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C H A P T E R 4

Attributes of Graphics Primitives

One frame from a computer-generated cartoon illustrating a variety of object
colors and other attributes. (Courtesy of SOFTIMAGE, Inc.)

172



hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 17:6

4-1 OpenGL State Variables
4-2 Color and Gray Scale
4-3 OpenGL Color Functions
4-4 Point Attributes
4-5 Line Attributes
4-6 Curve Attributes
4-7 OpenGL Point-Attribute Functions
4-8 OpenGL Line-Attribute Functions
4-9 Fill-Area Attributes

4-10 General Scan-Line Polygon-Fill
Algorithm

4-11 Scan-Line Fill of Convex Polygons
4-12 Scan-Line Fill for Regions with

Curved Boundaries

4-13 Fill Methods for Areas with
Irregular Boundaries

4-14 OpenGL Fill-Area Attribute
Functions

4-15 Character Attributes
4-16 OpenGL Character-Attribute

Functions
4-17 Antialiasing
4-18 OpenGL Antialiasing Functions
4-19 OpenGL Query Functions
4-20 OpenGL Attribute Groups
4-21 Summary

I
n general, a parameter that affects the way a primitive is to be
displayed is referred to as an attribute parameter. Some attribute
parameters, such as color and size, determine the fundamental char-
acteristics of a primitive. Other attributes specify how the primitive
is to be displayed under special conditions. Examples of special-

condition attributes are the options such as visibility or detectability within an
interactive object-selection program. These special-condition attributes are ex-
plored in later chapters. Here, we treat only those attributes that control the basic
display properties of graphics primitives, without regard for special situations.
For example, lines can be dotted or dashed, fat or thin, and blue or orange. Areas
might be filled with one color or with a multicolor pattern. Text can appear read-
ing from left to right, slanted diagonally across the screen, or in vertical columns.
Individual characters can be displayed in different fonts, colors, and sizes. And
we can apply intensity variations at the edges of objects to smooth out the raster
stair-step effect.

One way to incorporate attribute options into a graphics package is to extend
the parameter list associated with each graphics-primitive function to include
the appropriate attribute values. A line-drawing function, for example, could
contain additional parameters to set the color, width, and other properties of
a line. Another approach is to maintain a system list of current attribute values.
Separate functions are then included in the graphics package for setting the current
values in the attribute list. To generate a primitive, the system checks the relevant
attributes and invokes the display routine for that primitive using the current
attribute settings. Some graphics packages use a combination of methods for
setting attribute values, and other libraries, including OpenGL, assign attributes
using separate functions that update a system attribute list.

A graphics system that maintains a list for the current values of attributes and
other parameters is referred to as a state system or state machine. Attributes of
output primitives and some other parameters, such as the current frame-buffer
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position, are referred to as state variables or state parameters. When we assign a
value to one or more state parameters, we put the system into a particular state.
And that state remains in effect until we change the value of a state parameter.

4-1 OpenGL STATE VARIABLES

Attribute values and other parameter settings are specified with separate func-
tions that define the current OpenGL state. The state parameters in OpenGL in-
clude color and other primitive attributes, the current matrix mode, the elements
of the model-view matrix, the current position for the frame buffer, and the pa-
rameters for the lighting effects in a scene. All OpenGL state parameters have
default values, which remain in effect until new values are specified. At any time,
we can query the system to determine the current value of a state parameter. In
the following sections of this chapter, we discuss only the attribute settings for
output primitives. Other state parameters are examined in later chapters.

All graphics primitives in OpenGL are displayed with the attributes in the
current state list. Changing one or more of the attribute settings affects only those
primitives that are specified after the OpenGL state is changed. Primitives that
were defined before the state change retain their attributes. Thus we can display a
green line, change the current color to red, and define another line segment. Both
the green line and the red line will then be displayed. Also, some OpenGL state val-
ues can be specified withinglBegin/glEndpairs, along with the coordinate val-
ues, so that parameter settings can vary from one coordinate position to another.

