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BLIS: A Framework for Rapidly Instantiating BLAS Functionality
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The BLAS-like Library Instantiation Software (BLIS) framework is a new infrastructure for rapidly in-

stantiating Basic Linear Algebra Subprograms (BLAS) functionality. Its fundamental innovation is that
virtually all computation within level-2 (matrix-vector) and level-3 (matrix-matrix) BLAS operations can

be expressed and optimized in terms of very simple kernels. While others have had similar insights, BLIS

reduces the necessary kernels to what we believe is the simplest set that still supports the high performance
that the computational science community demands. Higher-level framework code is generalized and imple-

mented in ISO C99 so that it can be reused and/or re-parameterized for different operations (and different

architectures) with little to no modification. Inserting high-performance kernels into the framework facil-
itates the immediate optimization of any BLAS-like operations which are cast in terms of these kernels,

and thus the framework acts as a productivity multiplier. Users of BLAS-dependent applications are given

a choice of using the traditional Fortran-77 BLAS interface, a generalized C interface, or any other higher
level interface that builds upon this latter API. Preliminary performance of level-2 and level-3 operations

is observed to be competitive with two mature open source libraries (OpenBLAS and ATLAS) as well as
an established commercial product (Intel MKL).
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1. INTRODUCTION
The introduction of the Basic Linear Algebra Subprograms (BLAS) in the 1970s
started a tradition of portable high performance for numerical software [Lawson et al.
1979; Dongarra et al. 1988; Dongarra et al. 1990]. The level-1 BLAS were proposed in
the 1970s and targeted the vector-vector operations that supported high performance
on the vector supercomputers of that era. When cache-based architectures arrived in
the 1980s, performance required better amortization of data movement between mem-
ory, caches, and registers. The BLAS interface was extended to include matrix-vector
(level-2) and matrix-matrix (level-3) operations. These last operations can achieve high
performance by amortizing O(n2) memory operations over O(n3) floating-point oper-
ations. By casting computation in terms of these routines, high-performance could be
attained on a wide range of architectures on which high-performance implementations
were made available.
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0:2 F. Van Zee and R. van de Geijn

The BLAS-like Library Instantiation Software (BLIS) is a software framework which
allows experts and vendors1 to rapidly instantiate high-performance libraries with
BLAS functionality. It constitutes a major redesign of how BLAS are instantiated to
be portable yet high-performing.

BLIS is part of a larger effort to overhaul the dense linear algebra software stack as
part of the FLAME project [Van Zee et al. 2009]. As such, it provides a new companion
C interface that is BLAS-like and, to us, more convenient, while fixing known problems
with the BLAS interface and extending functionality. Because BLIS is a framework,
it also supports the rapid implementation of new functionality that was, for example,
identified as important by the BLAST Forum [BLAST 2002] yet was never widely-
supported, presumably because no reference implementations were made available.
We are fully aware that there is a “Don’t Mess with the BLAS” attitude among many
who depend on them and therefore we also make a traditional Fortran BLAS compat-
ibility layer available.

This paper makes the following contributions:

— It discusses and summarizes our evaluation of the strengths and shortcomings of
the original BLAS and explains why each shortcoming is worth addressing. This is
important, because it defines the scope of what a new framework should be able to
support.

— It proposes a new dense linear algebra framework that allows a developer of BLAS-
like libraries to (1) rapidly instantiate an entire library on a new architecture with
relatively little effort, and (2) implement new BLAS-like operations that, whenever
possible, leverage existing components of the framework.

— It observes that level-2 and level-3 operations can be implemented in such a way
that virtually all key differences can be factored out to generic, architecture-agnostic
code, which in turn helps us isolate essential kernels that are easy to understand,
implement, and reuse. This observation is key because it allows us to drastically
reduce the scope of code that must be manually optimized for a given architecture,
allowing the BLIS framework to act as a productivity multiplier.

— It demonstrates level-2 and level-3 performance that is highly competitive with (and,
in some cases, superior to) existing BLAS implementations such as OpenBLAS, AT-
LAS, and Intel’s Math Kernel Library (MKL) [Intel 2012].

— It makes the BLIS framework (including an optional BLAS compatibility layer) avail-
able to the community under an open source software license.2

These contributions, captured within the BLIS framework, lay the foundation for
building modern dense linear algebra software that is flexible, portable, backwards
compatible, and capable of high performance.

While we believe this paper makes significant contributions to the field, we readily
admit that this paper does not address certain application needs such as multithreaded
parallelism and environments that rely upon Graphics Processing Units (GPUs). We
include a few comments regarding how BLIS will support this in the future, with point-
ers to early evidence, but intend to write a more complete paper on this in the near
future. The subject matter is of a great enough scope that multiple papers will be
needed to fully describe it.

1Henceforth, we will use the terms “experts,” “vendors,” and “[library] developers” interchangeably to refer
generally to the same group of people—those who would use BLIS to instantiate a BLAS library for a
particular (potentially new) architecture.
2We make the BLIS framework available under the so-called “new” or “modified” or “3-clause” BSD license.
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1.1. Notation
Throughout this paper, we will use relatively well-established notation when describ-
ing linear algebra objects. Specifically, we will use uppercase Roman letters (e.g. A, B,
and C) to refer to matrices, lowercase Roman letters (e.g. x, y, and z) to refer to vectors,
and lowercase Greek letters (e.g. χ, ψ, and ζ) to refer to scalars.

2. REFLECTION
It is important to understand where our work fits into the dense linear algebra (DLA)
software stack. At the bottom of the stack, there are the traditional BLAS, which pro-
vide basic vector-vector, matrix-vector, and matrix-matrix functionality. Above this is
functionality that traditionally has been provided by the Linear Algebra Package (LA-
PACK) [Anderson et al. 1999]. This includes commonly-used solvers for linear systems,
eigenvalue problems, and singular value problems, as well as more sophisticated oper-
ations. With the advent of SMP and multicore architectures, multithreading was added
to the BLAS via which LAPACK then attained the benefit of multiple processing cores.
More recently, other approaches to parallelism have been explored by the developers
of LAPACK, including the MAGMA project [Agullo et al. 2009], which explores how
to unleash GPUs for parallel computing, the PLASMA project [Agullo et al. 2009],
which explores parallelism via task scheduling of what they call “tiled” algorithms,
and Quark [Agullo et al. 2010], which more recently added the ability to execute tasks
out-of-order. Prior to that, forming the top of the DLA software stack, was the intro-
duction of a distributed memory library, ScaLAPACK [Choi et al. 1992], that mirrored
LAPACK and was layered upon (distributed memory) Parallel BLAS (PBLAS), which
themselves were layered upon the BLAS and the Basic Linear Algebra Communication
Subprograms (BLACS) [Dongarra et al. 1993].

More recently, as part of the FLAME project, we have started to revisit the DLA soft-
ware stack, funded by a sequence of National Science Foundation (NSF) grants that
have culminated in a Software Infrastructure for Sustained Innovation (SI2) grant to
vertically integrate DLA libraries. This effort builds on our experience while develop-
ing the libflame library [Van Zee et al. 2009; Van Zee 2012] (which targets essentially
the same level of the stack as does LAPACK), the SuperMatrix runtime system [Chan
et al. 2007; Chan et al. 2008; Quintana-Ortı́ et al. 2009] (which extracts parallelism in
a way similar to that of MAGMA, PLASMA, and Quark, but within the libflame li-
brary), and the Elemental DLA library for distributed memory architectures [Poulson
et al. 2013] (which extends many ideas from PLAPACK [van de Geijn 1997]). Funded
by NSF, we are now integrating these libraries.

Since their earliest versions, libflame and Elemental have relied upon the tradi-
tional BLAS, exporting higher level interfaces that hide details of indexing. While de-
veloping and maintaining libflame’s external wrapper interfaces (i.e., object-based
functions that directly call BLAS routines), we benefited from the strengths of the
BLAS while also observing first-hand several shortcomings of the BLAS interface and
its underlying functionality, as did the participants in the BLAST forums [BLAST
2002].

It is the traditional BLAS functionality for which the BLIS framework provides a
rapid instantiation mechanism.

We will now visit each of the shortcomings of the BLAS since they set the stage for
what challenges the framework will need to overcome.

— Inflexible storage. BLAS requires that matrices be stored in column-major or-
der [Dongarra et al. 1988; Dongarra et al. 1990]. A C interface to the BLAS, known
as CBLAS, supports both row- and column-major storage [BLAST 2002; BLAS 2012].
However, when row-major storage is used, CBLAS requires that all matrix operands
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0:4 F. Van Zee and R. van de Geijn

Level Name Operations

1
AXPY y := y + αx

COPY y := x

2

GEMV y := βy + αAx y := βy + αAx y := βy + αAx

GER A := A+ αxyT A := A+ αxyT

HER A := A+ αxxH

TRMV x := Ax

TRSV x := A−1x

3

GEMM C := βC + αAB C := βC + αAB C := βC + αAB

HERK C := βC + αAAH C := βC + αAHA

TRMM B := αAB

TRSM B := αA−1B

Fig. 1. A representative sample of variations of complex domain BLAS operations which are not imple-
mentable via the BLAS interface.

Level Name Operation Description

1

V
SCAL2V y := αCJ(x) Non-destructive vector scale.
SETV ψi := α, ∀ψi ∈ y Set all vector elements to α.
INVERTV ψi := ψ−1

i , ∀ψi ∈ y Invert all vector elements.

M

AXPYM B := B + αCT(A) Element-wise AXPY on matrices.
COPYM B := CT(A) Element-wise COPY on matrices.
SCALM B := αCJ(B) Element-wise SCAL on matrices.
SCAL2M B := αCT(A) Element-wise SCAL2V on matrices.
SETM βij := α, ∀βij ∈ B Set all matrix elements to α.

2 TRMV3 y := βy + αAx Non-destructive TRMV.
TRSV3 y := βy + αA−1x Non-destructive TRSV.

3 TRMM3 C := βC + αAB Non-destructive TRMM.
TRSM3 C := βC + αA−1B Non-destructive TRSM.

Fig. 2. A sample of BLAS-like operations which were omitted from the BLAS. The functions CJ() and CT()
denote optional conjugation and optional conjugation and/or transposition, respectively.

be stored in row-major order; thus, mixing row- and column-stored matrices within
the same operation invocation is not allowed. To be fair, some combinations of row-
and column-stored operands can be indirectly induced with BLAS that only sup-
port column (or row) storage by adjusting parameters, particularly the trans, uplo,
and side parameters. However, this technique only results in partial support and
tends to obstruct code readability. For some storage combinations, the operation is
possible only by making temporary copies of certain matrices with explicit transpo-
sitions (and/or conjugations). Furthermore, no implementation of the BLAS allows
general striding, whereby neither rows nor columns are contiguous in memory. Sup-
port for this advanced storage scheme is needed for dense matrix computation on
tensors [Solomonik et al. 2012; Schatz et al. 2012].
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Level Name Operations

1M

AXPYM BC := BC + αCAR BC := BC + αRAR

COPYM BC := AR

SCAL2M BC := αCAR BC := αRAR

SETM BC := αR

2

GEMV yC := yC +ACxR yC := yC +ARxC yC := yC +ARxR

GER AC := AC + xCy
T
R AC := AC + xRy

T
C AC := AC + xRy

T
R

HER AC := AC + xRx
T
R

TRMV xC := ARxC

TRSV xC := A−1
R xC

3

GEMM CC := CC +ACBR CC := CC +ARBC CC := CC +ARBR

HERK CC := CC +ARA
T
R

TRMM BC := ARBC

TRSM BC := A−1
R BC

Fig. 3. A representative sample of mixed domain operations which are not available via the BLAS interface.
Subscripts R and C denote real and complex operands, respectively. Note that scalars, such as α and β, were
omitted from the level-2 and level-3 operation expressions for clarity and typesetting reasons only. For the
same reason we also omit the CJ() and CT() functions, which denote optional conjugation and optional
conjugation and/or transposition, respectively.

