that used for distribution symbols introduced
in the previous subsections. This is due to the fact that the notation used in this pa-
per was devised after the implementation of the Elemental library and we wanted the
notation to be extensible to higher-dimensional objects (tensors). However, for every
symbol utilized in the Elemental library implementation, there exists a unique symbol
in the notation introduced here. In Figure 5.1, the relationships between distribution
symbols utilized in the Elemental library implementation and the symbols used in
this paper are defined.

13



�
�
�
�
�
�
����
�

�
�

�
�
��	

@
@
@
@
@
@
@@R@

@
@

@
@
@

@@I

?

6

reduce-
scatter

allgather

reduce
(-to-one)

bcast

scatter

gather

x [(0), (1)]

x [(0), ()]

x [(0, 1), ()] -�
permutation

x [(1), (0)]

x [(1), ()]

x [(1, 0), ()]

@
@
@

@
@
@

@@I
@
@
@
@
@
@
@@R

�
�
�

�
�
�

��	�
�
�
�
�
�
���

?

6

reduce-
scatter

allgather
bcast

reduce
(-to-one)

gather

scatter

Fig. 5.2. Summary of the communication patterns for redistributing a vector x. For instance,
a method for redistributing x from a matrix column to a matrix row is found by tracing from the
bottom-left to the bottom-right of the diagram.

5.5. Of vectors, columns, and rows. A matrix-vector multiplication or rank-
1 update may take as its input/output vectors (x and y) the rows and/or columns of
matrices, as we will see in Section 6. This motivates us to briefly discuss the different
communications needed to redistribute vectors to and from columns and rows. In our
discussion, it will help to refer back to Figures 4.3 and 4.4.

Column to/from column-major vector. Consider Figure 4.3 and let aj be a typical
column in A. It exists within one single process column. Redistributing aj [(0), (1)] to
y [(0, 1), ()] requires simultaneous scatters within process rows. Inversely, redistribut-
ing y [(0, 1), ()] to aj [(0), (1)] requires simultaneous gathers within process rows.

Column to/from row-major vector. Redistributing aj [(0), (1)] to x [(1, 0), ()] can
be accomplished by first redistributing to y [(0, 1), ()] (simultaneous scatters within
rows) followed by a redistribution of y [(0, 1), ()] to x [(1, 0), ()] (a permutation). Re-
distributing x [(1, 0)] to aj [(0), (1)] reverses these communications.

Column to/from column projected vector. Redistributing aj [(0), (1)] to aj [(0), ()]
(duplicated y in Figure 4.4) can be accomplished by first redistributing to y [(0, 1), ()]
(simultaneous scatters within rows) followed by a redistribution of y [(0, 1), ()] to
y [(0), ()] (simultaneous allgathers within rows). However, recognize that a scatter
followed by an allgather is equivalent to a broadcast. Thus, redistributing aj [(0), (1)]
to aj [(0), ()] can be more directly accomplished by broadcasting within rows. Simi-
larly, summing duplicated vectors y [(0), ()] leaving the result as aj [(0), (1)] (a column
in A) can be accomplished by first summing them into y [(0, 1), ()] (reduce-scatters
within rows) followed by a redistribution to aj [(0), (1)] (gather within rows). But a
reduce-scatter followed by a gather is equivalent to a reduce(-to-one) collective com-
munication.

All communication patterns with vectors, rows, and columns. We summarize all
the communication patterns that will be encounted when performing various matrix-
vector multiplications or rank-1 updates, with vectors, columns, or rows as input, in

14



Algorithm: y := Ax (gemv) Comments

x [(1), ()]← x [(1, 0), ()] Redistribute x (allgather in columns)

y(1) [(0), ()] := A [(0), (1)] x [(1), ()] Local matrix-vector multiply

y [(0, 1), ()] :=
∑̂

1y
(1) [(0), ()] Sum contributions (reduce-scatter in rows)

Fig. 5.3. Parallel algorithm for computing y := Ax.

Algorithm A := A+ xyT (ger) Comments

x [(0, 1), ()]← x [(1, 0), ()] Redistribute x as a column-major vector
(permutation)

x [(0), ()]← x [(0, 1), ()] Redistribute x (allgather in rows)

y [(1, 0), ()]← y [(0, 1), ()] Redistribute y as a row-major vector (per-
mutation)

y((1), ())← y((1, 0), ()) Redistribute y (allgather in cols)

A [(0), (1)] := x [(0), ()] [y [(1), ()]]
T

Local rank-1 update

Fig. 5.4. Parallel algorithm for computing A := A+ xyT .

Algorithm: ĉi := Abj (gemv) Comments

x [(1), ()]← bj [(0), (1)] Redistribute bj :

x [(0, 1), ()]← bj [(0), (1)] (scatter in rows)

x [(1, 0), ()]← x [(0, 1), ()] (permutation)

x [(1), ()]← x [(1, 0), ()]

(allgather in columns).

y(1) [(0), ()] := A [(0), (1)] x [(1), ()] Local matrix-vector multiply

ĉi [(0), (1)] :=
∑̂

1y
(1) [(0), ()] Sum contributions:

y [(0, 1), ()] :=
∑̂
ty

(1) [(0), ()]

(reduce-scatter in rows)

y [(1, 0), ()]← y [(0, 1), ()] (permutation)

ĉi((0), (1))← y((1, 0), ()) (gather in rows)

Fig. 5.5. Parallel algorithm for computing ĉi := Abj where ĉi is a row of a matrix C and bj is
a column of a matrix B.

Figure 5.2.

5.6. Parallelizing matrix-vector operations (revisited). We now show how
the notation discussed in the previous subsection pays off when describing algorithms
for matrix-vector operations.

Assume that A, x, and y are respectively distributed as A [(0), (1)], x [(1, 0), ()],
and y [(0, 1), ()]. Algorithms for computing y := Ax and A := A + xyT are given in
Figures 5.3 and 5.4.

The discussion in Section 5.5 provides the insights to generalize these parallel
matrix-vector operations to the cases where the vectors are rows and/or columns of

15



�
�
���

�
�
�
�	

@
@
@
@
@
@
@@R@

@
@

@
@
@

@@I

?

6

reduce-
scatter

allgather

reduce-
scatter

allgather

all-to-all

A [(0), (1)]

A [(0), ()]

A [(0, 1), ()] -�
permutation

A [(1), (0)]

A [(1), ()]

A [(1, 0), ()]

@
@
@@I

@
@
@
@R

�
�
�

�
�
�

��	�
�
�
�
�
�
���

?