4-2 COLOR AND GRAY SCALE

A basic attribute for all primitives is color. Various color options can be made
available to a user, depending on the capabilities and design objectives of a par-
ticular system. Color options can be specified numerically or selected from menus
or displayed slider scales. For a video monitor, these color codes are then con-
verted to intensity-level settings for the electron beams. With color plotters, the
codes might control ink-jet deposits or pen selections.

RGB Color Components
In a color raster system, the number of color choices available depends on the
amount of storage provided per pixel in the frame buffer. Also, color information
can be stored in the frame buffer in two ways: We can store RGB color codes
directly in the frame buffer, or we can put the color codes into a separate table
and use the pixel locations to store index values referencing the color-table entries.
With the direct storage scheme, whenever a particular color code is specified in
an application program, that color information is placed in the frame buffer at the
location of each component pixel in the output primitives to be displayed in that
color. A minimum number of colors can be provided in this scheme with 3 bits
of storage per pixel, as shown in Table 4-1. Each of the three bit positions is used
to control the intensity level (either on or off, in this case) of the corresponding
electron gun in an RGB monitor. The leftmost bit controls the red gun, the middle
bit controls the green gun, and the rightmost bit controls the blue gun. Adding
more bits per pixel to the frame buffer increases the number of color choices we
have. With 6 bits per pixel, 2 bits can be used for each gun. This allows four
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TABLE 4-1

THE EIGHT RGB COLOR CODES FOR A THREE-BIT PER PIXEL FRAME BUFFER
Stored Color Values

in Frame Buffer

Color Code RED GREEN BLUE Displayed Color

0 0 0 0 Black
1 0 0 1 Blue
2 0 1 0 Green
3 0 1 1 Cyan
4 1 0 0 Red
5 1 0 1 Magenta
6 1 1 0 Yellow
7 1 1 1 White

different intensity settings for each of the three color guns, and a total of 64 color
options are available for each screen pixel. As more color options are provided,
the storage required for the frame buffer also increases. With a resolution of 1024
by 1024, a full-color (24-bit per pixel) RGB system needs 3 megabytes of storage
for the frame buffer.

Color tables are an alternate means for providing extended color capabilities
to a user without requiring large frame buffers. At one time, this was an impor-
tant consideration. But today, hardware costs have decreased dramatically and
extended color capabilities are fairly common, even in low-end personal com-
puter systems. So most of our examples will simply assume that RGB color codes
are stored directly in the frame buffer.

Color Tables
Figure 4-1 illustrates a possible scheme for storing color values in a color lookup
table (or color map). Sometimes a color table is referred to as a video lookup table.
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FIGURE 4-1 A color lookup table with 24 bits per entry that is accessed from a frame
buffer with 8 bits per pixel. A value of 196 stored at pixel position (x, y) references the
location in this table containing the hexadecimal value 0x0821 (a decimal value of 2081).
Each 8-bit segment of this entry controls the intensity level of one of the three electron
guns in an RGB monitor.
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Values stored in the frame buffer are now used as indices into the color table. In
this example, each pixel can reference any one of the 256 table positions, and each
entry in the table uses 24 bits to specify an RGB color. For the hexadecimal color
code 0x0821, a combination green-blue color is displayed for pixel location (x, y).
Systems employing this particular lookup table allow a user to select any 256 col-
ors for simultaneous display from a palette of nearly 17 million colors. Compared
to a full-color system, this scheme reduces the number of simultaneous colors
that can be displayed, but it also reduces the frame-buffer storage requirement to
1 megabyte. Multiple color tables are sometimes available for handling special-
ized rendering applications, such as antialiasing, and they are used with systems
that contain more than one color output device.