— Incomplete parameter support for the complex domain. BLAS supports many
operations on single- and double-precision complex data. However, for some of these
operations, BLAS only implements the Hermitian case, leaving the complex symmet-
ric case unsupported. Furthermore, the BLAS omits the “conjugate without transpo-
sition” option from all instances of the trans argument. Thus, many operations in
the complex domain are not supported. Figure 1 contains a partial list of complex
operations that are not supported by BLAS. One may argue that this is not a crit-
ical omission. After all, the programmer can simply conjugate an operand in-place,
execute the desired BLAS operation, and then undo the conjugation. The problem
with this technique—besides the obvious conjugation overhead incurred—is that it
may not be thread-safe. In a multithreaded environment, another thread could at-
tempt to read an operand in a temporarily conjugated state, which would result in
a race condition. Alternatively, one could create a temporary conjugated copy of the
operand. However, this still comes with potentially significant allocation, workspace,
and memory copy costs.

— Opaque API. BLAS exports a “single-layer” API. That is, the application developer
can access routines such as dgemm, but he or she cannot access the lower-level build-
ing blocks (the so-called “kernels”) that facilitate the routine’s high-performance im-
plementation. Access to these building blocks is crucial for experts who wish to ef-
ficiently construct specialized routines that cannot be found in the BLAS. Without
access to these lower-level APIs, an application developer who needs specialized func-
tionality is forced to compose a solution strictly in terms of the exposed BLAS inter-
faces. This often results in sub-optimal implementations because intermediate data
products cannot be re-used across successive BLAS calls and thus must be redun-
dantly packed and/or computed. An example occurs, for example, in the application
of a block Householder transformations [Joffrain et al. 2006; Bischof and Van Loan
1987; Schreiber and Van Loan 1989], a crucial component of several important oper-
ations found in LAPACK, including the QR factorization.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.



0:6 F. Van Zee and R. van de Geijn

— BLAS has not grown with community’s needs. The initial BLAS standard lacked
many basic dense linear algebra operations such as, for example, element-wise op-
erations on matrices. (Figure 2 lists some of these unsupported operations.) Fur-
thermore, the set of operations supported today by the level-1, level-2, and level-3
BLAS has not changed since its inception in the 1980s. Indeed, the BLAST Forum
attempted to standardize extensions to the BLAS that address some of the same is-
sues discussed in the present paper. However, most of these extensions appear to
be unsupported by some major commercial (MKL [Intel 2012], ACML [AMD 2012],
ESSL [IBM 2012]) and open source (OpenBLAS [OpenBLAS 2012], ATLAS [Wha-
ley and Dongarra 1998]) implementations3. Furthermore, the operations missing
from the BLAS go beyond those identified during the BLAST forum. A recent pa-
per showed that by providing an optimized routine for applying multiple sets of
Givens rotations, high-performance eigenvalue (EVD) and singular value decomposi-
tion (SVD) can be achieved using a simple restructuring of the tridiagonal and bidi-
agonal QR algorithms [Van Zee et al. 2012], which, while numerically robust, were
previously thought to be inherently low-performance algorithms. And prior to that,
other efforts identified fused kernels that helped accelerate reduction to condensed
form operations, which serve as preprocesses to some implementations of EVD and
SVD [Howell et al. 2008; Van Zee et al. 2012].

— Inability to compute with mixed domain operands. With the exception of just
a few level-1 routines, BLAS does not support operations where some operands are
complex and some are real.4 For example, the update of a complex vector by apply-
ing a real triangular matrix, via the TRMV operation, is not possible. One could work
around this problem by copying the real triangular matrix to a temporary complex
matrix of the same size (initializing the imaginary components to zero) and then
computing with this complex matrix using ztrmv. However, this approach incurs con-
siderable cost in workspace, memory operations, and code complexity, not to mention
an unnecessary factor of two increase in floating-point operations. Figure 3 contains a
partial list of potentially useful variations on existing complex BLAS routines where
at least one of the operands resides entirely in the real domain.5

— Very few portable high-performance frameworks. There exist very few portable
frameworks that allow a hardware vendor to easily port existing BLAS operations to
new architectures and/or design new operations. (Indeed, we suspect one of the rea-
sons the BLAST extensions were never widely adopted can be attributed to the lack
of a complete reference implementation which vendors could use as a guide when op-
timizing their own versions.) This typically means that a vendor who wants to create
a BLAS library for his or her new architecture must start “from scratch.” Granted,
some work would be needed regardless, as there would be small kernels which re-
quire optimization at a very low (non-portable) level. But, as we will discuss later
in this paper, we have found that large parts of a BLAS implementation need not
differ from architecture to architecture. Yet, existing open source solutions lack the
flexibility and infrastructural leverage we envision.6

3While some extensions may be supported by some BLAS libraries, the extensions are not supported uni-
formly by all such libraries, and hence using them would tend to reduce portability.
4The BLAST Forum proposed mixed domain and mixed precision functionality [BLAST 2002], but these
extensions were never adopted by the community, perhaps because they targeted a set of less frequently-
encountered use cases.
5Not all combinations of real and complex operands make sense for all operations. However, there are
enough combinations that do make sense to merit consideration.
6Among the most prominent open source BLAS implementations are netlib BLAS, OpenBLAS, and ATLAS.
The netlib BLAS constitutes the original reference implementation and is quite portable, but makes very
little reuse of internal code [BLAS 2012] and does not take advantage of the memory cache hierarchies
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Any one of these deficiencies may not be fatal for a given application, but to some
developers, including us, the original BLAS are simply inadequate. Perhaps most im-
portantly, when taken together and multiplied over the hundreds or thousands of
application developers who must spend time and effort to fashion nearly identical
workarounds (which subsequently perform sub-optimally), these flaws in the BLAS
constitute a considerable loss in human productivity.

3. FEATURE SET
Building on the observations in the previous sections, we propose the BLIS framework
to ideally meet the following criteria:

— Generalized storage. The BLIS framework should support column-major, row-
major, or general stride storage, and should do so for individual matrix operands, and
should do so with minimal (if any) impact on performance. This means, for example,
that the BLIS version of GEMM should support the operation C = βC + αAB, where
C is row-stored, A is column-stored, and B is stored with general stride (i.e., non-unit
in both dimensions). In addition to this, we want BLIS to support basic element-wise
operations on lower- or upper-trapezoidal matrices with arbitrary diagonal offsets.

— Full support for the complex domain. Operations should be primarily designed
and developed in their most general form, which is typically in the complex domain.
These formulations then simplify down to real domain analogues with relative ease
(not to mention mathematical elegance). For mathematical “symmetry” between the
real and complex domains, conjugation on real vectors and matrices should be al-
lowed by the interface and treated as a no-op. Also, where applicable, both complex
Hermitian and complex symmetric operations should be supported.

— Multi-layered API with exposed kernels. The framework should expose its im-
plementations in various API layers. Low-level kernels will be available to experts
who wish to design new linear algebra operations, or reconfigure existing ones to
meet the needs of the application or hardware. Operation implementations would fur-
ther consist of higher-level blocked algorithm codes as well as lower-level (but still
portable) “macro-kernels,” which interface directly with architecture-aware micro-
kernels. Optimizations can occur at various levels, in part thanks to exposed packing
and unpacking facilities, which by default are highly parameterized (and thus flexi-
ble).

— Portability and high performance. Portability should be a top priority. To achieve
this, non-portable, architecture-specific codes should be compartmentalized into very
small kernels.7 As such, once these codes are provided, virtually all BLIS operations
would be enabled at very little additional effort because all BLIS operations are ex-
pressed and implemented in terms of these kernels. Performance would be attained
via careful implementation of the kernels, and thus would be inherited into multiple
families of operations. For example, once an efficient matrix-matrix multiplication
kernel is developed, nearly all level-3 operations should be enabled and attain high
performance.

found on nearly all modern architectures. Thus, it tends to perform very poorly. OpenBLAS, a fork of the
discontinued GotoBLAS, offers competitive performance on a range of architectures, but is implemented
as a BLAS library rather than a framework for building such libraries. ATLAS provides a system similar
to that of OpenBLAS, except that in certain instances block sizes are automatically fine-tuned for cache
performance [Whaley and Dongarra 1998]. However, once again, while ATLAS is well-suited to generating
BLAS libraries with a fixed set of functionality, it does not appear designed to facilitate the implementation
of new BLAS-like operations. Thus, we are left without a true framework for building high performance
BLAS-like libraries.
7By “small,” we mean that these kernels are typically implemented as a single loop around highly-optimized
code, typically expressed in an assembly or assembly-like language.
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0:8 F. Van Zee and R. van de Geijn

— Ease of use. The BLIS framework, and the library of routines it generates, should
be easy to use for end users, experts, and vendors alike. A BLAS compatibility layer
would be available to allow effortless linkage with existing BLAS-depending codes.
Of course, this layer will only export the smaller subset of BLIS functionality that
directly corresponds to the BLAS interface. Users who are willing to use BLIS’s new
BLAS-like interfaces will have access to the full set of BLIS operations and features.
Motivated users and library developers would also have access to easy-to-use, object-
based APIs.

— Functionality that grows with the community’s needs. The BLIS framework
should be, as its name suggests, a framework with which one can rapidly instanti-
ate BLAS-like libraries rather than a library or static API alone. Furthermore, the
framework should be extensible, allowing its developers (and others) to leverage ex-
isting components within the framework to support new operations as they are iden-
tified. As time goes on, it may be the case that new kernels are required in order to
most efficiently support certain operations, such as the case with the application of
multiple Givens rotations [Van Zee et al. 2012].

— Support for mixed domain (and/or mixed precision) operations. The BLIS
framework should allow an expert to install additional kernels that enable various
mixed domain operations. Similarly, operations that mix precision (and those that
mix both domain and precision) should also be available to those who need them.
However, neither should be mandatory. By making these features optional, we avoid
unnecessarily burdening library developers with operations that their users do not
need. But, importantly, the mixed domain/precision infrastructure should already be
present, even when the corresponding kernels are left unoptimized. This way, a user
can, at the very least, conveniently solve his or her mixed domain/precision problem,
even if it requires the use of an unoptimized reference code.