6

reduce-
scatter

allgather

allgatherreduce-
scatter

all-to-all

�
�
�

�
�
�

��	�
�
�
�
�
�
���

@
@
@
@I

@
@
@@R

?

6

all-to-all

reduce-
scatter

allgather

allgather
reduce-
scatter

A [(), (1)]

A [(), (1, 0)] -�
permutation

A [(), (0)]

A [(), (0, 1)]

@
@
@

@
@
@

@@I
@
@
@
@
@
@
@@R

�
�
��	

�
�
�
��

?

6

all-to-all

allgatherreduce-
scatter

reduce-
scatter

allgather

Fig. 6.1. Summary of the communication patterns for redistributing a matrix A.

matrices. For example, in Figure 5.5 we show how to compute a column of matrix C,
ĉi, as the product of a matrix A times the column of a matrix B, bj . Certain steps
in Figures 5.3–5.5 have superscripts associated with outputs of local computations.
These superscripts indicate that contributions rather than final results are computed

by the operation. Further, the subscript to
∑̂

indicates along which dimension of the
processing grid a reduction of contributions must occur.

5.7. Similar operations. What we have described is a general method. We
leave it as an exercise to the reader to derive parallel algorithms for x := AT y and
A := yxT +A, starting with vectors that are distributed in various ways.

6. Elemental SUMMA: 2D algorithms (eSUMMA2D). We have now ar-
rived at the point where we can discuss parallel matrix-matrix multiplication on a
d0 × d1 mesh, with p = d0d1. In our discussion, we will assume an elemental distri-
bution, but the ideas clearly generalize to other Cartesian distributions.

16



This section exposes a systematic path from the parallel rank-1 update and
matrix-vector multiplication algorithms to highly efficient 2D parallel matrix-matrix
multiplication algorithms. The strategy is to first recognize that a matrix-matrix
multiplication can be performed by a series of rank-1 updates or matrix-vector multi-
plications. This gives us parallel algorithms that are inefficient. By then recognizing
that the order of operations can be changed so that communication and computa-
tion can be separated and consolidated, these inefficient algorithms are transformed
into efficient algorithms. While only explained for some of the cases of matrix mul-
tiplication, we believe the exposition is such that the reader can him/herself derive
algorithms for the remaining cases by applying the ideas in a straight forward manner.

To fully understand how to attain high performance on a single processor, the
reader should familiarize him/herself with, for example, the techniques in [16].

6.1. Elemental stationary C algorithms (eSUMMA2D-C). We first dis-
cuss the case where C := C + AB, where A and B have k columns each, with k
relatively small § . We call this a rank-k update or panel-panel multiplication [16].
We will assume the distributions C [(0), (1)], A [(0), (1)], and B [(0), (1)]. Partition

A =
(
a0 a1 · · · ak−1

)
and B =


b̂T0
b̂T1
...

b̂Tk−1

 so that

C := ((· · · ((C + a0b̂
T
0 ) + a1b̂

T
1 ) + · · ·) + ak−1b̂

T
k−1).

The following loop computes C := AB + C:

for p = 0, . . . , k − 1
ap [(0), ()]← ap [(0), (1)] (broadcasts within rows)

bTp [(), (1)]← b̂Tp [(0), (1)] (broadcasts within cols)

C [(0), (1)] := C [(0), (1)] + ap [(0), ()] b̂Tp [(), (1)] (local rank-1 updates)
endfor

While Section 5.6 gives a parallel algorithm for ger, the problem with this algorithm is
that (1) it creates a lot of messages and (2) the local computation is a rank-1 update,
which inherently does not achieve high performance since it is memory bandwidth
bound. The algorithm can be rewritten as

for p = 0, . . . , k − 1
ap [(0), ()]← ap [(0), (1)] (broadcasts within rows)

endfor
for p = 0, . . . , k − 1

bTp [(), (1)]← b̂Tp [(0), (1)] (broadcasts within cols)
endfor
for p = 0, . . . , k − 1

C [(0), (1)] := C [(0), (1)] + ap [(0), ()] b̂Tp [(), (1)] (local rank-1 updates)
endfor

§There is an algorithmic block size, balg, for which a local rank-k update achieves peak perfor-
mance [16]. Think of k as being that algorithmic block size for now.

17



Algorithm: C := Gemm C(C,A,B)

Partition A→
(
AL AR

)
, B →

(
BT

BB

)
where AL has 0 columns, BT has 0 rows

while n(AL) < n(A) do
Determine block size b
Repartition(

AL AR

)
→
(
A0 A1 A2

)
,(

BT

BB

)
→

 B0

B1

B2


where A1 has b columns, B1 has b rows

A1 [(0), ()]← A1 [(0), (1)]
B1 [(), (1)]← B1 [(0), (1)]
C [(0), (1)] := C [(0), (1)]

+A1 [(0), ()] B1 [(), (1)]

Continue with(
AL AR

)
←
(
A0 A1 A2

)
,(

BT

BB

)
←

 B0

B1

B2


endwhile

Algorithm: C := Gemm A(C,A,B)

Partition
C →

(
CL CR

)
, B →

(
BL BR

)
where CL and BL have 0 columns

while n(CL) < n(C) do
Determine block size b
Repartition(

CL CR

)
→
(
C0 C1 C2

)
,(

BL BR

)
→
(
B0 B1 B2

)
where C1 and B1 have b columns

B1 [(1), ()]← B1 [(0), (1)]

C
(1)
1 [(0), ()] := A [(0), (1)]B1 [(1), ()]

C1 [(0), (1)] :=
∑̂

1C
(1)
1 [(0), ()]

Continue with(
CL CR

)
←
(
C0 C1 C2

)
,(

BL BR

)
←
(
B0 B1 B2

)
endwhile

Fig. 6.2. Algorithms for computing C := AB + C. Left: Stationary C. Right: Stationary A.

and finally, equivalently,

A [(0), ()]← A [(0), (1)] (allgather within rows)
B [(), (1)]← B [(0), (1)] (allgather within cols)
C [(0), (1)] := C [(0), (1)] +A [(0), ()] B [(), (1)] (local rank-k update)

Now the local computation is cast in terms of a local matrix-matrix multiplication
(rank-k update), which can achieve high performance. Here (given that we assume
elemental distribution) A [(0), ()]← A [(0), (1)], within each row broadcasts k columns
of A from different roots: an allgather if elemental distribution is assumed! Similarly
B [(), (1)] ← B [(0), (1)], within each column broadcasts k rows of B from different
roots: another allgather if elemental distribution is assumed!

