
University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell

C Variables and Operators

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 2

Basic C Elements

Variables
named, typed data items

Operators
predefined actions performed on data items
combined with variables to form expressions,
statements

Rules and usage
Implementation using LC-3

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 3

Data Types

C has three basic data types

int integer (at least 16 bits)
double floating point (at least 32 bits)
char character (at least 8 bits)

Exact size can vary, depending on processor
int is supposed to be "natural" integer size;
for LC-3, that's 16 bits -- 32 bits for most modern
processors

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 4

Variable Names

Any combination of letters, numbers, and underscore (_)

Case matters
"sum" is different than "Sum"

Cannot begin with a number
usually, variables beginning with underscore
are used only in special library routines

Only first 31 characters are used

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 5

Examples

Legal
i
wordsPerSecond
words_per_second
_green
aReally_longName_moreThan31chars
aReally_longName_moreThan31characters

Illegal
10sdigit
ten'sdigit
done?
double

reserved keyword

same identifier

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 6

Literals
Integer
123 /* decimal */
-123
0x123 /* hexadecimal */

Floating point
6.023
6.023e23 /* 6.023 x 1023 */
5E12 /* 5.0 x 1012 */

Character
'c'
'\n' /* newline */
'\xA' /* ASCII 10 (0xA) */

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 7

Scope: Global and Local

Where is the variable accessible?
Global: accessed anywhere in program
Local: only accessible in a particular region

Compiler infers scope from where variable is declared
programmer doesn't have to explicitly state

Variable is local to the block in which it is declared
block defined by open and closed braces { }
can access variable declared in any "containing" block

Global variable is declared outside all blocks

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 8

Example
#include <stdio.h>
int itsGlobal = 0;

main()
{
 int itsLocal = 1; /* local to main */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 {
 int itsLocal = 2; /* local to this block */
 itsGlobal = 4; /* change global variable */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
}

Output
Global 0 Local 1
Global 4 Local 2
Global 4 Local 1

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 9

Operators

Programmers manipulate variables
using the operators provided by the high-level language.

Variables and operators combine to form
expressions and statements
which denote the work to be done by the program.

Each operator may correspond to many
machine instructions.

Example: The multiply operator (*) typically requires
multiple LC-3 ADD instructions.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 10

Expression

Any combination of variables, constants, operators,
and function calls

every expression has a type,
derived from the types of its components
(according to C typing rules)

Examples:
counter >= STOP
x + sqrt(y)
x & z + 3 || 9 - w-- % 6

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 11

Statement

Expresses a complete unit of work
executed in sequential order

Simple statement ends with semicolon
z = x * y; /* assign product to z */

y = y + 1; /* after multiplication */

; /* null statement */

Compound statement groups simple statements
using braces.

syntactically equivalent to a simple statement
{ z = x * y; y = y + 1; }

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 12

Operators
Three things to know about each operator

(1) Function
what does it do?

(2) Precedence
in which order are operators combined?
Example:
"a * b + c * d" is the same as "(a * b) + (c * d)"
because multiply (*) has a higher precedence than addition (+)

(3) Associativity
in which order are operators of the same precedence combined?
Example:
"a - b - c" is the same as "(a - b) - c"
because add/sub associate left-to-right

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 13

Assignment Operator

Changes the value of a variable.

x = x + 4;

1. Evaluate right-hand side.

2. Set value of left-hand side variable to result.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 14

Assignment Operator

All expressions evaluate to a value,
even ones with the assignment operator.

For assignment, the result is the value assigned.
usually (but not always) the value of the right-hand side

type conversion might make assigned value
different than computed value

Assignment associates right to left.
y = x = 3;
y gets the value 3, because (x = 3) evaluates to the value 3.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 15

Arithmetic Operators

Symbol Operation Usage Precedence Assoc

* multiply x * y 6 l-to-r
/ divide x / y 6 l-to-r
% modulo x % y 6 l-to-r
+ addition x + y 7 l-to-r
- subtraction x - y 7 l-to-r

All associate left to right.
* / % have higher precedence than + -.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 16

Arithmetic Expressions

If mixed types, smaller type is "promoted" to larger.
x + 4.3

if x is int, converted to double and result is double

Integer division -- fraction is dropped.
x / 3

if x is int and x=5, result is 1 (not 1.666666...)

Modulo -- result is remainder.
x % 3

if x is int and x=5, result is 2.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 17

Bitwise Operators

Symbol Operation Usage Precedence Assoc

~ bitwise NOT ~x 4 r-to-l
<< left shift x << y 8 l-to-r
>> right shift x >> y 8 l-to-r
& bitwise AND x & y 11 l-to-r
^ bitwise XOR x ^ y 12 l-to-r
| bitwise OR x | y 13 l-to-r

Operate on variables bit-by-bit.
Like LC-3 AND and NOT instructions.

Shift operations are logical (not arithmetic).
Operate on values -- neither operand is changed.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 18

Logical Operators
Symbol Operation Usage Precedence Assoc

! logical NOT !x 4 r-to-l
&& logical AND x && y 14 l-to-r
|| logical OR x || y 15 l-to-r

Treats entire variable (or value)
as TRUE (non-zero) or FALSE (zero).

Result is 1 (TRUE) or 0 (FALSE).