— Prioritize code re-use to minimize binary footprint. A brute force or auto-
generation approach to achieving the aforementioned goals tends to quickly lead
to code bloat due to the multiple dimensions of variation that must be supported,
namely: operation (i.e., GEMM, HEMM, TRMM, etc.); parameter (i.e., side, transpo-
sition, upper/lower structure, unit/non-unit diagonal); datatype (i.e., single-/double-
precision real/complex); storage (i.e., row, column, general); and algorithm (i.e., par-
titioning path and kernel shape). The reason is simple: auto-generation techniques
inherently tend to consider and optimize one specific case of one operation at a time.
The BLIS framework should feature a holistic design that takes reasonable steps to
limit the incursion of code bloat while still providing the targeted functionality. This
may be primarily achieved by careful abstraction, layering, and re-use of generic
codes, subject to the constraint that performance-penalizing design decisions and
coding conventions should be minimized.

Realizing all of these goals simultaneously in one software framework constitutes a
significant improvement over prior instantiations of the traditional BLAS. While this
list may seem ambitious, our preliminary findings suggest that attaining these goals
is entirely within reach on modern architectures.

4. SUPPORTED OPERATIONS
Before discussing how the previously mentioned features are realized within BLIS,
and other implementation details, we first wish to provide high-level descriptions of
the core operations supported by the framework. We do not give APIs for these oper-
ations since the BLIS interface is, for now, mostly for internal consumption. Further-
more, others may wish to layer their own custom APIs upon the interfaces exposed by
the framework.
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Name Operation Description
AXPYV y := y + αCJ(x) Accumulate scaled vector.
COPYV y := CJ(x) Copy vector.
DOTV ρ := CJ(x)T CJ(y) Dot product.
DOTXV ρ := βρ+ αCJ(x)T CJ(y) Generalized dot product.
INVERTV ψi := ψ−1

i , ∀ψi ∈ y Invert all vector elements.
SETV ψi := α, ∀ψi ∈ y Set all vector elements to α.
SCALV y := αy In-place vector scale.
SCAL2V y := αCJ(x) Non-destructive vector scale.

Fig. 4. A list of level-1v operations supported by the BLIS framework. The function CJ() denotes optional
conjugation.

The BLIS framework organizes its operations into classes of operations, where each
class contains related operations. As with the BLAS, we refer to these classes as “lev-
els.” Notice that these classes have as much to do with the kernels that need to be
implemented as the functionality that they provide.

4.1. Level-1v: Vector-vector Operations
The level-1 BLAS specification contains operations on vectors. The BLIS framework
supports similar operations, which we collectively refer to as level-1v BLIS.

Figure 4 contains a list of level-1v operations supported by BLIS. Note that in the
mathematical expressions shown here, an instance of the CJ() function denotes the
opportunity to optionally conjugate an operand.8 We emphasize that this list is incom-
plete and is only meant to provide a representative sample of operations which can
(and should) be supported by BLIS.

Experienced users will immediately notice a few differences between level-1 BLAS
and level-1v BLIS, most notably with regards to expanded functionality. We briefly
discuss the main differences:

— Level-1v BLIS operations are presented with a “V” appended to their names. This
is done to differentiate them from similar operations that take matrix (instead of
vector) arguments, which will be discussed in Section 4.2

— All operations allow the user to optionally conjugate vectors that are strictly input
operands. For example, a developer could use AXPYV to compute with a vector x as
if it were conjugated. Note that this optional conjugation does not affect the state of
vector x during the course of the computation, thus maintaining thread safety.

— New operations are now available, such as DOTXV and SCAL2V. The former is useful
when one wishes to scale and/or accumulate a dot product into an existing scalar,
while the latter can be used to simultaneously copy and scale a vector. Other routines
are provided for similar convenience, such as SETV and INVERTV.

The net effect of the changes above will be to simplify certain unblocked algorithms,
including those for operations typically found within LAPACK [Anderson et al. 1999].

4.2. Level-1m: Vector-Vector Operations on Matrices
One of the more obvious omissions from the BLAS can be found in its lack of element-
wise operations on matrix operands. Many of the operations one might want to perform

8As one might expect, this conjugation reduces to a no-op when the operand is stored in the real domain.
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Name Operation Description
AXPYM B := B + αCT(A) Accumulate scaled matrix.
COPYM B := CT(A) Copy matrix.
SETM βij := α, ∀βij ∈ B Set all matrix elements to α.
SCALM B := αB In-place matrix scale.
SCAL2M B := αCT(A) Non-destructive matrix scale.

Fig. 5. A list of level-1m operations supported by the BLIS framework. The functions CJ() and CT() de-
note optional conjugation and optional conjugation and/or transposition, respectively. Each of the operations
listed above is supported on dense as well as lower or upper triangular/trapezoidal matrices with arbitrary
diagonal offsets, such that only the specified region(s) are referenced and/or updated.

on vectors, such as AXPYV, COPYV, or SCALV, can also be meaningfully performed on
matrices. One needs look no further than computational tools such as MATLAB to find
this sort of functionality implemented and easily accessible [Moler et al. 1987].

As alluded to previously, there are workarounds for this situation that are not un-
reasonable for certain users. For example, if one wishes to perform B := B + αA (i.e.,
an AXPY operation on matrices), he or she can insert a loop over an AXPYV-like routine
that scales and accumulates the matrices one column at a time. But what if the matri-
ces are stored by rows? To achieve unit stride, the loop would need to accordingly be
over rows rather than columns. Or what if the user wishes to perform a conjugation to
the input matrix A, or a transposition (or both)? What if the matrices are triangular (or
symmetric or Hermitian) in structure and thus only stored in the lower or upper trian-
gle? Finally, what if the stored region is not strictly triangular, but rather dependent
upon the precise location of the matrices’ main diagonals? It is easy to see how im-
plementing such functionality using only AXPYV could prove daunting for many BLAS
users. Yet another problem with the aforementioned solution is that looping over a
top-level AXPYV interface (such as via the BLAS) results in repeated error checking on
matrix columns (or rows), which in this case one would preferably avoid in favor of a
single set of checks up-front. Thus, leaving the application developer to implement a
custom solution is not ideal.

The BLIS framework supports several level-1m operations on matrices. Of these, a
representative list is shown in Figure 5. These operations are provided with enough
parameterization and generality to handle any combination of the situations listed
above, in addition to a few situations not mentioned such as general stride storage and
implicit unit diagonals.

4.3. Level-1f: Fused Vector-vector Operations
It has been shown elsewhere that so-called “fused” kernels can be used to more effi-
ciently implement certain operations that are rich in O(n2) floating-point operations
(flops) performed on O(n2) data [Howell et al. 2008; Van Zee et al. 2012]. The per-
formance of such operations is greatly hindered by two facts. First, on modern ar-
chitectures, memory load and store instructions tend to be much more expensive than
floating-point instructions. Second, since the ratio of flops to memory operations (mem-
ops) is typically small, the computation often stalls while waiting for new data to be
fetched from (or stored back to) memory.

While these level-2 operations will never perform as well as their level-3 brethren
(which inherently call for O(n3) flops to be performed on O(n2) data), non-trivial per-
formance gains can still be achieved for many problem sizes by carefully reusing val-
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Name Operation Description

AXPY2V

{
y := y + α0CJ(x0)

y := y + α1CJ(x1)
Fused AXPYV pair with
shared y.

DOTAXPYV

{
ρ := CJ(x)T y

z := z + αCJ(x)
Fused DOTV-AXPYV with
shared x.

AXPYF

 y := y + αCJ(χ0)CJ(a0)...
y := y + αCJ(χf−1)CJ(af−1)

Fused sequence of f AXPYV
with shared y, where f is
implementation-dependent.

DOTXF

 ψ0 := βψ0 + αCJ(a0)T CJ(x)...
ψf−1 := βψf−1 + αCJ(af−1)T CJ(x)

Fused sequence of f DOTXV
with shared x, where f is
implementation-dependent.

DOTXAXPYF

{
y0 := βy0 + αCJ(AT )CJ(x0)

y1 := y1 + αCJ(A)CJ(x1)

Fused DOTXF-AXPYF with
shared (a0, · · · , af−1) = A,
where f is implementation-
dependent.

Fig. 6. A list of level-1f operations supported by the BLIS framework. The function CJ() denotes optional
conjugation. Note that above, f corresponds to the implementation-dependent fusing factor for the operation
in question. These fusing factors may be queried from within the framework.

for i = 0 : m− 1
LOAD yi → ψ1

ψ1 := βψ1

STORE yi ← ψ1

endfor
for j = 0 : n− 1

LOAD xj → χ1

χ1 := αχ1

for i = 0 : m− 1
LOAD Aij → α1

LOAD yi → ψ1

ψ1 := ψ1 + α1χ1

STORE yi ← ψ1

endfor
endfor

for i = 0 : m− 1
LOAD yi → ψ1

ψ1 := βψ1

STORE yi ← ψ1

endfor
for j = 0 : n− 1 : 4

LOAD xj:j+3 → χ1:4

χ1:4 := αχ1:4

for i = 0 : m− 1
LOAD Ai,j:j+3 → α1:4

LOAD yi → ψ1

ψ1 := ψ1 + α1χ1 + α2χ2

+ α3χ3 + α4χ4

STORE yi ← ψ1

endfor
endfor


AXPYF(α,A1, x1, y)

where
A1 = Aj:j+3

x1 = xj:j+3

2mn+m+ n flops 2mn+m+ n flops
3mn+ 2m+ n memops 3

2mn+ 2m+ n memops

Fig. 7. Left: A column-based (i.e., AXPYV-based) algorithm for computing the GEMV operation y := βy +
αAx. This algorithm requires 3mn + 2m + n memory operations (ignoring the loading of α and β). Center:
By unrolling and fusing 4 iterations at a time, we are able to eliminate 3 out of every 4 loads and stores
on vector y while still performing the same number of flops. The affected code is highlighted in grey and
corresponds to an AXPYF kernel operation with a fusing factor of f = 4. Thus, by implementing GEMV in
terms of this fused kernel, we reduce the total number of memory operations incurred by nearly a factor of
two.

ues once they have been loaded into the processor core’s registers. We refer to this
technique as register-level fusing [Van Zee et al. 2012].9

9One may also use cache-level fusing, which, as its name suggests, targets reuse of data while it resides in
cache memory. However, in most situations, fusing at the register level will almost always yield superior
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Name Operation(s) Description
GEMV y := βy + αCT(A)CJ(x) General matrix-vector multiply.
GER A := A+ αCJ(x)CJ(y)T General rank-1 update.
HEMV y := βy + αCJ(A)CJ(x) Hermitian matrix-vector multiply.
HER A := A+ αCJ(xxH) Hermitian rank-1 update.

HER2 A := A+ αCJx(x)CJy(y)H

+ ᾱCJy(y)CJx(x)H Hermitian rank-2 update.

SYMV y := βy + αCJ(A)CJ(x) Symmetric matrix-vector multiply.
SYR A := A+ αCJ(xxT ) Symmetric rank-1 update.

SYR2 A := A+ αCJx(x)CJy(y)T

+ αCJy(y)CJx(x)T Symmetric rank-2 update.

TRMV x := αCT(A)x Triangular matrix-vector multiply.
TRSV x := αCT(A)−1x Triangular solve.

Fig. 8. A list of level-2 operations supported by the BLIS framework. The functions CJ() and CT() de-
note optional conjugation and optional conjugation and/or transposition, respectively. A subscript is used in
conjuction with CJ() to indicate two instances of the same conjugation.