Based on this observation, the SUMMA-like algorithm can be expressed as a loop
around such rank-k updates, as given in Figure 6.2 (left)¶. The purpose for the loop
is to reduce workspace required to store duplicated data. Notice that, if an elemental
distribution is assumed, the SUMMA-like algorithm should not be called a broadcast-
broadcast-compute algorithm. Instead, it becomes an allgather-allgather-compute
algorithm. We will also call it a stationary C algorithm, since C is not communicated
(and hence “owner computes” is determined by what processor owns what element
of C). The primary benefit from a having a loop around rank-k updates is that it
reduces the required local workspace at the expense of an increase only in the α term
of the communication cost.

We label this algorithm eSUMMA2D-C, an elemental SUMMA-like algorithm tar-
geting a two-dimensional mesh of nodes, stationary C variant. It is not hard to extend

¶We use FLAME notation to express the algorithm, which has been used in our papers for more
than a decade [18].

18



the insights to non-elemental distributions (as, for example, used by ScaLAPACK or
PLAPACK).

An approximate cost for the described algorithm is given by

TeSUMMA2D−C(m,n, k, d0, d1)

=
2mnk

p
γ +

k

balg
log2(d1)α+

d1 − 1

d1

mk

d0
β +

k

balg
log2(d0)α+

d0 − 1

d0

nk

d1
β

=
2mnk

p
γ +

k

balg
log2(p)α+

(d1 − 1)mk

p
β +

(d0 − 1)nk

p
β.︸ ︷︷ ︸

T+
eSUMMA2D−C(m,n, k, d0, d1)

This estimate ignores load imbalance (which leads to a γ term of the same order as
the β terms) and the fact that the allgathers may be unbalanced if balg is not an
integer multiple of both d0 and d1. As before and throughout this paper, T+ refers to
the communication overhead of the proposed algorithm (e.g. T+

eSUMMA2D−C refers
to the communication overhead of the eSUMMA2D-C algorithm.)

It is not hard to see that, for practical purposes‖, the weak scalability of the
eSUMMA2D-C algorithm mirrors that of the parallel matrix-vector multiplication
algorithm analyzed in Appendix A: it is weakly scalable when m = n and d0 = d1,
for arbitrary k.

At this point it is important to mention that this resulting algorithm may seem
similar to an approach described in prior work [1]. Indeed, this allgather-allgather-
compute approach to parallel matrix-matrix multiplication is described in that paper
for the matrix-matrix multiplication variants C = AB, C = ABT , C = ATB, and
C = ATBT under the assumption that all matrices are approximately the same size;
a surmountable limitation. As we have argued previously, the allgather-allgather-
compute approach is particularly well-suited for situations where we wish not to com-
municate the matrix C. In the next section, we describe how to systematically derive
algorithms for situations where we wish to avoid communicating the matrix A.

6.2. Elemental stationary A algorithms (eSUMMA2D-A). Next, we dis-
cuss the case where C := C + AB, where C and B have n columns each, with n
relatively small. For simplicity, we also call that parameter balg. We call this a
matrix-panel multiplication [16]. We again assume that the matrices are distributed
as C [(0), (1)], A [(0), (1)], and B [(0), (1)]. Partition

C =
(
c0 c1 · · · cn−1

)
and B =

(
b0 b1 · · · bn−1

)
so that cj = Abj + cj . The following loop will compute C = AB + C:

for j = 0, . . . , n− 1
bj [(0, 1), ()]← bj [(0), (1)] (scatters within rows)
bj [(1, 0), ()]← bj [(0, 1), ()] (permutation)
bj [(1), ()]← bj [(1, 0), ()] (allgathers within cols)
cj [(0), ()] := A [(0), (1)] bj [(1), ()] (local matvec mult.)

cj [(0), (1)]←
∑̂

1cj [(0), ()] (reduce-to-one within rows)
endfor

‖The very slow growing factor logp(p) prevents weak scalability unless it is treated as a constant.

19



While Section 5.6 gives a parallel algorithm for gemv, the problem again is that
(1) it creates a lot of messages and (2) the local computation is a matrix-vector
multiply, which inherently does not achieve high performance since it is memory
bandwidth bound. This can be restructured as

for j = 0, . . . , n− 1
bj [(0, 1), ()]← bj [(0), (1)] (scatters within rows)

endfor
for j = 0, . . . , n− 1

bj [(1, 0), ()]← bj [(0, 1), ()] (permutation)
endfor
for j = 0, . . . , n− 1

bj [(1), ()]← bj [(1, 0), ()] (allgathers within cols)
endfor
for j = 0, . . . , n− 1

cj [(0), ()] := A [(0), (1)] bj [(1), ()] (local matvec mult.)
endfor
for j = 0, . . . , n− 1

cj [(0), (1)]←
∑̂

1cj [(0), ()] (simultaneous reduce-to-one
endfor within rows)

and finally, equivalently,

B [(1), ()]← B [(0), (1)] (all-to-all within rows, permu-
tation, allgather within cols)

C [(0), ()] := A [(0), (1)]B [(1), ()] + C [(0), ()] (simultaneous local matrix
multiplications)

C [(0), (1)]←
∑̂
C [(0), ()] (reduce-scatter within rows)

Now the local computation is cast in terms of a local matrix-matrix multiplication
(matrix-panel multiply), which can achieve high performance. A stationary A algo-
rithm for arbitrary n can now be expressed as a loop around such parallel matrix-panel
multiplies, given in Figure 6.2 (right).

An approximate cost for the described algorithm is given by

TeSUMMA2D−A(m,n, k, d0, d1) =
n
balg

log2(d1)α+ d1−1
d1

nk
d0
β (all-to-all within rows)

+ n
balg

α+ n
d1

k
d0
β (permutation)

+ n
balg

log2(d0)α+ d0−1
d0

nk
d1
β (allgather within cols)

+ 2mnk
p γ (simultaneous local matrix-panel mult.)

+ n
balg

log2(d1)α+ d1−1
d1

mn
d0
β + d1−1

d1
mn
d0
γ (reduce-scatter within rows)

As we discussed earlier, the cost function for the all-to-all operation is somewhat
suspect. Still, if an algorithm that attains the lower bound for the α term is employed,
the β term must at most increase by a factor of log2(d1) [8], meaning that it is not
the dominant communication cost. The estimate ignores load imbalance (which leads
to a γ term of the same order as the β terms) and the fact that various collective
communications may be unbalanced if balg is not an integer multiple of both d0 and
d1.