A color table can be useful in a number of applications, and it can provide
a “reasonable” number of simultaneous colors without requiring large frame
buffers. For most applications, 256 or 512 different colors are sufficient for a sin-
gle picture. Also, table entries can be changed at any time, allowing a user to be
able to experiment easily with different color combinations in a design, scene,
or graph without changing the attribute settings for the graphics data structure.
When a color value is changed in the color table, all pixels with that color index
immediately change to the new color. Without a color table, we can only change
the color of a pixel by storing the new color at that frame-buffer location. Similarly,
data-visualization applications can store values for some physical quantity, such
as energy, in the frame buffer and use a lookup table to experiment with various
color combinations without changing the pixel values. And in visualization and
image-processing applications, color tables are a convenient means for setting
color thresholds so that all pixel values above or below a specified threshold can
be set to the same color. For these reasons, some systems provide both capabilities
for storing color information. A user can then elect either to use color tables or to
store color codes directly in the frame buffer.

Gray Scale
Since color capabilities are now common in computer-graphics systems, we use
RGB color functions to set shades of gray, or gray scale, in an application pro-
gram. When an RGB color setting specifies an equal amount of red, green, and
blue, the result is some shade of gray. Values close to 0 for the color components
produce dark gray, and higher values near 1.0 produce light gray. Applications
for gray-scale display methods include enhancing black-and-white photographs
and generating visualization effects.

Other Color Parameters
In addition to an RGB specification, other three-component color representations
are useful in computer-graphics applications. For example, color output on print-
ers is described with cyan, magenta, and yellow color components, and color
interfaces sometimes use parameters such as lightness and darkness to choose a
color. Also, color, and light in general, is a complex subject, and many terms and
concepts have been devised in the fields of optics, radiometry, and psychology
to describe the various aspects of light sources and lighting effects. Physically,
we can describe a color as electromagnetic radiation with a particular frequency
range and energy distribution, but then there are also the characteristics of our
perception of the color. Thus, we use the physical term intensity to quantify the
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amount of light energy radiating in a particular direction over a period of time,
and we use the psychological term luminance to characterize the perceived bright-
ness of the light. We discuss these terms and other color concepts in greater detail
when we consider methods for modeling lighting effects (Chapter 10) and the
various models for describing color (Chapter 12).

4-3 OpenGL COLOR FUNCTIONS

In the example program at the end of Chapter 2, we introduced a few OpenGL
color routines. We used one function to set the color for the display window, and
we used another function to specify a color for the straight-line segment. Also,
we set the color display mode to RGB with the statement

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The first parameter in the argument list states that we are using a single buffer for
the frame buffer, and the second parameter puts us into the RGB (or RGBA) mode,
which is the default color mode. We can use either GLUT RGB or GLUT RGBA to
select this color mode. If we wanted to specify colors by an index into a color
table, we would replace the OpenGL constant GLUT RGB with GLUT INDEX.

The OpenGL RGB and RGBA Color Modes
Most color settings for OpenGL primitives are made in the RGB mode, which
is basically the same as the RGBA mode. The only difference between RGB and
RGBA is whether or not we are employing the alpha value for color blending.
When we specify a particular set of color values for primitives, we define the
color state of OpenGL. The current color is applied to all subsequently defined
primitives until we change the color settings. A new color specification affects
only the objects we define after the color change.

In RGB mode, we specify values for the red, green, and blue components of a
color. As we noted in Section 2-9, the fourth color parameter, the alpha coefficient,
is optional, and a four-dimensional color specification is called the RGBA color.
This fourth color parameter can be used to control color blending for overlapping
primitives. An important application of color blending is in the simulation of
transparency effects. For these calculations, the value of alpha corresponds to
a transparency (or, opacity) setting. In the RGB (or RGBA) mode, we select the
current color components with the function:

glColor* (colorComponents);

