
University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Introduction to C

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 2

C: A High-Level Language

Gives symbolic names to values
don’t need to know which register or memory location

Provides abstraction of underlying hardware
operations do not depend on instruction set
example: can write “a = b * c”, even though
LC-3 doesn’t have a multiply instruction

Provides expressiveness
use meaningful symbols that convey meaning
simple expressions for common control patterns (if-then-else)

Enhances code readability
Safeguards against bugs

can enforce rules or conditions at compile-time or run-time

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 3

Compilation vs. Interpretation
Different ways of translating high-level language
Interpretation

interpreter = program that executes program statements
generally one line/command at a time
limited processing
easy to debug, make changes, view intermediate results
languages: BASIC, LISP, Perl, Java, Matlab, C-shell

Compilation
translates statements into machine language

does not execute, but creates executable program
performs optimization over multiple statements
change requires recompilation

can be harder to debug, since executed code may be different
languages: C, C++, Fortran, Pascal

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 4

Compilation vs. Interpretation
Consider the following algorithm:

Get W from the keyboard.

X = W + W

Y = X + X

Z = Y + Y
Print Z to screen.

If interpreting, how many arithmetic operations occur?

If compiling, we can analyze the entire program and
possibly reduce the number of operations. Can we
simplify the above algorithm to use a single
arithmetic operation?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 5

Compiling a C Program
Entire mechanism is usually called
the “compiler”
Preprocessor

macro substitution
conditional compilation
“source-level” transformations

output is still C

Compiler
generates object file

machine instructions

Linker
combine object files
(including libraries)
into executable image

C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 6

Compiler

Source Code Analysis
“front end”
parses programs to identify its pieces

variables, expressions, statements, functions, etc.
depends on language (not on target machine)

Code Generation
“back end”
generates machine code from analyzed source
may optimize machine code to make it run more efficiently
very dependent on target machine

Symbol Table
map between symbolic names and items
like assembler, but more kinds of information

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 7

A Simple C Program
#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
main()
{
 /* variable declarations */
 int counter; /* an integer to hold count values */
 int startPoint; /* starting point for countdown */
 /* prompt user for input */
 printf("Enter a positive number: ");
 scanf("%d", &startPoint); /* read into startPoint */
 /* count down and print count */
 for (counter=startPoint; counter >= STOP; counter--)
 printf("%d\n", counter);
}

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 8

Preprocessor Directives

#include <stdio.h>
Before compiling, copy contents of header file (stdio.h)
into source code.
Header files typically contain descriptions of functions and
variables needed by the program.

no restrictions -- could be any C source code

#define STOP 0
Before compiling, replace all instances of the string
"STOP" with the string "0"
Called a macro
Used for values that won't change during execution,
but might change if the program is reused. (Must recompile.)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 9

Comments

Begin with /* and end with */
Can span multiple lines
Cannot have a comment within a comment
Comments are not recognized within a string

example: "my/*don't print this*/string"
would be printed as: my/*don't print this*/string

As before, use comments to help reader, not to confuse
or to restate the obvious

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 10

main Function

Every C program must have a function called main().

This is the code that is executed
when the program is run.

The code for the function lives within brackets:
main()
{
 /* code goes here */
}

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 11

Variable Declarations

Variables are used as names for data items.
Each variable has a type,
which tells the compiler how the data is to be interpreted
(and how much space it needs, etc.).

int counter;
int startPoint;

int is a predefined integer type in C.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 12

Input and Output

Variety of I/O functions in C Standard Library.
Must include <stdio.h> to use them.

printf("%d\n", counter);
String contains characters to print and
formatting directions for variables.
This call says to print the variable counter as a decimal integer,
followed by a linefeed (\n).

scanf("%d", &startPoint);
String contains formatting directions for looking at input.
This call says to read a decimal integer and assign it to the
variable startPoint. (Don't worry about the & yet.)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 13

More About Output

Can print arbitrary expressions, not just variables
printf("%d\n", startPoint -

counter);

Print multiple expressions with a single statement
printf("%d %d\n", counter,

 startPoint - counter);

Different formatting options:
%d decimal integer
%x hexadecimal integer
%c ASCII character
%f floating-point number

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 14

Examples
This code:
printf("%d is a prime number.\n", 43);
printf("43 plus 59 in decimal is %d.\n", 43+59);
printf("43 plus 59 in hex is %x.\n", 43+59);
printf("43 plus 59 as a character is %c.\n",
43+59);

produces this output:
43 is a prime number.
43 + 59 in decimal is 102.
43 + 59 in hex is 66.
43 + 59 as a character is f.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 15

Examples of Input
Many of the same formatting characters are
available for user input.

scanf("%c", &nextChar);
reads a single character and stores it in nextChar

scanf("%f", &radius);
reads a floating point number and stores it in radius

scanf("%d %d", &length, &width);
reads two decimal integers (separated by whitespace),
stores the first one in length and the second in width

Must use ampersand (&) for variables being modified.
(Explained in Chapter 16.)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 16

Compiling and Linking

Various compilers available
cc, gcc
includes preprocessor, compiler, and linker

Lots and lots of options!
level of optimization, debugging
preprocessor, linker options
intermediate files --
object (.o), assembler (.s), preprocessor (.i), etc.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 17

Remaining Chapters

A more detailed look at many C features.
Variables and declarations
Operators
Control Structures
Functions
Data Structures
I/O

Emphasis on how C is converted to
LC-3 assembly language.

Also see C Reference in Appendix D.