20



While the overhead is clearly greater than that of the eSUMMA2D-C algorithm
when m = n = k, the overhead is comparable to that of the eSUMMA2D-C algorithm;
so the weak scalability results are, asymptotically, the same. Also, it is not hard to see
that if m and k are large while n is small, this algorithm achieves better parallelism
since less communication is required: The stationary matrix, A, is then the largest
matrix and not communicating it is beneficial. Similarly, if m and n are large while k
is small, then the eSUMMA2D-C algorithm does not communicate the largest matrix,
C, which is beneficial.

6.3. Communicating submatrices. In Figure 6.1 we illustrate the collective
communications required to redistribute submatrices from one distribution to another
and the collective communications required to implement them.

6.4. Other cases. We leave it as an exercise to the reader to propose and analyze
the remaining stationary A, B, and C algorithms for the other cases of matrix-matrix
multiplication: C := ATB + C, C := ABT + C, and C := ATBT + C.

The point is that we have presented a systematic framework for deriving a family
of parallel matrix-matrix multiplication algorithms.

7. Elemental SUMMA: 3D algorithms (eSUMMA3D). We now view the
p processors as forming a d0 × d1 × h mesh, which one should visualize as h stacked
layers, where each layer consists of a d0 × d1 mesh. The extra dimension is used to
gain an extra level of parallelism, which reduces the overhead of the 2D SUMMA
algorithms within each layer at the expense of communications between the layers.

The approach used to generalize Elemental SUMMA 2D algorithms to Elemental
SUMMA 3D algorithms can be easily modified to use Cannon’s or Fox’s algorithms
(with the constraints and complications that come from using those algorithms), or
any other distribution for which SUMMA can be used (pretty much any Cartesian
distribution).

7.1. 3D stationary C algorithms (eSUMMA3D-C). Partition, A and B so

that A =
(
A0 · · · Ah−1

)
and B =

 B0

...
Bh−1

, where Ap and Bp have approxi-

mately k/h columns and rows, respectively. Then

C +AB = (C +A0B0)︸ ︷︷ ︸
by layer 0

+ (0 +A1B1)︸ ︷︷ ︸
by layer 1

+ · · ·+ (0 +Ah−1Bh−1).︸ ︷︷ ︸
by layer h-1

This suggests the following 3D algorithm:

• Duplicate C to each of the layers, initializing the duplicates assigned to layers
1 through h− 1 to zero. This requires no communication. We will ignore the
cost of setting the duplicates to zero.

• Scatter A and B so that layer H receives AH and BH . This means that
all processors (I, J, 0) simultaneously scatter approximately (m+ n)k/(d0d1)
data to processors (I, J, 0) through (I, J, h − 1). The cost of such a scatter
can be approximated by

log2(h)α+
h− 1

h

(m+ n)k

d0d1
β = log2(h)α+

(h− 1)(m+ n)k

p
β.(7.1)

21



• Compute C := C+AKBK simultaneously on all the layers. If eSUMMA2D-C
is used for this in each layer, the cost is approximated by

2
mnk

p
γ +

k

hbalg
(log2(p)− log2(h))α+

(d1 − 1)mk

p
β +

(d0 − 1)nk

p
β.︸ ︷︷ ︸

T+
eSUMMA2D−C(m,n, k/h, d0, d1)

(7.2)

• Perform reduce operations to sum the contributions from the different layers
to the copy of C in layer 0. This means that contributions from processors
(I, J, 0) through (I, J,K) are reduced to processor (I, J, 0). An estimate for
this reduce-to-one is

log2(h)α+
mn

d0d1
β +

mn

d0d1
γ = log2(h)α+

mnh

p
β +

mnh

p
γ.(7.3)

Thus, an estimate for the total cost of this eSUMMA3D-C algorithm for this case of
gemm results from adding (7.1)–(7.3).

Let us analyze the case where m = n = k and d0 = d1 =
√
p/h in detail. The

cost becomes

CeSUMMA3D−C(n, n, n, d0, d0, h)

= 2
n3

p
γ +

n

hbalg
(log2(p)− log2(h))α+ 2

(d0 − 1)n2

p
β + log2(h)α+ 2

(h− 1)n2

p
β

+ log2(h)α+
n2h

p
β +

n2h

p
γ

= 2
n3

p
γ +

[
n

hbalg
(log2(p)− log2(h)) + 2 log2(h)

]
α+

[
2(

√
p
√
h
− 1) + 3h− 2 +

γ

β
h

]
n2

p
β.

Now, let us assume that the α term is inconsequential (which will be true if n is large
enough). Then the minimum can be computed by taking the derivative (with respect
to h) and setting this to zero: −√ph−3/2 + (3 +K) = 0 or h = ((3 +K)/

√
p)−2/3 =

3
√
p/(3+K)2/3, where K = γ/β. Typically γ/β � 1 and hence (3+K)−2/3 ≈ 3−2/3 ≈

1/2, meaning that the optimal h is given by h ≈ 3
√
p/2. Of course, details of how the

collective communication algorithms are implemented, etc., will affect this optimal
choice. Moreover, α is typically four to five orders of magnitude greater than β, and
hence the α term cannot be ignored for more moderate matrix sizes, greatly affecting
the analysis.

While the cost analysis assumes the special case where m = n = k and d0 = d1,
and that the matrices is perfectly balanced among the d0 × d0 mesh, the description
of the algorithm is general. It is merely the case that the cost analysis for the more
general case becomes more complex.

The algorithm and the related insights are similar to those described in Agarwal,
et.al [2], although we arrive at this algorithm via a different path.

Now, PLAPACK and Elemental both include stationary C algorithms for the
other cases of matrix multiplication (C := αATB + βC, C := αABT + βC, and
C := αATBT + βC). Clearly, 3D algorithms that utilize these implementations can
be easily proposed. For example, if C := ATBT + C is to be computed, one can
partition

A =

 A0

...
Ah−1

 and B =
(
B0 · · · Bh−1

)
,

22



after which

C +ATBT = (C +AT0 B
T
0 )︸ ︷︷ ︸

by layer 0

+ (0 +AT1 B
T
1 )︸ ︷︷ ︸

by layer 1

+ · · ·+ (0 +ATh−1B
T
h−1).︸ ︷︷ ︸

by layer h-1

The communication overhead for all four cases is similar, meaning that for all four
cases, the resulting stationary C 3D algorithms have similar properties.

7.2. Stationary A algorithms (eSUMMA3D-A). Let us next focus on C :=
AB + C. Algorithms such that A is the stationary matrix are implemented in PLA-
PACK and Elemental. They have costs similar to that of the eSUMMA2D-C algo-
rithm.