Suffix codes are similar to those for the glVertex function. We use a code of
either 3 or 4 to specify the RGB or RGBA mode along with the numerical data-type
code and an optional vector suffix. The suffix codes for the numerical data types
are b (byte), i (integer), s (short), f (float), and d (double), as well as unsigned
numerical values. Floating-point values for the color components are in the range
from 0.0 to 1.0, and the default color components for glColor, including the
alpha value, are (1.0, 1.0, 1.0, 1.0), which sets the RGB color to white and the alpha
value to 1.0. As an example, the following statement uses floating-point values
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in RGB mode to set the current color for primitives to cyan (a combination of the
highest intensities for green and blue).

glColor3f (0.0, 1.0, 1.0);

Using an array specification for the three color components, we could set the color
in the above example as

glColor3fv (colorArray);

An OpenGL color selection can be assigned to individual point positions within
glBegin/glEnd pairs.

Integer specifications for the color components depend on the capabilities of
the system. For a full-color system, which allocates 8 bits per pixel (256 levels for
each color component), integer color values range from 0 to 255. The correspond-
ing floating-point values for the color components would then be 0.0, 1.0/255.0,
2.0/255.0, . . . , 255.0/255.0 = 1.0. With a full-color system, we can specify the cyan
color in the previous example using integer values for the color components as

glColor3i (0, 255, 255);

Frame-buffer positions actually store integer values, so specifying the color values
as integers avoids the conversions necessary when floating-point values are given.
A specified color value in any format is scaled to an integer within the range of
the number of bits available on a particular system.

OpenGL Color-Index Mode
Color specifications in OpenGL can also be given in the color-index mode, which
references values in a color table. Using this mode, we set the current color by
specifying an index into a color table:

glIndex* (colorIndex);

ParametercolorIndex is assigned a nonnegative integer value. This index value
is then stored in the frame-buffer positions for subsequently specified primitives.
We can specify the color index in any of the following data types: unsigned byte,
integer, or floating point. Data type for parameter colorIndex is indicated with
a suffix code of ub, s, i, d, or f, and the number of index positions in a color table
is always a power of 2, such as 256 or 1024. The number of bits available at each
table position depends on the hardware features of the system. As an example of
specifying a color in index mode, the following statement sets the current color
index to the value 196.

glIndexi (196);

All primitives defined after this statement will be assigned the color stored at that
position in the color table, until the current color is changed.

There are no functions provided in the core OpenGL library for loading values
into a color-lookup table, because table-processing routines are part of a window
system. Also, some window systems support multiple color tables and full color,
while other systems may have only one color table and limited color choices.
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However, we do have a GLUT routine that interacts with a window system to set
color specifications into a table at a given index position:

glutSetColor (index, red, green, blue);

Color parameters red, green, and blue are assigned floating-point values in
the range from 0.0 to 1.0. This color is then loaded into the table at the position
specified by the value of parameter index.

Routines for processing three other color tables are provided as extensions
to the OpenGL core library. These routines are part of the Imaging Subset of
OpenGL. Color values stored in these tables can be used to modify pixel values as
they are processed through various buffers. Some examples of using these tables
are setting camera focusing effects, filtering out certain colors from an image,
enhancing certain intensities or making brightness adjustments, converting a
gray-scale photograph to color, and antialiasing a display. And we can use these
tables to change color models; that is, we can change RGB colors to another spec-
ification using three other “primary” colors (such as cyan, magenta, and yellow).

A particular color table in the Imaging Subset of OpenGL is activated
with the glEnable function using one of the table names: GL COLOR TABLE,
GL POST CONVOLUTION COLOR TABLE, or GL POST COLOR MATRIX
COLOR TABLE. We can then use routines in the Imaging Subset to select a partic-
ular color table, set color-table values, copy table values, or specify which com-
ponent of a pixel’s color we want to change and how we want to change it.

