/*
 *	TetrahedronCollision.java
 *            Don Fussell
 *             11/05/03
 *
 * Derived from Sun's TicktockCollision.java
 *
 * Copyright (c) 1996-2002 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 *
 * - Redistribution in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in
 *   the documentation and/or other materials provided with the
 *   distribution.
 *
 * Neither the name of Sun Microsystems, Inc. or the names of
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
 * EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES
 * SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN
 * OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
 * FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
 * PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
 * LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE,
 * EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 *
 * You acknowledge that Software is not designed,licensed or intended
 * for use in the design, construction, operation or maintenance of
 * any nuclear facility.
 */

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.ColorCube;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;
import javax.vecmath.*;

public class TetrahedronCollision extends Applet {

    private SimpleUniverse u = null;
    
    public BranchGroup createSceneGraph() {
        Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
	// Create the root of the branch graph
	BranchGroup objRoot = new BranchGroup();

        // Create a Transformgroup to scale all objects so they
        // appear in the scene.
        TransformGroup objScale = new TransformGroup();
        Transform3D t3d = new Transform3D();
        t3d.setScale(0.4);
        objScale.setTransform(t3d);
        objRoot.addChild(objScale);

	// Create a bounds for the background and behaviors
	BoundingSphere bounds =
	    new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

	// Set up the background
	Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f);
	Background bg = new Background(bgColor);
	bg.setApplicationBounds(bounds);
	objScale.addChild(bg);

	// Create a transform group node for the tick tock motion
	// and enable the TRANSFORM_WRITE capability so that
	// the tick tock behavior can modify it at runtime.
	TransformGroup tickTock = new TransformGroup();
	tickTock.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
	objScale.addChild(tickTock);

	// Create a Behavior object that will tick tock the
	// system through 180 degrees about the z axis
	Transform3D yAxis1 = new Transform3D();
	yAxis1.rotX(Math.PI/2.0);
	Alpha tickTockAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE |
					Alpha.DECREASING_ENABLE,
					0, 0,
					5000, 2500, 200,
					5000, 2500, 200);

	RotationInterpolator tickTocker =
	    new RotationInterpolator(tickTockAlpha, tickTock, yAxis1,
				     -(float) Math.PI/2.0f,
				      (float) Math.PI/2.0f);
	tickTocker.setSchedulingBounds(bounds);
	tickTock.addChild(tickTocker);

	// Create the positioning and scaling transform group node.
	Transform3D t = new Transform3D();
	t.set(0.3, new Vector3d(0.0, -1.5, 0.0));
	TransformGroup cubePos = new TransformGroup(t);
	tickTock.addChild(cubePos);

	// Create a transform group node to rotate the cube about
	// its y axis and enable the TRANSFORM_WRITE capability so
	// that the rotation behavior can modify it at runtime.
	TransformGroup cubeRotate = new TransformGroup();
	cubeRotate.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
	cubePos.addChild(cubeRotate);

	// Create a Behavior object that will rotate the cube about
	// its y axis.
	Transform3D yAxis2 = new Transform3D();
	Alpha rotationAlpha = new Alpha(-1, 4000);
	RotationInterpolator rotator =
	    new RotationInterpolator(rotationAlpha, cubeRotate);
	rotator.setSchedulingBounds(bounds);
	cubeRotate.addChild(rotator);

	// Add the cube to the scene graph.
	cubeRotate.addChild(new ColorCube());
	
        // Now add in the Tetrahedron

	// Create a transform group to revolve the tetrahedron
	// about the cube's local z axis
	TransformGroup tetraRevolve = new TransformGroup();
	tetraRevolve.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
	cubePos.addChild(tetraRevolve);

	// Create a Behavior object that will revolve
	// the Tetrahedron about the cube.
	Transform3D yAxis3 = new Transform3D();
	yAxis2.rotX(Math.PI/2.0);
	Alpha revolutionAlpha = new Alpha(-1, 2000);
	RotationInterpolator revolver =
	    new RotationInterpolator(revolutionAlpha, tetraRevolve, yAxis2,
                                     0.0f, (float) Math.PI*2.0f);
	revolver.setSchedulingBounds(bounds);
	tetraRevolve.addChild(revolver);

	// This transform group moves the Tetrahedron away
	// from the cube center
	Transform3D t2 = new Transform3D();
	t2.set(0.6, new Vector3d(0.0, 3.0, 0.0));
	TransformGroup orbitalRadius = new TransformGroup(t2);
	tetraRevolve.addChild(orbitalRadius);

	// This transform group rotates the Tetrahedron about its
	// y axis
	TransformGroup tetraRotate = new TransformGroup();
	tetraRotate.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
	orbitalRadius.addChild(tetraRotate);

	// Create a Behavior object that will rotate
	// the Tetrahedron about its y axis.
	Alpha trotationAlpha = new Alpha(-1, 500);
	RotationInterpolator trotator =
	    new RotationInterpolator(trotationAlpha, tetraRotate);
	trotator.setSchedulingBounds(bounds);
	tetraRotate.addChild(trotator);

	// Add the Tetrahedron to the scene graph
	tetraRotate.addChild(new Tetrahedron());

	// Now create a pair of rectangular boxes, each with a collision
	// detection behavior attached.  The behavior will highlight the
	// object when it is in a state of collision.

	Group box1 = createBox(0.3, new Vector3d(-1.3, 0.0, 0.0));
	Group box2 = createBox(0.3, new Vector3d( 1.3, 0.0, 0.0));

	objScale.addChild(box1);
	objScale.addChild(box2);

        // Have Java 3D perform optimizations on this scene graph.
        objRoot.compile();

	return objRoot;
    }


    private Group createBox(double scale, Vector3d pos) {
	// Create a transform group node to scale and position the object.
	Transform3D t = new Transform3D();
	t.set(scale, pos);
	TransformGroup objTrans = new TransformGroup(t);

	// Create a simple shape leaf node and add it to the scene graph
	Shape3D shape = new Box(0.5, 5.0, 1.0);
	objTrans.addChild(shape);

	// Create a new ColoringAttributes object for the shape's
	// appearance and make it writable at runtime.
	Appearance app = shape.getAppearance();
	ColoringAttributes ca = new ColoringAttributes();
	ca.setColor(0.6f, 0.3f, 0.0f);
	app.setCapability(app.ALLOW_COLORING_ATTRIBUTES_WRITE);
	app.setColoringAttributes(ca);

	// Create a new Behavior object that will perform the collision
	// detection on the specified object, and add it into
	// the scene graph.
	CollisionDetector cd = new CollisionDetector(shape);
	BoundingSphere bounds =
	    new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);
	cd.setSchedulingBounds(bounds);

	// Add the behavior to the scene graph
	objTrans.addChild(cd);

	return objTrans;
    }


    public TetrahedronCollision() {
    }

    public void init() {
	setLayout(new BorderLayout());
        GraphicsConfiguration config =
           SimpleUniverse.getPreferredConfiguration();

        Canvas3D c = new Canvas3D(config);
	add("Center", c);

	// Create a simple scene and attach it to the virtual universe
	BranchGroup scene = createSceneGraph();
	u = new SimpleUniverse(c);

        // This will move the ViewPlatform back a bit so the
        // objects in the scene can be viewed.
        u.getViewingPlatform().setNominalViewingTransform();

	u.addBranchGraph(scene);
    }

    public void destroy() {
	u.cleanup();
    }

    //
    // The following allows TetrahedronCollision to be run as an application
    // as well as an applet
    //
    public static void main(String[] args) {
	new MainFrame(new TetrahedronCollision(), 700, 700);
    }
}