Let us describe a 3D algorithm, with a d0 × d1 × h mesh, again viewed as h
layers. If we partition, conformally, C and B so that C =

(
C0 · · · Ch−1

)
and

B =
(
B0 · · · Bh−1

)
, then

(C0 := C0 +AB0 C1 := C1 +AB1 · · · Ch−1 := Ch−1 +ABh−1) .︸ ︷︷ ︸
by layer 0

︸ ︷︷ ︸
by layer h− 1

This suggests the following 3D algorithm:
• Duplicate (broadcast) A to each of the layers. If matrix A is perfectly bal-

anced among the processors, the cost of this can be approximated by

log2(h)α+
mk

d0d1
β.

• Scatter C and B so that layer K recieves CK and BK . This means having all
processors (I, J, 0) simultaneously scatter approximately (mn + nk)/(d0d1)
data to processors (I, J, 0) through (I, J, h − 1). The cost of such a scatter
can be approximated by

log2(h)α+
h− 1

h

(m+ k)n

d1d0
β = log2(h)α+

(h− 1)(m+ k)n

p
β.

• Compute CK := CK + ABK simultaneously on all the layers with a 2D
stationary A algorithm. The cost of this is approximated by

2mnk

p
γ + T+

eSUMMA2D−A(m,n/h, k, d0, d1).

• Gather the CK submatrices to Layer 0. The cost of such a gather can be
approximated by

log2(h)α+
h− 1

h

mn

d1d0
β.

Rather than giving the total cost, we merely note that the stationary A 3D algorithms
can similarly be stated for general m, n, k, d0, and d1, and that then the costs are
similar.

Now, PLAPACK and Elemental both include stationary A algorithms for the
other cases of matrix multiplication. Again, 3D algorithms that utilize these imple-
mentations can be easily proposed.

23



7.3. Stationary B algorithms (eSUMMA3D-B). Finally, let us again focus
on C := AB + C. Algorithms such that B is the stationary matrix are also imple-
mented in PLAPACK and Elemental. They also have costs similar to that of the
SUMMA algorithm for C := AB + C.

Let us describe a 3D algorithm, with a d0×d1×h mesh, again viewed as h layers.

If we partition, conformally, C and A so that C =

 C0

...
Ch−1

 and A =

 A0

...
Ah−1

,

then 
C0 +A0B
C1 +A1B

...
Ch−1 := Ch−1 +Ah−1B


by layer 0
by layer 1

...
by layer h− 1

This suggests the following 3D algorithm:
• Duplicate (broadcast) B to each of the layers. If matrix B is perfectly bal-

anced among the processors, the cost can be approximated by

log2(h)α+
nk

d0d1
β.

• Scatter C and A so that layer K recieves CK and AK . This means having all
processors (I, J, 0) simultaneously scatter approximately (mn + mk)/(d0d1)
data to processors (I, J, 0) through (I, J, h − 1). The cost of such a scatter
can be approximated by

log2(h)α+
h− 1

h

m(n+ k)

d1d0
β = log2(h)α+

(h− 1)m(n+ k)

p
β

• Compute CK := CK + AKB simultaneously on all the layers with a 2D
stationary B algorithm. The cost of this is approximated by

2mnk

p
γ + T+

eSUMMA2D−B(m/h, n, k, d0, d1)

• Gather the CK submatrices to Layer 0. The cost of such a gather can be
approximated by

log2(h)α+
h− 1

h

mn

d1d0
β

Again, a total cost similar to those for stationary C and A algorithms results. Again,
PLAPACK and Elemental both include stationary B algorithms for the other cases of
matrix multiplication. Again, 3D algorithms that utilize these implementations can
be easily proposed.

7.4. Other cases. We leave it as an exercise to the reader to propose and analyze
the remaining eSUMMA3D-A, eSUMMA3D-B, and eSUMMA3D-C algorithms for the
other cases of matrix-matrix multiplication: C := ATB + C, C := ABT + C, and
C := ATBT + C.

The point is that we have presented a systematic framework for deriving a family
of parallel 3D matrix-matrix multiplication algorithms.

24



7.5. Discussion. This extra level of parallelism gained with 3D SUMMA al-
gorithms allows us to parallelize computation across any one of three dimensions
involved in the matrix-matrix multiplication (two dimensions for forming the output
C, and one for the reduction of A and B). The particular 3D SUMMA algorithmic
variant dictates the dimension along which the extra parallelism occurs. In [13], a
geometric model is developed that views the set of scalar computations associated
with a matrix-matrix multiplication as a set of lattice points forming a rectangular
prism. This geometric model is based on the Loomis-Whitney inequality [26] that has
been used to devise algorithms that achieve the parallel bandwidth cost lower bound
for matrix-matrix multiplication [4, 5]. Considering this geometric model, each 3D
SUMMA algorithmic variant corresponds to performing computations appearing in
different slices∗∗ in parallel. The orientation of slices is dictated by the 3D SUMMA
algorithmic variant chosen and the order in which computations are performed within
a slice is dictated by the 2D SUMMA algorithm used within each layer of the process-
ing mesh. We now discuss how the communication overhead of Elemental 2D and 3D
SUMMA algorithms relate to the lower bounds of both the latency and bandwidth
costs associated with parallel matrix-matrix multiplication.

In [23], it was shown that the lower bound on communicated data is Ω(n2/
√
p)

for a matrix multiplication of two n × n matrices computed on a processing grid
involving p processes arranged as a two-dimensional mesh and Ω(n2/ 3

√
p2) for a ma-

trix multiplication of two n × n matrices computed on a processing grid involving p
processes arranged as a three-dimensional mesh. Examination of the cost functions
associated with each eSUMMA2D algorithm and eSUMMA3D algorithm shows that
each achieves the lower-bound on communication for such an operation.

With regards to latency, the lower bound on number of messages required is
Ω(log(p)) for a matrix multiplication of two n×n matrices computed on a processing
grid involving p processes arranged as either a two-dimensional or three-dimensional
mesh. Examination of the cost functions shows that each achieves the lower-bound
on latency as well if we assume that the algorithmic block-size balg = n. Otherwise,
the proposed algorithms do not achieve the lower bound.

8. Performance Experiments. In this section, we present performance results
that support the insights in the previous sections. Implementations of the eSUMMA-
2D algorithms are all part of the Elemental library. The eSUMMA-3D algorithms
were implemented with Elemental, building upon its eSUMMA-2D algorithms and
implementations. In all these experiments, it was assumed that the data started and
finished distributed within one layer of the three-dimensional mesh of nodes so that all
communication necessary to duplicate was included in the performance calculations.