OpenGL Color Blending
In many applications, it is convenient to be able to combine the colors of over-
lapping objects or to blend an object with the background. Some examples are
simulating a paintbrush effect, forming a composite image of two or more pic-
tures, modeling transparency effects, and antialiasing the objects in a scene. Most
graphics packages provide methods for producing various color-mixing effects,
and these procedures are called color-blending functions or image-compositing
functions. In OpenGL, the colors of two objects can be blended by first loading
one object into the frame buffer, then combining the color of the second object
with the frame-buffer color. The current frame-buffer color is referred to as the
OpenGL destination color and the color of the second object is the OpenGL source
color. Blending methods can be performed only in RGB or RGBA mode. To apply
color blending in an application, we first need to activate this OpenGL feature
using the following function.

glEnable (GL_BLEND);

And we turn off the color-blending routines in OpenGL with

glDisable (GL_BLEND);

If color blending is not activated, an object’s color simply replaces the frame-buffer
contents at the object’s location.

Colors can be blended in a number of different ways, depending on the effects
we want to achieve, and we generate different color effects by specifying two sets
of blending factors. One set of blending factors is for the current object in the frame
buffer (the “destination object”), and the other set of blending factors is for the
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incoming (“source”) object. The new, blended color that is then loaded into the
frame buffer is calculated as

(Sr Rs + Dr Rd , SgGs + DgGd , Sb Bs + Db Bd , Sa As + Da Ad) (4-1)

where the RGBA source color components are (Rs , Gs , Bs , As), the destina-
tion color components are (Rd , Gd , Bd , Ad), the source blending factors are
(Sr , Sg , Sb , Sa ), and the destination blending factors are (Dr , Dg , Db , Da ). Com-
puted values for the combined color components are clamped to the range from
0.0 to 1.0. That is, any sum greater than 1.0 is set to the value 1.0, and any sum
less than 0.0 is set to 0.0.

We select the blending-factor values with the OpenGL function

glBlendFunc (sFactor, dFactor);

Parameters sFactor and dFactor, the source and destination factors, are each
assigned an OpenGL symbolic constant specifying a predefined set of four blend-
ing coefficients. For example, the constant GL ZER0 yields the blending factors
(0.0, 0.0, 0.0, 0.0) andGL ONEgives us the set (1.0, 1.0, 1.0, 1.0). We could set all four
blending factors either to the destination alpha value or to the source alpha value
using GL DST ALPHA or GL SRC ALPHA. Other OpenGL constants that are
available for setting the blending factors include GL ONE MINUS DST ALPHA,
GL ONE MINUS SRC ALPHA, GL DST COLOR, and GL SRC COLOR. These
blending factors are often used for simulating transparency, and they are dis-
cussed in greater detail in Section 10-19. The default value for parametersFactor
is GL ONE, and the default value for parameter dFactor is GL ZERO. Hence, the
default values for the blending factors result in the incoming color values replac-
ing the current values in the frame buffer.

Additional functions have been included in an OpenGL extension called the
Imaging Subset. These functions include a routine to set a blending color and
another routine to specify a blending equation.

OpenGL Color Arrays
We can also specify color values for a scene in combination with the coordinate
values in a vertex array (Section 3-17). This can be done either in RGB mode or
in color-index mode. As with vertex arrays, we must first activate the color-array
features of OpenGL:

glEnableClientState (GL_COLOR_ARRAY);

Then, for RGB color mode, we specify the location and format of the color com-
ponents with

glColorPointer (nColorComponents, dataType, offset, colorArray);

Parameter nColorComponents is assigned a value of either 3 or 4, depend-
ing upon whether we are listing RGB or RGBA color components in the array
colorArray. An OpenGL symbolic constant such as GL INT or GL FLOAT is
assigned to parameter dataType to indicate the data type for the color values.
For a separate color array, we can assign the value 0 to parameter offset. But if
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we combine color data with vertex data in the same array, the offset value is
the number of bytes between each set of color components in the array.