Figure 6 shows a list of operations supported by the BLIS framework which, if im-
plemented with register-level fusing, would facilitate higher levels of performance for
key subproblems found within various level-2 algorithms. For example, the operation
GEMV may be cast as a series AXPYV (or DOTV) operations. If groups of f AXPYV sub-
problems are fused together, then certain operand elements, once loaded into registers,
may be reused f−1 times. This reuse of data typically results in a higher performance,
as less time is spent waiting for operand elements to arrive from memory. Naturally,
the implementor would wish to maximize this reuse of data, and so he or she would
aim to implement these level-1f operations with as large of a “fusing factor” f as pos-
sible, given the constraints of the floating-point datatype and the size of the architec-
ture’s register set. (While these fusing factors are implementation-dependent, they are
made available to other framework components, as well as application code, via query
macros.)

Figure 7 illustrates the previous example with pseudo-code that exposes individual
load and store instructions. Here, it is easy to see that an AXPYF implemented with
a fusing factor of f = 4 reduces the number of memops needed to compute GEMV by
nearly a factor of two.

An alternative fusing may be achieved via the DOTXF kernel operation. Similarly,
the other level-1f operations listed in Figure 6 may be used to optimize various other
level-2 operations, which are discussed in the next section.

Note that AXPY2V is a special case of AXPYF where f = 2. However, as we will see in
the next section, AXPY2V is still needed when optimizing the level-2 operations HER2
and SYR2, which provide the opportunity to fuse only and exactly two instances of
AXPYV per row or column of the output matrix.
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4.4. Level-2: Matrix-Vector Operations
The level-2 operations available in the BLIS framework are largely similar to the cor-
responding operations within the level-2 BLAS. Figure 8 lists these operations. The
differences between the two are enumerated as follows:

— For all operations where a matrix or vector is strictly an input operand, that operand
may be used as if it were conjugated. This option is in addition to the transposition
or conjugate-transposition options already allowed by the BLAS.

— Unlike in the BLAS, the TRMV and TRSV operations scale their matrix-vector prod-
ucts by a scalar α before overwriting their results to vector x. This scaling establishes
consistency with the operations’ level-3 analogues, TRMM and TRSM, respectively.

— BLIS supports non-destructive TRMV and TRSV operations via TRMV3 and TRSV3,
respectively.

— While not obvious from Figure 8, BLIS implements SYMV, SYR, and SYR2 for the
complex domain, whereas the BLAS omits these operations.

Like libflame, the BLIS framework provides multiple algorithmic variants10 for
many of the operations it implements [Van Zee et al. 2009]. In the case of level-2 op-
erations, it is sometimes advantageous to choose a different variant depending on how
the matrix operand is stored. To achieve unit stride11 through memory, matrices that
are column-stored should be computed upon with variants that traverse individual
columns. Similarly, row-based variants tend to be well-suited to matrices stored by
rows. (Note that in either case, a transposition can cause this affinity to flip.) Thus, for
example, a GEMV variant based on AXPYV is appropriate for column-stored matrices
(or transposed row-stored matrices), while GEMV based on DOTXV should be preferred
for row-stored matrices (or transposed column-stored matrices). The BLIS framework
allows us to support both of these situations. (A general strided matrix is probably best
computed upon via a DOTXV-based kernel because it exhibits an inherently lower ratio
of memops to flops than one based on AXPYV, though there may be other considerations
beyond the scope of this document that affect the optimal choice.)

Recall that in Section 4.3 we discussed various level-1f BLIS operations that use
register-level fusing to avoid redundant memops within level-2 operations. Figure 9
shows which level-2 operations benefit from the optimization of various level-1v and
level-1f operations. Importantly, our preliminary experience shows that optimizing
these kernels is sufficient in order to achieve competitive level-2 performance on mod-
ern architectures. (Performance results for level-2 operations that employ these kernel
operations may be found in Section 7.2.)

To put things concretely, Figure 9 reveals that optimizing only DOTXV and AXPYV is
sufficient to enable accelerated implementations of all level-2 operations12. These im-
plementations would be efficient regardless of whether the matrix it operates upon was
stored by rows or columns. If one were to go further and implement architecture-tuned
versions of AXPY2V, DOTXF, AXPYF, and DOTXAXPYF, in addition to AXPYV, one could
use architecture-agnostic components of the BLIS framework to quickly instantiate a
set of level-2 BLIS (and BLAS) that was even more fully optimized.

performance because it allows one to avoid certain memory accesses altogether, rather than simply reduce
their cost.
10Henceforth, we abbreviate the term “algorithmic variant” to simply “variant.”
11Unit stride through memory is usually, though not universally, desired on modern cache-based systems
because it typically increases spatial locality of data in the cache hierarchy.
12The reader should exclude banded and packed level-2 operations when considering this assertion. Banded
and packed level-2 operations require very special storage formats, and these storage formats naturally
require that the kernels be parameterized differently. Thus, the best approach to these operations remains
an open question and may be the topic of future research.
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Level-2 Operation Matrix storage
By optimizing this kernel, level-2 performance is...

Improved by Further improved by Optimized by

GEMV, TRMV, TRSV
column-stored AXPYV AXPYF

row-stored DOTXV DOTXF

HEMV, SYMV
column-stored

DOTXV + AXPYV
DOTAXPYV,

DOTXF + AXPYF
DOTXAXPYF

row-stored

GER, HER, SYR
column-stored

AXPYV
row-stored

HER2, SYR2
column-stored

AXPYV AXPY2V
row-stored

Fig. 9. Here we present optimization dependencies for each of the level-2 operations supported in the BLIS
framework. The table shows which level-1v and/or level-1f operations must be implemented and optimized in
order to achieve higher performance for a given level-2 operation. Note that for general stride matrix storage,
unit stride through memory cannot be achieved, and thus when given the choice (i.e., for GEMV, TRMV, and
TRSV) either DOT-based or AXPYV-based kernels may be used, though the former may be preferred due to
the inherently lower ratio of memops to flops associated with DOT-based level-2 algorithms.

Name Operations(s) Description
GEMM C := βC + αCT(A)CT(B) General matrix-matrix multiply.

HEMM
C := βC + αCJ(A)CT(B), or
C := βC + αCT(B)CJ(A) Hermitian matrix-matrix multiply.

HERK C := βC + αCTA(A)CTA(A)H Hermitian rank-k update.

HER2K C := βC + αCTA(A)CTB(B)H

+ ᾱCTB(B)CTA(A)H Hermitian rank-2k update.

SYMM
C := βC + αCJ(A)CT(B), or
C := βC + αCT(B)CJ(A) Symmetric matrix-matrix multiply.

SYRK C := βC + αCTA(A)CTA(A)T Symmetric rank-k update.

SYR2K C := βC + αCTA(A)CTB(B)T

+ αCTB(B)CTA(A)T Symmetric rank-2k update.

TRMM
B := αCT(A)B, or
B := αBCT(A) Triangular matrix-matrix multiply.

TRMM3 C := βC + αCT(A)CT(B), or
C := βC + αCT(B)CT(A)

Non-destructive triangular matrix-
matrix multiply.

TRSM
B := αCT(A)−1B, or
B := αBCT(A)−1

Triangular solve with multiple right-
hand sides.

Fig. 10. A list of level-3 operations supported by the BLIS framework. The functions CJ() and CT() de-
note optional conjugation and optional conjugation and/or transposition, respectively. A subscript is used in
conjuction with CT() to indicate two instances of the same conjugation and/or transposition.

4.5. Level-3: Matrix-Matrix Operations
Figure 10 lists the core set of level-3 operations supported by the BLIS framework.
These operations largely correspond to the level-3 operations provided by the BLAS.
The most prominent differences mirror those found between the level-2 BLIS and
BLAS: namely, the ability to conjugate individual input operands.

Just as the level-2 operations are built atop kernels which may be optimized to en-
able high performance, level-3 operations are likewise implemented in terms of smaller
kernels. This idea is not new [Goto and van de Geijn 2008a; 2008b; Gunnels et al.
2001b; Whaley and Dongarra 1998]. Section 5 discusses how these level-3 operations
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are implemented in the BLIS framework so that flexibility (i.e., generality), portability,
and high performance are simultaneously achieved.

5. IMPLEMENTATION TECHNIQUES
Implementing the BLIS framework is fraught with challenges, especially if one is to
avoid explosive code bloat. The last bullet at the end of Section 3 touches upon sev-
eral “dimensions” of generality to be captured by BLIS. If the framework itself was
to be manageable and maintainable going forward, we had to find ways of collapsing
each of these dimensions as much as possible while maintaining the desired function-
ality. Here, we provide a detailed discussion of some of the implementation techniques
and design decisions that allow us to achieve most of our functionality goals for BLIS
without incurring significant increases in source (or object) code. We consider these
software engineering details to be important because they facilitate the primary con-
tributions of this paper.

For reasons that will seem clearer later on, we discuss our techniques for implement-
ing the level-3 BLIS separately from that of the other levels.

5.1. Level-3 techniques
Level-3 operations make up perhaps the most-used portion of the BLAS.13 These op-
erations are also typically the most difficult to implement, in part because the space
of potential solutions is much larger than that of level-2 and lower operations. It may,
therefore, seem counterintuitive that the portion of the BLIS framework associated
with level-3 operations is actually simpler (and smaller) than that of the remaining
operations. We now walk through the methods used to implement this functionality.

5.1.1. Operation. Perhaps the most obvious framework dimension we wish to manage
is that of the operations supported. Despite seemingly significant differences, all level-
3 operations are inherently very similar. It was observed by [Kågström et al. 1998] that
level-3 operations can be cast in terms of general rank-k update (GEMM). The authors
of [Goto and van de Geijn 2008b] built on this idea but observed that packing facili-
ties could be modified to induce all level-3 operations via the same low-level kernels
that support the implementation of GEMM. Let us use Figure 11 to briefly describe
this algorithm. A matrix multiplication with presumably large m, n, and k dimensions
is first partitioned along k with a cache block size of kc, creating rank-k subproblems
(depicted at the bottom of Figure 11). At this stage, B is packed to contiguous memory
(labeled as B̃) in a special format that facilitates unit stride at the lowest level of com-
putation. Each rank-k subproblem is then partitioned along the m dimension with a
cache block size of mc, creating block-panel subproblems. The current mc × kc block Ai

is then packed to Ãi, which is once again stored in a special format. This block-panel
subproblem that remains (Ci := Ci + ÃiB̃) is then implemented as a highly optimized,
assembly-coded kernel. This kernel will continue on to partition the matrices along the
n, mc, and finally kc dimensions. Now, to extend this algorithm to other level-3 opera-
tions, the authors of [Goto and van de Geijn 2008b] point out that sometimes the only
change required is in the packing facility. For example, for HEMM and SYMM, if Ãi is
packed in such a way that blocks that intersect the diagonal are made dense (since only
one triangle is stored), then the block-panel kernel can be used unmodified. However,
HERK, SYRK, HER2K, and SYR2K require that the block-panel kernel be specialized
because only the part of Ci that is stored is to be updated. Similar complications arise

13This is likely no coincidence, as the level-3 operations are typically capable of achieving a large fraction of
peak performance on modern architectures. Thus, application developers have an incentive to express their
computation in terms of level-3 operations whenever possible.
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Fig. 11. Illustration of the various levels of blocking and related packing when implementing GEMM in the
style of [Goto and van de Geijn 2008a]. Here, mc and kc serve as cache block sizes used by the higher-level
blocked algorithms to partition the matrix problem down to a so-called “block-panel” subproblem (depicted
in the middle of the diagram), implemented in BLIS as a portable macro-kernel. Similarly, mr and nr serve
as register block sizes for the micro-kernel in the m and n dimensions, respectively, which also correspond
to the length and width of the individual packed panels of matrices Ãi and B̃, respectively.

with TRMM and TRSM due to the potential triangular nature of Ai, which thus require
additional specialization. To avoid this proliferation of kernels, the BLIS framework
uses a somewhat different layering.