As in [28, 29], performance experiments were carried out on the IBM Blue Gene/P
architecture with compute nodes that consist of four 850 MHz PowerPC 450 processors
for a combined theoretical peak performance of 13.6 GFlops per node using double-
precision arithmetic. Nodes are interconnected by a three-dimensional torus topology
and a collective network that each support a per-node bidirectional bandwidth of
2.55 GB/s. In all graphs, the top of the graph represents peak performance for this
architecture so that the attained efficiency can be easily judged.

The point of the performance experiments was to demonstrate the merits of 3D
algorithms. For this reason, we simply fixed the algorithmic block size, balg, to 128
for all experiments. The number of nodes, p, was chosen to be various powers of two,

∗∗As used, the term “slice” refers to a set of “superbricks” in [13].

25



0 1000 2000 3000 4000 5000 6000 7000 8000
number of processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A

h=1
h=2
h=4
h=8
h=16

0 1000 2000 3000 4000 5000 6000 7000 8000
number of processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B

h=1
h=2
h=4
h=8
h=16

0 1000 2000 3000 4000 5000 6000 7000 8000
number of processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C

h=1
h=2
h=4
h=8
h=16

Fig. 8.1. Performance of the different implementations when m = n = k = 30, 000 and the
number of nodes is varied.

as was the number of layers, h. As a result, the d0 × d1 mesh for a single layer was
chosen so that d0 = d1 if p/h was a perfect square and d0 = d1/2 otherwise. The
“zig-zagging” observed in some of the curves is attributed to this square vs. nonsquare
choice of d0×d1. It would have been tempting to perform exhaustive experiments with
various algorithmic block sizes and mesh configurations. However, the performance
results were merely meant to verify that the insights of the previous sections have
merit.

In our implementations, the eSUMMA3D-X algorithms utilize eSUMMA2D-X
algorithms on each of the layers, where X ∈ {A,B,C}. As a result, the curve for
eSUMMA3D-X with h = 1 is also the curve for the eSUMMA2D-X algorithm.

Figure 8.1 illustrates the benefits of the 3D algorithms. When the problem size is
fixed, efficiency can inherently not be maintained. In other words, “strong” scaling is
unattainable. Still, by increasing the number of layers, h, as the number of nodes, p,
is increased, efficiency can be better maintained.

Figure 8.2: illustrates that the eSUMMA2D-C and eSUMMA3D-C algorithms attain
high performance already when m = n are relatively large and k is relatively small.
This is not surprising: the eSUMMA2D-C algorithm already attains high performance

26



0 5000 10000 15000 20000 25000 30000
size of k dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of k dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A
p = 8192

h=1
h=2
h=4
h=8
h=16

(a) (d)

0 5000 10000 15000 20000 25000 30000
size of k dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of k dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B
p = 8192

h=1
h=2
h=4
h=8
h=16

(b) (e)

0 5000 10000 15000 20000 25000 30000
size of k dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of k dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C
p = 8192

h=1
h=2
h=4
h=8
h=16

(c) (f)

Fig. 8.2. Performance of the different implementations when m = n = 30, 000 and k is
varied. As expected, the stationary C algorithms ramp up to high performance faster than the other
algorithms when k is small.

27



0 5000 10000 15000 20000 25000 30000
size of n dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of n dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A
p = 8192

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of n dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of n dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B
p = 8192

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of n dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of n dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C
p = 8192

h=1
h=2
h=4
h=8
h=16

Fig. 8.3. Performance of the different implementations when m = k = 30, 000 and n is
varied. As expected, the stationary A algorithms ramp up to high performance faster than the other
algorithms when n is small.

when k is small because the “large”’ matrix C is not communicated and the local
matrix-matrix multiplication can already attain high performance when the local k is
small (if the local m and n are relatively large).

Figure 8.3 similarly illustrates that the eSUMMA2D-A and eSUMMA3D-A algo-
rithms attain high performance already when m = k are relatively large and n is rel-

28



0 5000 10000 15000 20000 25000 30000
size of m dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of m dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: A
p = 8192

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of m dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of m dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: B
p = 8192

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of m dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C
p = 4096

h=1
h=2
h=4
h=8
h=16

0 5000 10000 15000 20000 25000 30000
size of m dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
FL

O
P
S
 p

e
r 

co
re

 Stationary type: C
p = 8192

h=1
h=2
h=4
h=8
h=16

Fig. 8.4. Performance of the different implementations when n = k = 30, 000 and m is
varied. As expected, the stationary B algorithms ramp up to high performance faster than the other
algorithms when m is small.

atively small and Figure 8.4 illustrates that the eSUMMA2D-B and eSUMMA3D-B
algorithms attain high performance already when n = k are relatively large and m is
relatively small.

Figure 8.2(c) vs. Figure 8.3(a) shows that the eSUMMA2D-A algorithm (Fig-
ure 8.3(a) with h = 1) asymptotes sooner than the eSUMMA2D-C algorithm (Fig-

29



ure 8.2(c) with h = 1). The primary reason for this is that it incurs more com-
munication overhead. But as a result, increasing h benefits eSUMMA3D-A more in
Figure 8.3(a) than does increasing h for eSUMMA3D-C in Figure 8.2(c). A similar
observation can be made for eSUMMA2D-B and eSUMMA3D-B in Figure 8.4(b).

9. Extensions to Tensor Computations. Matrix computations and linear
algebra are useful when the problem being modeled can be naturally described with
up to two dimensions. The number of dimensions the object (linear or multi-linear)
describes is often referred to as the order of the object. For problems naturally
described as higher-order objects, tensor computations and multi-linear algebra are
utilized.

As an example of tensor computations, the generalization of matrix-matrix mul-
tiplication to tensor computations is the tensor contraction. Not only is matrix-
multiplication generalized in the respect that the objects represent a greater number
of dimensions, but the number of dimensions involved in the summation or accu-
mulation of the multiplication is generalized (up to all dimensions of a tensor can
be involved in the summation of a tensor contraction), and the notion of a transpo-
sition of dimensions is generalized to incorporate the higher number of dimensions
represented by each tensor.

A significant benefit of the notation introduced in this paper is that generaliz-
ing concepts to tensors and multi-linear algebra is relatively straight-forward. The
notation used for an object’s distribution is comprised of two pieces of information:
how column-indices and how row-indices of the matrix object are distributed. To
describe how a higher-order tensor is distributed, the notation needs only to extend
to describe how the additional dimensions are distributed. Further, while this pa-
per focuses predominately on processing grids that are two- and three-dimensional,
modeling higher-order grids is straightforward. By design, we describe the shape of
the grid as an array where each element is the size of the corresponding dimension of
the grid. When targeting a higher-order grid, the array need only to be reshaped to
match the order of the grid.