As an example of using color arrays, we can modify the vertex-array example
in Section 3-17 to include a color array. The following code fragment sets the color
of all vertices on the front face of the cube to blue, and all vertices of the back face
are assigned the color red.

typedef GLint vertex3 [3], color3 [3];

vertex3 pt [8] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0},
{1, 1, 0}, {0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

color3 hue [8] = { {1, 0, 0}, {1, 0, 0}, {0, 0, 1},
{0, 0, 1}, {1, 0, 0}, {1, 0, 0}, {0, 0, 1}, {0, 0, 1} };

glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);

glVertexPointer (3, GL_INT, 0, pt);
glColorPointer (3, GL_INT, 0, hue);

We can even stuff both the colors and the vertex coordinates into one inter-
laced array. Each of the pointers would then reference the single interlaced array,
with an appropriate offset value. For example,

static GLint hueAndPt [ ] =
{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1};

glVertexPointer (3, GL_INT, 6*sizeof(GLint), hueAndPt [3]);
glColorPointer (3, GL_INT, 6*sizeof(GLint), hueAndPt [0]);

The first three elements of this array specify an RGB color value, the next three
elements specify a set of (x, y, z) vertex coordinates, and this pattern continues to
the last color-vertex specification. We set the offset parameter to the number of
bytes between successive color, or vertex, values, which is 6*sizeof(GLint)
for both. Color values start at the first element of the interlaced array, which
is hueAndPt [0], and vertex values start at the fourth element, which is
hueAndPt [3].

Since a scene generally contains several objects, each with multiple planar
surfaces, OpenGL provides a function in which we can specify all the vertex and
color arrays at once, as well as other types of information. If we change the color
and vertex values in the above example to floating point, we use this function in
the form

glInterleavedArrays (GL_C3F_V3F, 0, hueAndPt);

The first parameter is an OpenGL constant that indicates three-element floating-
point specifications for both color (C) and vertex coordinates (V). And the elements
of array hueAndPt are to be interlaced with the color for each vertex listed before
the coordinates. This function also automatically enables both vertex and color
arrays.
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In color-index mode, we define an array of color indices with

glIndexPointer (type, stride, colorIndex);

Color indices are listed in the array colorIndex and the type and stride
parameters are the same as in glColorPointer. No size parameter is needed
since color-table indices are specified with a single value.

Other OpenGL Color Functions
In our first programming example in Section 2-9, we introduced the following
function that selects RGB color components for a display window.

glClearColor (red, green, blue, alpha);

Each color component in the designation (red, green, and blue), as well as the
alpha parameter, is assigned a floating-point value in the range from 0.0 to 1.0.
The default value for all four parameters is 0.0, which produces the color black.
If each color component is set to 1.0, the clear color is white. Shades of gray are
obtained with identical values for the color components between 0.0 and 1.0.
The fourth parameter, alpha, provides an option for blending the previous color
with the current color. This can occur only if we activate the blending feature of
OpenGL; color blending cannot be performed with values specified in a color
table.

As we noted in Section 3-19, there are several color buffers in OpenGL that
can be used as the current refresh buffer for displaying a scene, and the
glClearColor function specifies the color for all the color buffers. We then
apply the clear color to the color buffers with the command:

glClear (GL_COLOR_BUFFER_BIT);

We can also use theglClear function to set initial values for other buffers that are
available in OpenGL. These are the accumulation buffer, which stores blended-color
information, the depth buffer, which stores depth values (distances from the view-
ing position) for objects in a scene, and the stencil buffer, which stores information
to define the limits of a picture.

In color-index mode, we use the following function (instead of glClear-
Color) to set the display-window color.

glClearIndex (index);

The window background color is then assigned the color that is stored at position
index in the color table. And the window is displayed in this color when we
issue the glClear (GL COLOR BUFFER BIT) function.