In BLIS, the fundamental kernel encompasses only the inner-most computation that
iterates over the kc dimension (depicted at the top of Figure 11). Because this kernel is
a much smaller, more basic operation, we refer to it as a “micro-kernel.”14 Similarly, we
use the term “macro-kernel” to refer to the two loops above this micro-kernel (i.e., those
loops that partition along the n and mc dimensions, which correspond to the outer and
middle loops in a Goto-style kernel). This layering provides two key benefits:

— It allows virtually all of the architectural details to be confined to a much smaller,
simpler kernel of computation; and

— It allows nearly all of the operation-specific nuances of the level-3 kernels for HERK,
SYRK, HER2K, SYR2K, TRMM and TRSM to be factored out to different macro-kernels,
each of which is a portable, pre-supplied component of the BLIS framework.15

An additional benefit of the macro-kernel/micro-kernel design used by BLIS is that it
facilitates portable edge-case handling. That is, the edge case handling occurs entirely

14Our use of a micro-kernel as the basic kernel of computation, as well as its general implementation (as a
series of rank-1 updates), is strikingly similar to the corresponding kernel of another effort, which investi-
gates implementing a linear algebra co-processor in hardware [Pedram et al. 2012b; Pedram et al. 2012a].
Interestingly, the two projects isolated their respective kernels independently of one another, despite the
kernels’ similarities and the projects’ collaborative proximity to one another.
15 To maximize TRSM performance, a library developer would typically need to supply an additional micro-
kernel that fuses a GEMM subproblem and TRSM subproblem in order to avoid redundant memory opera-
tions. In practice, we have observed that 80–90% of potential performance is attainable even when this fused
micro-kernel is not supplied. We illustrate this performance gap on an Intel Xeon architecture in Section 7.3.
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within the macro-kernel. When m mod mr 6= 0 or n mod nr 6= 0, the same micro-kernel
is used, except the result is stored to a temporary mr × nr buffer. (This is always
possible because packed matrix dimensions are inflated to a multiple of mr or nr, as
necessary, so that the packing facility can perform zero-padding.) Then, only those
elements of the local buffer corresponding to stored values are written to the output
matrix. No additional micro-kernels are required to handle edge cases. This approach
requires some extra macro-kernel logic, but results in only an additional O(n) memory
operations, and thus the net impact on performance is, under modest assumptions,
negligible.

Thus, the only code that must be optimized for a given architecture is that of the
micro-kernel.16

Once the micro-kernel is written (which inherently involves choosing register block
sizes), the library developer need only choose appropriate cache block sizes to achieve
a full implementation of GEMM. From there, virtually no additional work is needed
(on the part of the developer) to instantiate high-performance implementations of the
remaining level-3 operations. This leveraging is immediate and automatic because the
BLIS framework already encodes the differences in the various level-3 operations into
(1) the portable macro-kernels, and (2) the framework’s highly parameterized packing
facility.

5.1.2. Parameter case. The dimension most vulnerable to code duplication is arguably
that of operational parameters. Each BLAS operation requires that multiple parame-
ter cases must be supported. For example, a full BLAS implementation of GEMM must
allow nine parameter cases. This stems from the three accepted values for each of the
transA and transB arguments that correspond to the two input matrices, A and B. In
BLIS, GEMM must support 16 cases due to the extra conjugation-without-transposition
option. The TRMM and TRSM operations must support 24 and 32 cases in BLAS and
BLIS, respectively, due to the combinatorial impact of the side, uplo, trans, and diag
parameters. It is easy to see how a BLAS-like library could quickly become unwieldy
and difficult for developers to manage.

The BLIS framework allows level-3 operations to handle and implement most of
their various parameter cases via the packing facility. But before discussing this fur-
ther, we first broach the topic of how BLIS organizes its data. At higher levels of exe-
cution, the level-3 operands are expressed and tracked with “objects.” This simple ab-
straction, implemented as C structs, allows the framework to express its algorithms
at a high level.17 These objects encapsulate nearly all properties of a matrix and are
“tagged” in various ways depending on the operation’s parameterization. For example,
if a particular instance of GEMM requires that matrix A be used as if it were con-
jugated, the implementation toggles the conjugation bit of the object associated with
the matrix. As one might expect, the actual elements of matrix A are never modi-
fied, and so the conjugation of the matrix object is implicit. Similarly, the object deter-
mines whether the matrix requires transposition18, the location (offset) of its diagonal,

16While BLIS sequesters almost all non-portable code within the micro-kernels, these codes must still be
implemented with care. How to optimally implement these micro-kernels is heavily dependent on features
of the memory hierarchy and instruction set, and thus is well beyond the scope of this document.
17Unlike in libflame, the functions used to query and modify object properties are carefully implemented as
C preprocessor macros. This technique avoids a great deal of potential function call overhead and also pro-
vides the compiler with more opportunities for optimization. Furthermore, when functions must be called,
objects are passed by address rather than by value, thereby minimizing function call overhead. In this way,
the BLIS framework affords its developers (and expert users) an object-based API that is lightweight and
thus performance-friendly.
18Since BLIS supports both row and column strides, we may, alternatively, induce transpositions at any time
before packing by swapping the row and column strides, swapping the length and width dimensions, and
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whether that diagonal is implicitly unit, its structure (symmetric, Hermitian, triangu-
lar), and its storage: lower-stored, upper-stored, dense, or zero.

Now, when an object is about to be packed, its properties are inspected to determine
exactly how the packing should unfold. Transposition, conjugation, and unit diagonal-
ization can all be applied at virtually no cost during the packing (because the matrix
data must be loaded from and/or stored to memory anyway). In general, upon com-
pletion, the packed matrix reflects explicitly what its corresponding unpacked object
reflects implicitly. If the matrix is triangular and stored only in the upper or lower
region, only that region will be packed. Similarly, if the matrix is Hermitian and “den-
sification” is requested, the packed matrix will be packed so that the unstored region
contains the conjugate-transpose of the stored region. (Packed objects also inherit di-
agonal offset information from their unpacked brethren, which greatly simplifies the
handling of non-square blocks with structure.) The benefit of handling these param-
eter case combinations in the packing routine is that the lower-level codes, including
the micro-kernel and, to some extent, the macro-kernels, are kept extraordinarily sim-
ple; that is, these lower-level codes need only support one or two very plain parameter
cases (i.e., no transposition, no conjugation, non-unit diagonal, etc.).

We say “one or two” cases must be supported because, for some operations that as-
sume operand structure, the BLIS framework explicitly implements both lower- and
upper-stored cases (via separate variants and/or macro-kernels), either because a dif-
ferent region of the matrix is being updated (HERK, HER2K, SYRK, SYR2K) or because
the algorithms promote movement through the operands in opposite directions (TRMM,
TRSM). While this approach results in a modest increase in source code, these compo-
nents of the framework are portable and would typically not require any modification
when porting across architectures.

What remains? The side parameter, found in HEMM, SYMM, TRMM, and TRSM. The
side parameter, since it describes the orientation of the matrices rather than the ma-
trices themselves, is not embedded within the object, and so it remains a parameter of
the operation throughout most layers of the BLIS framework. But, the side parame-
ter need not be supported directly. Instead, in BLIS, one case is typically implemented
(say, the left side case) and assumed by the mid- and lower-level algorithms. The right
side case is handled early on at higher levels of the implementation; if the right side
case of the operation is detected, it is induced by calling the left side case with trans-
posed operands.19

5.1.3. Datatype. A prominent framework dimension we must manage is that of
floating-point datatype. Specifically, we wish to minimize the amount of code that must
reside within the framework (and the amount of code the expert must optimize) to
support the floating-point datatypes expected by the community. BLAS supports oper-
ations on four standard datatypes: single-precision real, double-precision real, single-
precision complex, and double-precision complex. This facet of the implementation is
prominently encoded (usually) as the first character in the routine name: s, d, c, and
z, respectively. For the level-3 BLAS, the implicit assumption is that the datatype of
the operation corresponds to the datatype of all matrix operands. In BLIS, we instead
associate an independent datatype property with each matrix object. So the question

if necessary, toggling the region stored and the diagonal offset. In some situations, we prefer this method
because it allows us to further collapse the number of algorithms needed. TRMM serves as a good example
of this, since some variants of this operation (those that partition matrix A) move in opposite directions for
the lower- and upper-stored cases.
19In practice, a little more sophistication is sometimes employed than transposing every matrix operand.
For example, with HEMM, the right side case is induced by toggling the conjugation of matrix A, which is
mathematically equivalent to a transposition. (This holds in both the real and complex domains.)
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becomes, how do we handle arbitrary combinations of domains and precisions among
matrices?

Let us first handle the special case that merely mimics the datatype support of the
BLAS (i.e., the case where all matrices contain elements of the same datatype). The
sole noteworthy expansion of code that is proportional to the number of datatypes
supported (in our case, four) is that of the GEMM micro-kernel. For each datatype sup-
ported, one micro-kernel must be provided (and optimized, if high performance is de-
sired).20 This is the only datatype-specific source code that is required of homogeneous-
typed level-3 BLIS. All other level-3 codes, including high-level object-based algorith-
mic variants and mid-level macro-kernels, are datatype-agnostic.21

Now let us consider the cases where matrix datatypes are not all identical. We re-
mind the reader that BLIS does not require the library developer to support these
mixed-datatype cases. If this functionality is desired, however, very little effort is
needed because mixed datatype support is largely handled by reusable framework
code. When mixed-datatype operations require matrices to be typecast to a higher or
lower precision, casting may be performed as needed when the matrices are packed.
When domains must be mixed, the framework activates logic that utilizes existing
same-datatype micro-kernels. to implement the desired mixed-domain operations in a
way that avoids redundant flops (and memops).

5.1.4. Storage format. Recall that a central goal of BLIS is to support matrices stored
not only in column-major order and row-major order, but also general stride.22 Fur-
thermore, we wish to allow operations to mix storage types among matrix operands.
While this may appear to be an unmanageable number of cases to support, especially
for three-operand operations such as GEMM, the impact on the level-3 BLIS frame-
work is quite minimal. (In fact, there are situations where separate row and column
strides actually simplifies the underlying implementation.) This expanded functional-
ity is achieved by virtue of two aspects of the framework.

— Since input matrices are already universally packed to contiguous storage for perfor-
mance reasons, we can easily design the packing facility to read these input operands
according to their individual row and column strides.

— Generalized storage is supported for output operands because the BLIS micro-kernel
interface is explicitly parameterized with row and column strides for the output ma-
trix C (which need not be packed).