The challenge of formalizing how the different collective communications relate
different distributions of tensors and how to systematically derive algorithms for tensor
operations is beyond the scope of this paper but is a part of future work. Initial results
of how the ideas in this paper are extended to the tensor contraction operation are
given in the dissertation proposal of one of the authors [30].

10. Conclusion. We have given a systematic treatment of the parallel imple-
mentation of matrix-vector multiplication and rank-1 update. This motivates the
vector and matrix distributions that underly PLAPACK and, more recently, Elemen-
tal. Based on this, we exposed a systematic approach for implementing parallel 2D
matrix-matrix multiplication algorithms. With that in place, we then extended the
observations to 3D algorithms.

The ideas in this paper primarily focus on aspects of distributed-memory archi-
tectures that utilize a bulk-synchronous communication model for network communi-
cation. The ideas presented do not preclude the use of many-core and/or GPU archi-
tectures within each node of such distributed-memory architectures. For distributed-
memory architectures that are most appropriately modeled with bulk-synchronous
communications, we hope that the ideas presented will allow others to investigate
how to effectively utilize various on-node architectures. We recognize that future
distributed-memory architectures may be better suited for more asynchronous com-
munication models; however, it is important to understand when the ideas in this

30



paper can be applied to better tune algorithms for given architectures.

We believe that sufficient detail has been given so that a reader can now easily
extend our approach to alternative data distributions and/or alternative architectures.
Throughout this paper, we have hinted how the ideas can be extended to the realm of
tensor computation on higher-dimensional computing grids. A detailed presentation of
how these ideas are extended will be given in future work. Another interesting future
direction would be to analyze whether it would be worthwhile to use the proposed
3D parallelization, but with a different 2D SUMMA algorithms within each layer.
For example, questions such as “would it be worthwhile to use the eSUMMA3D-C
approach, but with a eSUMMA2D-A algorithm within each layer?” remain.

Acknowledgments. This research was partially sponsored by NSF grants OCI-
0850750, CCF-0917167, ACI-1148125/1340293 and CCF-1320112, grants from Mi-
crosoft, and an unrestricted grant from Intel. Martin Schatz was partially supported
by a Sandia Fellowship. Jack Poulson was partially supported by a fellowship from the
Institute of Computational Engineering and Sciences. This research used resources of
the Argonne Leadership Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under con-
tract DE-AC02-06CH11357; early experiments were performed on the Texas Advanced
Computing Center’s Ranger Supercomputer.

Any opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).

REFERENCES

[1] R. C. Agarwal, F. Gustavson, and M. Zubair. A high-performance matrix multiplication algo-
rithm on a distributed memory parallel computer using overlapped communication. IBM
Journal of Research and Development, 38(6), 1994.

[2] R.C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional
approach to parallel matrix multiplication. IBM Journal of Research and Development,
39:39–5, 1995.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide
(third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[4] G. Ballard. Avoiding Communication in Dense Linear Algebra. PhD thesis, EECS Department,
University of California, Berkeley, Aug 2013.

[5] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication
lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica, 23:1–
155, 2014.

[6] R. H. Bisseling. Parallel iterative solution of sparse linear systems on a transputer network.
In A. E. Fincham and B. Ford, editors, Parallel Computation, volume 46 of The Institute
of Mathematics and its Applications Conference, pages 253–271. Oxford University Press,
Oxford, UK, 1993.

[7] R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous parallel archi-
tectures. In B. Pehrson and I. Simon, editors, Technology and Foundations: Information
Processing ’94, Vol. I, volume 51 of IFIP Transactions A, pages 509–514. Elsevier Science
Publishers, Amsterdam, 1994.

[8] Jehoshua Bruck, Ching tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weathersby. Efficient
algorithms for all-to-all communications in multi-port systems. In IEEE Transactions on
Parallel and Distributed Systems, pages 298–309, 1997.

[9] Lynn Elliot Cannon. A cellular computer to implement the Kalman Filter Algorithm. PhD
thesis, Montana State University, 1969.

[10] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective commu-
nication: theory, practice, and experience. Concurrency and Computation: Practice and
Experience, 19(13):1749–1783, 2007.

31



[11] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent computers. In Proceedings of the Fourth Sympo-
sium on the Frontiers of Massively Parallel Computation, pages 120–127. IEEE Comput.
Soc. Press, 1992.

[12] J. Choi, D. W. Walker, and J. J.Dongarra. PUMMA: Parallel Universal Matrix Multiplication
Algorithms on distributed memory concurrent computers. Concurrency: Practice and
Experience, 6, 1994.

[13] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick. Communication lower bounds
and optimal algorithms for programs that reference arrays – Part 1. ArXiv e-prints, July
2013.

[14] C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions: have we
been doing it all wrong? Technical Report TR-95-40, Department of Computer Sciences,
The University of Texas at Austin, 1995.

[15] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors, volume I. Prentice Hall, 1988.

[16] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multipli-
cation. ACM Trans. Math. Soft., 34(3):12:1–12:25, May 2008.

[17] John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A flexible class of parallel
matrix multiplication algorithms. In Proceedings of First Merged International Paral-
lel Processing Symposium and Symposium on Parallel and Distributed Processing (1998
IPPS/SPDP ’98), pages 110–116, 1998.

[18] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal Linear Algebra Methods Environment. ACM Trans. Math. Soft., 27(4):422–455,
December 2001.

[19] B. Hendrickson, R. Leland, and S. Plimpton. An efficient parallel algorithm for matrix-vector
multiplication. Technical report, 1993.

[20] B. A. Hendrickson and D. E. Womble. The torus-wrap mapping for dense matrix calculations
on massively parallel computers. SIAM J. Sci. Stat. Comput., 15(5):1201–1226, 1994.

[21] S. Huss-Lederman, E. Jacobson, and A. Tsao. Comparison of scalable parallel matrix multipli-
cation libraries. In Proceedings of the Scalable Parallel Libraries Conference, 1993.

[22] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang. Matrix multiplication on the Intel
Touchstone DELTA. Concurrency: Practice and Experience, 6(7):571–594, 1994.

[23] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput., 64(9):1017–1026, September
2004.

[24] J. G. Lewis and R. A. van de Geijn. Implementing matrix-vector multiplication and conjugate
gradient algorithms on distributed memory multicomputers. In Proceedings of Supercom-
puting 1993, 1993.