Many other color functions are available in the OpenGL library for dealing
with a variety of tasks, such as changing color models, setting lighting effects for
a scene, specifying camera effects, and rendering the surfaces of an object. We
examine other color functions as we explore each of the component processes in
a computer-graphics system. For now, we limit our discussion to those functions
relating to color specifications for graphics primitives.
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4-4 POINT ATTRIBUTES

Basically, we can set two attributes for points: color and size. In a state system,
the displayed color and size of a point is determined by the current values stored
in the attribute list. Color components are set with RGB values or an index into a
color table. For a raster system, point size is an integer multiple of the pixel size,
so that a large point is displayed as a square block of pixels.

4-5 LINE ATTRIBUTES

A straight-line segment can be displayed with three basic attributes: color, width,
and style. Line color is typically set with the same function for all graphics prim-
itives, while line width and line style are selected with separate line functions.
Additionally, lines may be generated with other effects, such as pen and brush
strokes.

Line Width
Implementation of line-width options depends on the capabilities of the output
device. A heavy line could be displayed on a video monitor as adjacent parallel
lines, while a pen plotter might require pen changes to draw a thick line.

For raster implementations, a standard-width line is generated with single
pixels at each sample position, as in the Bresenham algorithm. Thicker lines are
displayed as positive integer multiples of the standard line by plotting additional
pixels along adjacent parallel line paths. If a line has slope magnitude less than
or equal to 1.0, we can modify a line-drawing routine to display thick lines by
plotting a vertical span of pixels in each column (x position) along the line. The
number of pixels to be displayed in each column is set equal to the integer value
of the line width. In Fig. 4-2 we display a double-width line by generating a
parallel line above the original line path. At each x sampling position, we calculate
the corresponding y coordinate and plot pixels at screen coordinates (x, y) and
(x, y + 1). We could display lines with a width of 3 or greater by alternately plotting
pixels above and below the single-width line path.

With a line slope greater than 1.0 in magnitude, we can display thick lines
using horizontal spans, alternately picking up pixels to the right and left of the
line path. This scheme is demonstrated in Fig. 4-3, where a line segment with a
width of 4 is plotted using multiple pixels across each scan line. Similarly, a thick
line with slope less than or equal to 1.0 can be displayed using vertical pixel spans.
We can implement this procedure by comparing the magnitudes of the horizon-
tal and vertical separations (#x and #y) of the line endpoints. If |#x| ≥ |#y|,

FIGURE 4-2 A
double-wide raster line with
slope |m| < 1.0 generated
with vertical pixel spans.
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FIGURE 4-3 A raster line
with slope |m| > 1.0 and a line
width of 4 plotted using
horizontal pixel spans.

FIGURE 4-4 Thick lines
drawn with (a) butt caps,
(b) round caps, and
(c) projecting square caps. (c)(b)(a)

pixels are replicated along columns. Otherwise, multiple pixels are plotted across
rows.

Although thick lines are generated quickly by plotting horizontal or vertical
pixel spans, the displayed width of a line (measured perpendicular to the line
path) is dependent on its slope. A 45◦ line will be displayed thinner by a factor of
1/

√
2 compared to a horizontal or vertical line plotted with the same-length pixel

spans.
Another problem with implementing width options using horizontal or ver-

tical pixel spans is that the method produces lines whose ends are horizontal
or vertical regardless of the slope of the line. This effect is more noticeable with
very thick lines. We can adjust the shape of the line ends to give them a better
appearance by adding line caps (Fig. 4-4). One kind of line cap is the butt cap,
which has square ends that are perpendicular to the line path. If the specified
line has slope m, the square ends of the thick line have slope −1/m. Each of the
component parallel lines is then displayed between the two perpendicular lines
at each end of the specified line path. Another line cap is the round cap obtained
by adding a filled semicircle to each butt cap. The circular arcs are centered at the
middle of the thick line and have a diameter equal to the line thickness. A third
type of line cap is the projecting square cap. Here, we simply extend the line and
add butt caps that are positioned one-half of the line width beyond the specified
endpoints.