These two features combine to allow row storage, column storage, or general stride
storage for any operand, as well as any combination across operands, for all supported
operations.

5.1.5. Algorithm. As previously mentioned, BLIS provides multiple algorithmic vari-
ants for each operation supported. Each algorithmic variant is derived from a loop
invariant, which, among other things, expresses the way matrix operands are parti-
tioned and the direction(s) in which the variant moves through these matrices [Gun-
nels et al. 2001a; Gunnels and van de Geijn 2001; Bientinesi et al. 2005; van de Geijn
and Quintana-Ortı́ 2008]. The variant set provided by BLIS for each level-3 operation
can be thought of as “complete” in the sense that there exists at least one variant
that partitions each dimension of the problem. For example, the framework provides

20If a fused GEMM-TRSM micro-kernel is desired, this code must also be instantiated for each datatype.
21Lower-level macro-kernels are kept datatype-agnostic in a manner similar to that of unblocked variants
for level-1v, -1m, and -2 operations. This topic is discussed in Section 5.2.3
22Note that the former two storage layouts are simply special cases of general stride where the row stride is
unit and the column stride is unit, respectively.
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three basic blocked variants for GEMM: one for partitioning along each of the m, n, and
k dimensions. (Typically, we omit from BLIS variants that traverse operands back-
wards when a forward-moving variant is available and applicable.) In a more sophisti-
cated level-3 (or LAPACK-like) algorithm, one may have an operation with two or more
subproblems, where each subproblem belongs to a different family of operations. This
recursion may involve several levels of partitioning and blocking, usually to promote
cache reuse and locality, but also sometimes for parallelism or out-of-core execution (or
both). Some algorithms are more advantageous for some circumstances, and thus the
ability to jump between them during recursive subproblems becomes key to enabling
high performance. But being able to select a given compound (overall) algorithm re-
quires the set of compound algorithms to exist (at runtime) in the first place. It comes
as no surprise that coding, maintaining, and storing the various compound algorithms
for each operation can become a chore.

BLIS solves this problem by borrowing a relatively novel construct unique to
libflame which we call control trees. Control trees are based on the following fun-
damental observation: If we supply a basic (but “complete”) set of algorithmic variants
for a given operation, as well as basic sets of variants for all operations on which it
might depend, then one can specify the execution path of an arbitrarily-deep compound
algorithm by using a tree. This tree can be represented with a recursive data struc-
ture. Each node in this structure is typed according to the operation it represents, and
encodes information (such as block size, algorithmic variant, and packing format) that
parameterizes the implementation to be used. Interior nodes in the tree correspond to
blocked algorithms that further partition the problem into smaller subproblems while
leaf nodes correspond to unblocked codes that perform actual computation. Blocked al-
gorithms, instead of calling a hard-coded implementation directly, call the operation’s
internal “back-end” (while passing in the corresponding sub-tree). This back-end func-
tion acts as a decoder that inspects the contents of the current control tree node and
dispatches the prescribed blocked or unblocked implementation.23 And since control
trees are stateless objects, they are thread-safe. The tree nodes themselves can even be
used to encode information about when to partition the problem for parallelism [Chan
et al. 2008].

The key consequence of the control tree infrastructure is that it allows one to elimi-
nate virtually all redundant algorithm codes from the framework. This is possible be-
cause the trees, which may be specified statically prior to compilation or built dynami-
cally at run-time, allow the algorithm developer to compose entire algorithms from the
basic building blocks of its subproblems. Another consequence of control trees is that
once the basic variants are developed and coded, one can change the overall algorithm,
block size (at any level), or packing format, by simply changing the control tree. Thus,
in BLIS, blocked algorithmic variants capture only the essence of the algorithm, while
the implementation of subproblems are determined by the tree and not realized until
it is decoded at run-time by the back-end. If new blocked variants (or macro-kernels)
are added to the framework, their support is added by making the internal back-end
code aware of these new routines. They are then available for use by simply specifying
their usage via a control tree.

23It would reasonable for the reader to harbor some skepticism that control trees would not incur signifi-
cant overhead during execution. Specifically, for every blocked algorithm subproblem, a control tree-based
solution incurs an additional function call to the subproblem operation’s internal back-end routine, whereas
a conventional algorithm would encode the desired subroutine call directly into the body of the algorithm
implementation. In our experience, this overhead tends to be negligible since it is amortized over a large
amount of computation. The level-3 performance results in Section 7 confirm that control tree overhead can
be quite minimal, if not indistinguishable.
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And so, by expressing the execution path (and key runtime parameters) of the overall
level-3 algorithm with a tree structure, we allow arbitrary algorithms to be composed
from a small set of variants, while simultaneously keeping the source code and object
code footprints quite manageable.

5.2. Level-2, Level-1v, Level-1m, and Level-1f operations
We now discuss how each of the five dimensions of generality are achieved for the
level-1v, level-1m, level-1f, and level-2 operations.

5.2.1. Operation. Recall that with level-3 operations, we were able to greatly simplify
the implementations by expressing the operations in terms of a GEMM micro-kernel,
with the remaining differences expressed via either the packing facility or the oper-
ation’s macro-kernel, or a combination of the two. However, level-2 (and lower) op-
erations cannot afford to be implemented with a pack stage if performance is to be
maximized. Indeed, performance is already hindered by the fact that the ratio of flops
to memops for these operations is effectively O(1). Thus, there is not nearly as much
opportunity for reuse of algorithms between level-2 operations.24 However, there is a
silver lining. As mentioned in Sections 4.3 and 4.4, all level-2 operations can be real-
ized in optimized form by simply optimizing the level-1f kernels shown in Figure 6,
and similarly, a level-1m implementation can be accelerated by optimizing its corre-
sponding level-1v operation. And so the amount of code that must be customized to
achieve high performance for a given architecture, while greater than that of level-3
BLIS, remains relatively small.

It should be noted that, because BLIS exposes multiple layers, we can easily imple-
ment higher-level operations in terms of lower-level codes that forgo error checking,
thereby avoiding redundant error checking. For example, level-1m BLIS operations
are implemented in terms of level-1v kernels; however, these kernels are not accessed
via the same APIs that an end-user would call. Instead, we use expert-level interfaces
to access level-1v codes that skip error checking altogether. In this way, function pa-
rameters and other properties of the problem, such as operand dimensions, can be
checked once up-front.

5.2.2. Parameter case. The number of parameter cases needed to fully support level-2
and lower operations is noticeably smaller than that of level-3 operations. For exam-
ple, unlike their level-3 analogues, HEMV, TRMV, and TRSV have no side parameter.
And while some operations still sometimes offer the option of transposing an operand
or computing with only the lower- or upper-stored region of a matrix, both of these
options can usually be handled quite naturally by manipulating the row and column
strides of the matrix object. For example, a matrix transpose is typically induced by
swapping the row and column strides (and sometimes making adjustments to dimen-
sions, as with the case of GEMV). Furthermore, level-2 BLIS operations may be im-
plemented to explicitly support only the lower-stored case, but still indirectly support
the upper-stored case by internally inducing a matrix transposition prior to executing
any underlying level-1v or -1f kernels. In the case of HEMV, HER, and HER2, switching
the lower/upper storage parameter corresponds to toggling one or more conjugation
parameters (since LOWERTRIANGLE(H) = UPPERTRIANGLE(H̄), where H is Hermi-
tian). Scalar-level conjugation is implemented directly within the underlying level-1v

24Nevertheless, careful coding allows us to consolidate some operation implementations. For example, we
implement real SYR and complex HER as the same algorithm. This is possible since the Hermitian transpose
in the case of complex HER reduces to a transpose in the real domain. Furthermore, a simple switch that
disables the conjugation component of the Hermitian transpose allows us to implement complex SYR using
the same algorithm codes. A similar consolidation may be performed for SYR2/HER2 and SYMV/HEMV.
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or level-1f kernels, which allows algorithms to be implemented without the need for
temporarily conjugated (and thread-unsafe) operands. Support for arbitrary diagonal
offsets for lower- and upper-stored matrices is implemented uniformly across all level-
1m operations, and in such a way that factors out the logic that adjusts loop bounds
and index offsets to account for the location of the diagonal.

5.2.3. Datatype. By default, the BLIS framework provides portable, C-based imple-
mentations of all level-1v, level-1m, and Level-2 operations, each with full datatype
support. BLAS achieves this by providing a separate code for each datatype supported,
despite these codes differing in only slight ways. BLIS avoids this redundancy by using
the C preprocessor to employ macro-based templates whenever unblocked codes are
written (including the macro-kernels used by level-3 operations). Thus, the framework
stores only one datatype-agnostic copy of each variant; the datatype-specific codes are
then instantiated by the preprocessor at compile-time. This technique drastically re-
duces the source code (though not the object code) footprint of the framework, which in
turn makes the framework much easier to modify and maintain.

These macro-based templates also allow one to capture mixed datatype algorithms
by specifying the types of each operand separately. If and when the library developer
configures BLIS to allow mixed domain and/or precision, these additional datatype
combinations are instantiated automatically when the library is built. However, at
first all implementations, whether of homogeneous or mixed datatypes, will be unop-
timized. If the developer chooses to support only operands of homogeneous datatypes,
then he or she need only optimize the level-1v and/or level-1f kernels for homogeneous
datatypes (i.e., four datatype instances of each operation, assuming all four floating-
point datatypes are to be supported). If the developer wishes to support datatype mix-
ing, then he or she will need to provide additional level-1v and/or level-1f kernels that
take operands of mixed types.25

5.2.4. Storage format. Generalized storage is supported for level-1m and -2 operations
just as with level-3 operations. The mechanism, however, is different. Here, we rely
upon underlying kernels to support general stride. Recall that the level-1m and -2
operations are implemented in terms of level-1v and -1f kernels; so, as long as the
latter are implemented to support both contiguous (row- or column-stored) and general
stride storage, the former will exhibit this support as well. Admittedly, supporting
contiguous as well as general stride cases is distinct from optimizing those cases, as
kernel developers often allow the assumption of contiguous storage to influence their
kernel implementation (specifically, their choice of assembly instructions). Thus, the
library developer will have to weigh whether including optimizations for both cases is
important for his or her users.