[25] J. Li, A. Skjellum, and R. D. Falgout. A poly-algorithm for parallel dense matrix multiplica-
tion on two-dimensional process grid topologies. Concurrency: Practice and Experience,
9(5):345–389, May 1997.

[26] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality. Bull.
Amer. Math. Soc., 55(10):961–962, 10 1949.

[27] F. W. McColl and A. Tiskin. Memory-efficient matrix multiplication in the bsp model. Algo-
rithmica, 24(3):287–297.

[28] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A.
Romero. Elemental: A new framework for distributed memory dense matrix computations.
ACM Trans. Math. Softw., 39(2):13:1–13:24, February 2013.

[29] Jack Poulson, Robert van de Geijn, and Jeffrey Bennighof. Parallel algorithms for reducing the
generalized hermitian-definite eigenvalue problem. FLAME Working Note #56. Technical
Report TR-11-05, The University of Texas at Austin, Department of Computer Sciences,
February 2011.

[30] Martin D. Schatz. Anatomy of parallel computation with tensors. Technical Report TR-13-21,
Department of Computer Science, The University of Texas at Austin, 2013.

[31] Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5d matrix multipli-
cation and lu factorization algorithms. In Proceedings of the 17th international conference
on Parallel processing - Volume Part II, Euro-Par’11, pages 90–109, Berlin, Heidelberg,
2011. Springer-Verlag.

[32] G. W. Stewart. Communication and matrix computations on large message passing systems.
Parallel Computing, 16:27–40, 1990.

[33] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience, 9(4):255–274, April 1997.

32



[34] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

[35] Field G. Van Zee. libflame: The Complete Reference. lulu.com, 2009.
[36] Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio

Quintana-Ort́ı. The libflame library for dense matrix computations. IEEE Computing in
Science and Engineering, 11(6):56–63, November 2009.

33



Appendix A. (Electronic supplement) Scalability of Matrix-vector Op-
erations.

Here, we consider the scalability of various algorithms.

A.1. Weak scalability. A parallel algorithm is said to be weakly scalable when
it can maintain efficiency as the number of nodes, p, increases.

More formally, let T (n) and T (n, p) be the cost (in time for execution) of a
sequential and parallel algorithm (utilizing p nodes), respectively, when computing
with a problem with a size parameterized by n. nmax(p) represents the largest problem
that can fit in the combined memories of the p nodes, and the overhead T+(n, p) be
given by

T+(n, p) = T (n, p)− T (n)

p
.

Then the efficiency of the parallel algorithm is given by

E(n, p) =
T (n)

pT (n, p)
=

T (n)

T (n) + pT+(n, p)
=

1

1 + T+(n,p)
T (n)/p

.

The efficiency attained by the largest problem that can be executed is then given

E(nmax(p), p) =
1

1 + T+(nmax(p),p)
T (nmax(p))/p

.

As long as

lim
p→∞

T+(nmax(p), p)

T (nmax(p))/p
≤ R <∞,

then the effective efficiency is bounded below away from 0, meaning that more nodes
can be used effectively. In this case, the algorithm is said to be weakly scalable.

A.2. Weak scalability of parallel matrix-vector multiplication. Let us
now analyze the weak scalability of some of the algorithms in Section 4.4.

Parallel y := Ax:. In (4.2), the cost of the parallel algorithm was approximated
by

Ty:=Ax(m,n, d0, d1) = 2
mn

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β +

d1 − 1

d1

m

d0
γ.

Let us simplify the problem by assuming that m = n so that Ty:=Ax(n) = 2n2γ
p and

Ty:=Ax(n, d0, d1) = 2
n2

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

n

d0
β +

d1 − 1

d1

n

d0
γ.︸ ︷︷ ︸

T+
y:=Ax(n, d0, d1)

Now, let us assume that each node has memory to store a matrix with M entries.
We will ignore memory needed for vectors, workspace, etc. in this analysis. Then
nmax(p) =

√
p
√
M and

T+(nmax(p), p)

T (nmax(p))/p
=

log2(p)α+ d0−1
d0

nmax

d1
β + d1−1

d1
nmax

d0
β + d1−1

d1
nmax

d0
γ

2n2max/pγ
34



=
log2(p)α+ d0−1

p nmaxβ + d1−1
p nmaxβ + d1−1

p nmaxγ

2n2max/pγ

=
log2(p)α+ d0−1√

p

√
Mβ + d1−1√

p

√
Mβ + d1−1√

p

√
Mγ

2Mγ

= log2(p)
1

2M

α

γ
+
d0 − 1
√
p

1

2
√
M

β

γ
+
d1 − 1
√
p

1

2
√
M

β

γ
+
d1 − 1
√
p

1

2
√
M
.

We will use this formula to now analyze scalability.
Case 1: d0 × d1 = p× 1 Then

T+(nmax(p), p)

T (nmax(p))/p
= log2(p)

1

2M

α

γ
+
p− 1
√
p

1

2
√
M

β

γ

≈ log2(p)
1

2M

α

γ
+
√
p

1

2
√
M

β

γ
.

Now, log2(p) is generally regarded as a function that grows slowly enough
that it can be treated almost like a constant. Not so for

√
p. Thus, even if

log2(p) is treated as a constant, limp→∞
T+(nmax(p),p)
T (nmax(p))/p

→ ∞ and eventually

efficiency cannot be maintained. When d0×d1 = p×1, the proposed parallel
matrix-vector multiply is not weakly scalable.

Case 2: d0 × d1 = 1× p We leave it as an exercise that the algorithm is not scalable
in this case either.

The cases where d0 × d1 = 1× p or d0 × d1 = p× 1 can be viewed as partitioning the
matrix by columns or rows, respectively, and assigning these in a round-robin fashion
to the one-dimensional array of processors.
Case 3: d0 × d1 =

√
p×√p Then

T+(nmax(p), p)

T (nmax(p))/p

= log2(p)
1

2M

α

γ
+

√
p− 1
√
p

1

2
√
M

β

γ
+

√
p− 1
√
p

1

2
√
M

β

γ
+

√
p− 1
√
p

1

2
√
M

≈ log2(p)
1

2M

α

γ
+

1

2
√
M

β

γ
+

1

2
√
M

β

γ
+

1

2
√
M
.

Now, if log2(p) is treated like a constant, then R(nmax,
√
p,
√
p) T+(nmax(p),p)

T (nmax(p))/p

is a constant. Thus, the algorithm is considered weakly scalable, for practical
purposes.

A.3. Other algorithms. All algorithms discussed, or derivable with the meth-
ods, in this paper can be analyzed similarly.

35