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 19

Relational Operators
Symbol Operation Usage Precedence Assoc

> greater than x > y 9 l-to-r
>= greater than or equal x >= y 9 l-to-r
< less than x < y 9 l-to-r
<= less than or equal x <= y 9 l-to-r
== equal x == y 10 l-to-r
!= not equal x != y 10 l-to-r

Result is 1 (TRUE) or 0 (FALSE).

Note: Don't confuse equality (==) with assignment (=).

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 20

Special Operators: ++ and --
Changes value of variable before (or after)

its value is used in an expression.

Symbol Operation Usage Precedence Assoc
++ postincrement x++ 2 r-to-l
-- postdecrement x-- 2 r-to-l
++ preincrement ++x 3 r-to-l
<= predecrement --x 3 r-to-l

Pre: Increment/decrement variable before using its value.
Post: Increment/decrement variable after using its value.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 21

Using ++ and --

x = 4;
y = x++;

Results: x = 5, y = 4
(because x is incremented after assignment)

x = 4;
y = ++x;

Results: x = 5, y = 5
(because x is incremented before assignment)

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 22

Practice with Precedence
Assume a=1, b=2, c=3, d=4.

x = a * b + c * d / 2; /* x = 8 */

same as:
x = (a * b) + ((c * d) / 2);

For long or confusing expressions,
use parentheses, because reader might not have
memorized precedence table.

Note: Assignment operator has lowest precedence,
so all the arithmetic operations on the right-hand side
are evaluated first.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 23

Symbol Table
Like assembler, compiler needs to know information
associated with identifiers
in assembler, all identifiers were labels
and information is address

Compiler keeps more information
Name (identifier)
Type
Location in memory
Scope

Name Type Offset Scope

amount
hours
minutes
rate
seconds
time

int
int
int
int
int
int

0
-3
-4
-1
-5
-2

main
main
main
main
main
main

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 24

Local Variable Storage

Local variables are stored in an
activation record, also known as a stack frame.

Symbol table “offset” gives the
distance from the base of the frame.

R5 is the frame pointer – holds address
of the base of the current frame.
A new frame is pushed on the
run-time stack each time a block is entered.
Because stack grows downward,
base is the highest address of the frame,
and variable offsets are <= 0.

second
s

minutes
hours
time
rate

amount
R5

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 25

Allocating Space for Variables
Global data section

All global variables stored here
(actually all static variables)
R4 points to beginning

Run-time stack
Used for local variables
R6 points to top of stack
R5 points to top frame on stack
New frame for each block
(goes away when block exited)

Offset = distance from beginning
of storage area

Global: LDR R1, R4, #4
Local: LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 26

Variables and Memory Locations

In our examples,
a variable is always stored in memory.

When assigning to a variable,
must store to memory location.

A real compiler would perform code optimizations
that try to keep variables allocated in registers.
Why?

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 27

Example: Compiling to LC-3
#include <stdio.h>
int inGlobal;

main()
{
 int inLocal; /* local to main */
 int outLocalA;
 int outLocalB;

 /* initialize */
 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB = %d\n",
 outLocalA, outLocalB);
}

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 28

Example: Symbol Table

main-2intoutLocalB

main-1intoutLocalA

main0intinLocal

global0intinGlobal

ScopeOffsetTypeName

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 29

Example: Code Generation

; main
; initialize variables

 AND R0, R0, #0
 ADD R0, R0, #5 ; inLocal = 5
 STR R0, R5, #0 ; (offset = 0)

 AND R0, R0, #0
 ADD R0, R0, #3 ; inGlobal = 3
 STR R0, R4, #0 ; (offset = 0)

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 30

Example (continued)
; first statement:
; outLocalA = inLocal++ & ~inGlobal;

 LDR R0, R5, #0 ; get inLocal
 ADD R1, R0, #1 ; increment
 STR R1, R5, #0 ; store

 LDR R1, R4, #0 ; get inGlobal
 NOT R1, R1 ; ~inGlobal
 AND R2, R0, R1 ; inLocal & ~inGlobal
 STR R2, R5, #-1 ; store in outLocalA
 ; (offset = -1)

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 31

Example (continued)
; next statement:
; outLocalB = (inLocal + inGlobal)

; - (inLocal - inGlobal);
 LDR R0, R5, #0 ; inLocal

 LDR R1, R4, #0 ; inGlobal
 ADD R0, R0, R1 ; R0 is sum
 LDR R2, R5, #0 ; inLocal
 LDR R3, R5, #0 ; inGlobal
 NOT R3, R3
 ADD R3, R3, #1
 ADD R2, R2, R3 ; R2 is difference
 NOT R2, R2 ; negate
 ADD R2, R2, #1
 ADD R0, R0, R2 ; R0 = R0 - R2
 STR R0, R5, #-2 ; outLocalB (offset = -2)

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 32

Special Operators: +=, *=, etc.

Arithmetic and bitwise operators can be combined
with assignment operator.

Statement Equivalent assignment
x += y; x = x + y;
x -= y; x = x - y;
x *= y; x = x * y;
x /= y; x = x / y;
x %= y; x = x % y;
x &= y; x = x & y;
x |= y; x = x | y;
x ^= y; x = x ^ y;
x <<= y; x = x << y;
x >>= y; x = x >> y;

All have same
precedence and
associativity as =

and associate
right-to-left.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 33

Special Operator: Conditional
Symbol Operation Usage Precedence Assoc

?: conditional x?y:z 16 l-to-r

If x is TRUE (non-zero), result is y;
else, result is z.

Like a MUX, with x as the select signal.

x

y z

1 0