5.2.5. Algorithm. The set of variants for level-2 and lower operations is much smaller
due to the reduced number of possible matrix and vector partitionings. For a typical
level-1m operation such as AXPYM, BLIS needs to provide only one variant, because
the default runtime system can manipulate matrix objects (e.g. strides) to allow unit
stride through memory whenever possible. For a typical level-2 operation, two or more
variants are provided. This allows the runtime system to choose the best variant based
on the exact nature of the problem, taking in account matrix storage as well as trans-
position. For example, GEMV invokes a DOTXV-based implementation if matrix A is

25Unfortunately, this aspect of the framework—whereby the developer must provide one level-1v/level-1f
kernel for every datatype combination desired—is probably the weakest part of the framework. But, absent
the developer (and his or her users) tolerating a potentially significant cost in terms of workspace and
memory copy overhead incurred by a runtime typecast/packing facility, we see no other way of providing
this functionality in optimized form.
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Object of interest
Byte footprint

BLIS OpenBLAS ATLAS MKL

Executable that calls DGEMM 337K 33K 2.11M 2.80M
. . . and also DSYMM 341K 42K 2.12M 2.94M
. . . and also DSYRK 367K 56K 2.12M 3.16M
. . . and also DSYR2K 373K 72K 2.13M 3.22M
. . . and also DTRMM 422K 142K 2.17M 4.95M
. . . and also DTRSM 475K 210K 2.20M 5.57M
. . . and also ZGEMM 475K 251K 3.12M 7.98M
. . . and also ZHEMM 475K 259K 3.14M 8.03M
. . . and also ZHERK 475K 276K 3.16M 8.12M
. . . and also ZHER2K 475K 297K 3.17M 8.19M
. . . and also ZTRMM 475K 394K 3.22M 9.72M
. . . and also ZTRSM 475K 497K 3.27M 10.86M

Library archive 2.17M 6.22M 11.81M ? 26

Total memory at run-time for executable
that calls DGEMM (m = n = k = 100)

25.7M 43.1M 13.2M 13.9M

Total memory at run-time for executable
that calls DGEMM (m = n = k = 4000)

391M 409M 415M 388M

Fig. 12. Various manifestations of library footprints when statically linked to each of: BLIS 0.1.0-20, Open-
BLAS 0.2.6, ATLAS 3.10.1, and MKL 11.2. Here, “K” and “M” indicate 1024 and 1048576 bytes, respectively.

row-stored and not in need of a transpose, or if A is column-stored and in need of
a transpose, while an AXPYV-based variant is preferred for the two remaining cases.
For general stride cases, unit stride cannot be achieved, and thus by default the BLIS
framework chooses a DOTXV-based variant, if one is available, since it incurs fewer
memory operations while performing the same number of flops.

5.3. Summary remarks
We have now discussed a wide breadth of implementation techniques that we employ
in BLIS which help us keep the framework as small, manageable, and flexible as pos-
sible. It should be noted that some increase in code is sustained even when employing
the methods described above. But our primary goal here was to avoid the situation
whereby increasing functionality along one dimension would proportionally inflate the
resulting library’s code size. The only dimension along which we clearly fail at this goal
is that of datatype instantiation (in the case of mixed-domain and mixed-precision) for
level-1v and level-1f kernels.

The BLIS framework employs other more mundane techniques that contribute gen-
erally to its usability and maintainability, which we choose not to document here for
space reasons.

In the next section, we will quantify the object code size of BLIS and compare it to
that of other BLAS libraries.

6. LIBRARY FOOTPRINT

26MKL’s BLAS are accessed by linking to three libraries, which together occupy 303Mbytes. However, these
same libraries also provide other DLA functionality (such as LAPACK and ScaLAPACK) as well as signal
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A concern with BLAS implementations can be their byte footprints. For example, on
embedded systems where memory is particularly limited, a large executable can be
problematic. BLIS is highly layered and designed to reuse code whenever possible,
leaving it relatively compact in size. We provide evidence of this in Figure 12, which
summarizes byte footprints of various executables and libraries when statically linking
to BLIS 0.1.0-20, OpenBLAS 0.2.627, ATLAS 3.10.1, and MKL 11.0 Update 4. The data
in Figure 12 was gathered on the same architecture discussed in Section 7.1.

We can see that when linking BLIS to a simple test driver that calls only DGEMM, the
resulting executable is 337Kbytes in size. Executables linked to OpenBLAS, ATLAS,
and MKL are 33Kbytes, 2.11Mbytes, and 2.80Mbytes, respectively. Thus, while BLIS
does not yield the absolute smallest executable, it is still an order of magnitude smaller
than a similar program linked to ATLAS or MKL.

The next observation we make is that adding calls to additional BLAS routines
causes relatively moderate increases in BLIS-linked executable size. Specifically,
adding calls to the other five double-precision real level-3 operations (DSYMM, DSYRK,
DSYR2K, DTRMM, and DTRSM) results in 138Kbytes of additional object code when
linking to BLIS, 177Kbytes when linking to OpenBLAS, 106Kbytes when linking to
ATLAS, and 2.78Mbytes when linking to MKL.

However, some applications may need both real and complex domain flavors of the
same operations. Adding calls to the double-precision complex analogues of the afore-
mentioned level-3 routines causes OpenBLAS-, ATLAS-, and MKL-linked executables
to swell in size by 287Kbytes, 1.07Mbytes, and 5.29Mbytes, respectively. On the other
hand, adding these complex routine calls to a BLIS-linked executable causes no in-
crease in executable size. This is possible because the real-only executables linked
to BLIS already include all of the supporting infrastructure needed for computing in
the complex domain. This is a consequence of BLIS’s design, which defers the differ-
entiation of domain (real versus complex) and precision (single versus double) until
runtime.

Looking only at the library archives themselves, we see that BLIS28 is small-
est at 2.17Mbytes, with OpenBLAS and and ATLAS consuming 6.22Mbytes and
11.81Mbytes, respectively. ATLAS likely suffers, in general, from the fact that it is
auto-generated. Also, ATLAS’s design requires the compilation of many optimized
“edge-case” kernels—enough to handle any possible edge case size (that is, any size
less than the cache block size), which results in a very large kernel footprint. Sim-
ilarly, OpenBLAS contains significant non-kernel code duplication and redundancy;
however, this duplication also allows OpenBLAS-linked executables to stay exception-
ally small when only a few BLAS routines are called, as each BLAS routine is more
self-contained.

In some situations, executable size may not matter nearly as much as the total
amount of memory allocated at run-time. All BLAS implementations require substan-
tial workspace buffers, usually for creating packed copies of the matrix operands. The
last two rows of Figure 12 list the total memory footprint of running processes when
executing DGEMM for square problem sizes of 100 and 4000. For small problem sizes,

processing functions (such as FFT). Thus, it would be difficult to estimate the size of only the object code
needed by the BLAS.
27Here, OpenBLAS was configured as a sequential library, with CBLAS interfaces and built-in LAPACK
functionality both disabled.
28This particular BLIS library was compiled with only optimized kernels for double-precision real computa-
tion. We estimate that the other kernels, were they to be written and included, would increase the size of the
BLIS library by approximately 70Kbytes, resulting in a total library size of approximately 2.24Mbytes. This
would also increase (by approximately the same amount) the sizes of the BLIS-linked executables listed in
the first 12 rows of Figure 12.
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the largest contributing factor to the runtime footprints of BLIS and OpenBLAS are
packing buffers, which are statically sized at compile-time (as a function of the cache
block sizesmc, kc, and nc). ATLAS and MKL have similar workspace buffers. For larger
problem sizes, the memory associated with the input matrices begins to dwarf any dif-
ference in workspace requirements.

Thus, in summary, BLIS may be a better choice than ATLAS or MKL when the
footprint of the executable is an issue. Similarly, BLIS may be preferred when calling
multiple BLAS (or BLAS-like) routines.

7. PERFORMANCE
In this section we present performance of various level-2 and level-3 BLIS operations.
Comparisons are made with corresponding BLAS implementations of various libraries.

The platform chosen for the performance experiments was, admittedly, an old archi-
tecture. We approached the development of BLIS as a scientific experiment: Decades
of research by various researchers on the implementation of BLAS libraries provided
experimental and theoretical insights. From this, we conjectured how the framework
should be designed. So as to leave the evaluation on modern architectures as the ul-
timate verification that we were on to something, we developed the framework on a
relatively old architecture. The preliminary evaluation of the framework on that old
architecture is given in this paper. Other papers, to be published in the future, will
provide additional evidence.

7.1. Platform and implementation details
All experiments reported in this paper were performed on a single core of a Dell Pow-
erEdge R900 server consisting of four six-core Intel Xeon “Dunnington” X7460 proces-
sors. Each core provides a peak performance of 10.64 GFLOPS. Performance experi-
ments were gathered under the GNU/Linux 2.6.18 operating system. Source code was
compiled by the GNU C compiler (gcc), version 4.8.2. All experiments were performed
in double-precision floating-point arithmetic on randomized, column-stored real do-
main matrices.

The version of BLIS tested was 0.1.0-20.29 We compare BLIS performance to three
other single-threaded implementations: OpenBLAS 0.2.6, ATLAS 3.10.1 and MKL
11.0 Update 4. The level-3 BLIS implementations are based on a hand-coded micro-
kernel similar to the corresponding inner-most loop of one of the kernels found within
OpenBLAS. This micro-kernel was expressed in GNU extended inline assembly syn-
tax and coded to leverage vector floating-point instructions. Level-1 and Level-1f BLIS
kernels were coded at a somewhat higher level, using SSE vector intrinsics.

In the following subsections, we discuss the performance results of Figures 13
and 14. These graphs show performance, measured in GFLOPS (109 floating-point op-
erations per second), as a function of matrix operand (problem) size, where each data
point shows the best of three trials. For operations with matrix operands that have
both m and n dimensions, we fix m = n, and for those that have a k dimension (i.e.
GEMM, SYRK, and SYR2K) we fix m = n = k. All graphs are scaled such that the maxi-
mum y-axis value is equal to the peak performance of a single core, 10.64 GFLOPS.

The underlying micro-kernel utilized by level-3 operations reported in Figure 13
used register block sizes mr = nr = 4, while the higher-level blocked algorithms used
cache block sizes mc = 384 and kc = 384. Similarly, the level-1f kernels AXPYF, DOTXF,
and DOTXAXPYF used by level-2 operations reported in Figure 14 were implemented
with fusing factors of f = 4.

29This version of BLIS may also be uniquely identified by the first 12 digits of its git “commit” (SHA1 hash)
number: f60c8adc2f61.
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Fig. 13. Performance of various implementations of double-precision real GEMM (top-left), SYMM (top-right),
SYRK (center-left), SYR2K (center-right), TRMM (bottom-left), and TRSM (bottom-right), on a single core of a
2.66GHz Intel Xeon 7400 system.
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Fig. 14. Performance of various implementations of double-precision real GEMV (top-left), SYMV (top-right),
SYR (center-left), SYR2 (center-right), TRMV (bottom-left), and TRSV (bottom-right), on a single core of a
2.66GHz Intel Xeon 7400 system.
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The register block sizes mr and nr and cache block sizes mc and kc were chosen to be
identical to the corresponding block sizes used by OpenBLAS. How these block sizes
are optimally chosen is beyond the scope of this paper; however, we suspect that this
topic is fertile ground for future research. For the DOTXAXPYF kernel, we chose f to
be as large as possible such that loads into and stores out of registers are minimized
(i.e., such that all values neccessary for a given iteration can be read and used from
registers before being discarded or written back to main memory). We then used this
value f = 4 for DOTXF and AXPYF as well, even though these kernels’ simpler loop
bodies would have allowed us to employ larger fusing factors.30

7.2. General results
Figure 13 shows results for the double-precision real instances of six level-3 operations:
GEMM, SYMM, SYRK, SYR2K, TRMM, and TRSM. In all six graphs, the performance of
the BLIS implementation can be seen to be highly competitive with existing imple-
mentations, including those provided by the Intel MKL library.

Similarly, Figure 14 shows performance for the double-precision real instances of six
level-2 operations: GEMV, SYMV, SYR, SYR2, TRMV, and TRSV. (These are the level-2
analogues of the operations reported on in Figure 13.) Once again, observed perfor-
mance of the implementations instantiated via the BLIS framework is comparable to
that of codes available via OpenBLAS, ATLAS, and MKL.

These results suggest that the BLIS framework is capable of facilitating competi-
tive performance for BLAS-like operations. Importantly, with the exception of TRSM,
the BLIS performance results shown in Figure 13 were achieved by optimizing only
the micro-kernel illustrated in Figure 11; all other aspects of the implementations
employed portable component codes from the framework. Similarly, the optimizations
that enabled the BLIS performance results in Figure 14 were limited to those of the
level-1 and level-1f kernels shown in the right-hand column of Figure 9.

7.3. Benefit of fused GEMM-TRSM micro-kernel
As mentioned in Footnote 15, near-optimal TRSM performance requires more than just
an optimized GEMM micro-kernel. TRSM is inherently dissimilar from the other level-3
operations in that it cannot be entirely expressed in terms of a simple matrix-matrix
multiplication. While the bulk of its computation can be cast in terms of GEMM, it also
requires a small triangular solve subproblem. While this TRSM subproblem constitutes
a very small fraction of the total flops executed, it incurs extra memory operations that
could otherwise be avoided altogether if the GEMM and TRSM subproblems were fused
at the register level.

The BLIS implementation of TRSM reported on in Figure 13 uses a fused GEMM-
TRSM micro-kernel, and thus is more fully-optimized than an implementation that
leverages only the GEMM micro-kernel. How much TRSM performance is gained by
crafting this specialized micro-kernel? To answer this question, we tested two addi-
tional implementations in addition to the one shown in Figure 13. These three imple-
mentations are described as follows:

— BLIS with fused GEMM-TRSM. This implementation fuses the GEMM micro-kernel
with the small TRSM subproblem that follows it so that the current mr×nr submatrix
of B is held in registers rather than being written out to memory and immediately

30It should be noted that the register set would not have allowed much of an increase in the fusing factors
for these two operations—perhaps to f = 8 at most. And even then, the improvement, in terms of avoided
memory operations, is relatively small and diminishes quickly for larger values of f .
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Fig. 15. Left: Performance of BLIS TRSM with four levels of optimization: fully optimized via a fused GEMM-
TRSM micro-kernel (as shown in the bottom-right graph of Figure 13); partially optimized via an unfused
and unrolled TRSM micro-kernel compiled with scalar SSE instructions (which are automatically emitted by
the compiler via -mfpmath=sse); and unoptimized via an unfused and generic (loop-based) TRSM compiled
with traditional FPU-based instructions. Right: Performance of the latter three implementations relative to
that of the first.

read back in. This fused code is written with GNU extended inline assembly syntax
and utilizes vector SSE instructions.

— BLIS with unfused unrolled TRSM via SSE. This implementation of TRSM sepa-
rates the GEMM micro-kernel call from the smallest TRSM subproblem. This small
TRSM subproblem is coded in C, manually unrolled, and then compiled with the
-mfpmath=sse compiler option, which causes gcc to emit scalar SSE instructions.

— BLIS with unfused generic TRSM via FPU. This is similar to the above implemen-
tation, except that rather than being unrolled, the TRSM subproblem is expressed in
terms of loops over the register block sizes. Additionally, the code is compiled with
the -mfpmath=387 compiler option, which causes gcc to emit instructions that uti-
lize only the standard floating-point unit present on Intel x86 processors. Since this
micro-kernel is not unrolled, it can be used unmodified with any register block sizes,
making it completely generic.

We would expect the SSE-based unfused implementation to outperform the generic
FPU-based code, with both underperforming the implementation which employs a
fused GEMM-TRSM micro-kernel. Figure 15 reports performance consistent with this
prediction. The key take-away from this graph is that while the fused implementation
offers somewhat higher performance, the performance penalty incurred by forgoing
this level of optimization is not prohibitive, especially when using compiler-generated
scalar SSE instructions on manually unrolled C code, and/or when computing upon
larger matrices.

7.4. Potential for automation
Auto-tuning of level-3 BLAS started with IBM’s effort to provide BLAS for the Power2
architecture [Agarwal et al. 1994]. That effort showed that high-performance im-
plementations could be achieved in a high-level language (Fortran). The PHiPAC
project [Bilmes et al. 1997] picked up on this, but introduced the idea of generating
highly efficient C code, including automatic tuning of block sizes and loop orderings.
This was then pushed to the next level by the ATLAS project, which reduced the search
space by focusing on automatically tuning inner kernels and block sizes. Inner kernels
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are now hand-written in assembly code and catalogued within the system so that the
appropriate kernel can be chosen later, when the library is configured and built.

The reader may notice that we do not discuss auto-tuning. Yotov et al. showed that
architecture parameters and characteristics can be used to analytically derive the tun-
ing parameters that ATLAS determines through exhaustive search [Yotov et al. 2005].
Further evidence that auto-tuning is not necessary comes from the fact that Goto did
not auto-tune (and achieves better performance than ATLAS) for all architectures he
targeted [Goto and van de Geijn 2008a; 2008b], nor did Volkov auto-tune when optimiz-
ing for GPUs [Volkov and Demmel 2008]. We believe that the BLIS framework struc-
tures the implementation effort in a way that exposes fundamental techniques and
hence allows architectural parameters and insight to be used in lieu of auto-tuning.
Nonetheless, one could at some point add auto-tuning to the framework.

A related topic of research is that of automatically generating linear algebra libraries
from domain and hardware specifications. We believe that the BLIS framework iso-
lates architecture specifics to the point where a tool like Spiral [Püschel et al. 2005]
could be used to generate micro-kernels. Indeed, one of the motivations for creating
the BLIS framework was to distill the dense linear algebra software stack into ba-
sic facilities (i.e., computational and packing kernels) so that Design by Transforma-
tion [Marker et al. 2012] can encode expert knowledge about the library operations and
then generate highly optimized higher-level functionality. We intend to investigate this
further in future work. Other groups, such as the Build to Order BLAS project [Siek
et al. 2008; Belter et al. 2009], may also benefit from the kernel and/or layering that
BLIS exposes.

8. CONCLUSIONS
In this paper, we have proposed a new framework for rapidly instantiating BLAS-
like libraries. This framework addresses several shortcomings of the original BLAS
interface design (while also providing backward compatibility), expands functionality,
and most importantly, isolates most architecture-sensitive details to a few relatively
small kernels, which, when optimized, immediately enable high-performance across
virtually all supported operations. Experimental level-2 and level-3 performance was
observed to be competitive with two highly-regarded open source libraries, as well as
the famously optimized commercial solution from Intel. Evidence of BLIS’s code reuse
and compactness was also given by comparing library and executable byte sizes across
these same libraries.

This work lays the foundation for future efforts:

— At the time that this paper was first written, adding multithreading to the BLIS
framework was not yet explored. Focusing on level-3 operations, the thought was
that BLIS exposes many loops and that there are therefore many opportunities for
parallelism. In the evaluation [Van Zee et al. 2013] that ported BLIS to a multitude of
then-current architectures, some experimentation of how to extract parallelism was
explored, with great success. These techniques for many-core threading were further
generalized and described in [Smith et al. 2014].
Now one of our highest priorities is to add systematic support for multithreading (via
either POSIX threads or OpenMP). We envision a multithreaded BLIS framework
that exports simultaneous access to sequential and parallel implementations, where
the number of threads for the latter can be changed by the user at runtime. This
would allow applications to control precisely how much parallelism is achieved within
BLIS at any given time.

— While the BLIS framework has been ported to several architectures, we wish to gain
exposure to even more types of hardware, including GPUs. These experiences will
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help us further refine and generalize the framework, and streamline the process of
instantiating BLAS-like libraries on other similarly exotic systems.

— As mentioned previously, given that BLIS isolates performance-sensitive code to a
few simple kernels, the framework may aid those who wish to automate the genera-
tion of high-performance linear algebra libraries from domain and hardware specifi-
cations [Püschel et al. 2005; Marker et al. 2012; Siek et al. 2008; Belter et al. 2009].

— As computing systems become less reliable, whether because of quantum physical ef-
fects, power consumption restrictions, or outright power failures, the community may
become increasingly interested in adding algorithmic fault-tolerance to the BLAS (or
BLAS-equivalent) layer of the dense linear algebra software stack [Gunnels et al.
2001b; Huang and Abraham 1984]. We plan to investigate the suitability of BLIS as
a vehicle to provide such fault-tolerance.

— We may also look toward adding support for extended precision arithmetic.

Thus, the contributions of this work provide several avenues for further research.
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GEIJN, R. 2008. SuperMatrix: A multithreaded runtime scheduling system for algorithms-by-blocks.
In ACM SIGPLAN 2008 symposium on Principles and practices of parallel programming (PPoPP’08).
123–132.

CHOI, J., DONGARRA, J. J., POZO, R., AND WALKER, D. W. 1992. ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the
Frontiers of Massively Parallel Computation. IEEE Comput. Soc. Press, 120–127.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I. 1990. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Soft. 16, 1, 1–17.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND HANSON, R. J. 1988. An extended set of FORTRAN
basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1, 1–17.

DONGARRA, J. J., VAN DE GEIJN, R. A., AND WHALEY, R. C. 1993. Two dimensional basic linear algebra
communication subprograms. In Proceedings of the Sixth SIAM Conference on Parallel Processing for
Scientific Computing.

GOTO, K. AND VAN DE GEIJN, R. 2008a. Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Soft. 34, 3, 12:1–12:25.

GOTO, K. AND VAN DE GEIJN, R. 2008b. High-performance implementation of the level-3 BLAS. ACM
Trans. Math. Soft. 35, 1, 1–14.

GUNNELS, J. A., GUSTAVSON, F. G., HENRY, G. M., AND VAN DE GEIJN, R. A. 2001a. FLAME: Formal
linear algebra methods environment. ACM Trans. Math. Soft. 27, 4, 422–455.

GUNNELS, J. A., HENRY, G. M., AND VAN DE GEIJN, R. A. 2001b. A family of high-performance matrix mul-
tiplication algorithms. In Computational Science - ICCS 2001, Part I, V. N. Alexandrov, J. J. Dongarra,
B. A. Juliano, R. S. Renner, and C. K. Tan, Eds. Lecture Notes in Computer Science 2073. Springer-
Verlag, 51–60.

GUNNELS, J. A. AND VAN DE GEIJN, R. A. 2001. Formal methods for high-performance linear algebra li-
braries. In The Architecture of Scientific Software, R. F. Boisvert and P. T. P. Tang, Eds. Kluwer Academic
Press, 193–210.

HOWELL, G. W., DEMMEL, J. W., FULTON, C. T., HAMMARLING, S., AND MARMOL, K. 2008. Cache efficient
bidiagonalization using BLAS 2.5 operators. ACM Transactions on Mathematical Software 34, 3, 14:1–
14:33.

HUANG, K. AND ABRAHAM, J. 1984. Algorithm–based fault tolerance for matrix operations. IEEE Trans. on
Computers 33, 6, 518–528.

IBM. 2012. Engineering and Scientific Subroutine Library. http://www.ibm.com/systems/software/essl/.
INTEL. 2012. Math Kernel Library. http://developer.intel.com/software/products/mkl/.
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