Other methods for producing thick lines include displaying the line as a filled
rectangle or generating the line with a selected pen or brush pattern, as discussed
in the next section. To obtain a rectangle representation for the line boundary, we
calculate the position of the rectangle vertices along perpendiculars to the line
path so that the rectangle vertex coordinates are displaced from the original line-
endpoint positions by one-half the line width. The rectangular line then appears
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(a) (b) (c)

FIGURE 4-5 Thick line
segments connected with a
miter join (a), a round join (b),
and a bevel join (c).

as in Fig. 4-4 (a). We could add round caps to the filled rectangle, or we could
extend its length to display projecting square caps.

Generating thick polylines requires some additional considerations. In gen-
eral, the methods we have considered for displaying a single line segment will
not produce a smoothly connected series of line segments. Displaying thick poly-
lines using horizontal and vertical pixel spans, for example, leaves pixel gaps at
the boundaries between line segments with different slopes where there is a shift
from horizontal pixel spans to vertical spans. We can generate thick polylines that
are smoothly joined at the cost of additional processing at the segment endpoints.
Figure 4-5 shows three possible methods for smoothly joining two line segments.
A miter join is accomplished by extending the outer boundaries of each of the two
line segments until they meet. A round join is produced by capping the connection
between the two segments with a circular boundary whose diameter is equal to
the line width. And a bevel join is generated by displaying the line segments with
butt caps and filling in the triangular gap where the segments meet. If the angle
between two connected line segments is very small, a miter join can generate a
long spike that distorts the appearance of the polyline. A graphics package can
avoid this effect by switching from a miter join to a bevel join when, for example,
the angle between any two consecutive segments is small.

Line Style
Possible selections for the line-style attribute include solid lines, dashed lines, and
dotted lines. We modify a line-drawing algorithm to generate such lines by setting
the length and spacing of displayed solid sections along the line path. With many
graphics packages, we can select the length of both the dashes and the inter-dash
spacing.

Raster line algorithms display line-style attributes by plotting pixel spans. For
dashed, dotted, and dot-dashed patterns, the line-drawing procedure outputs
sections of contiguous pixels along the line path, skipping over a number of
intervening pixels between the solid spans. Pixel counts for the span length and
inter-span spacing can be specified in a pixel mask, which is a pattern of binary
digits indicating which positions to plot along the line path. The linear mask
11111000, for instance, could be used to display a dashed line with a dash length of
five pixels and an inter-dash spacing of three pixels. Pixel positions corresponding
to the 1 bits are assigned the current color, and pixel positions corresponding to
the 0 bits are displayed in the background color.

(a)

(b)

FIGURE 4-6 Unequal
length dashes displayed with
the same number of pixels.

Plotting dashes with a fixed number of pixels results in unequal length dashes
for different line orientations, as illustrated in Fig. 4-6. Both dashes shown are
plotted with four pixels but the diagonal dash is longer by a factor of

√
2. For

precision drawings, dash lengths should remain approximately constant for any
line orientation. To accomplish this, we could adjust the pixel counts for the solid
spans and inter-span spacing according to the line slope. In Fig. 4-6, we can display
approximately equal length dashes by reducing the diagonal dash to three pixels.
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Another method for maintaining dash length is to treat dashes as individual line
segments. Endpoint coordinates for each dash are located and passed to the line
routine, which then calculates pixel positions along the dash path.

Pen and Brush Options
With some packages, particularly painting and drawing systems, we can directly
select different pen and brush styles. Options in this category include shape, size,
and pattern for the pen or brush. Some example pen and brush shapes are given
in Fig. 4-7. These shapes can be stored in a pixel mask that identifies the array of
pixel positions that are to be set along the line path. For example, a rectangular pen
could be implemented with the mask shown in Fig. 4-8 by moving the center (or
one corner) of the mask along the line path, as in Fig. 4-9. To avoid setting pixels
more than once in the frame buffer, we can simply accumulate the horizontal
spans generated at each position of the mask and keep track of the beginning and
ending x positions for the spans across each scan line.

Lines generated with pen (or brush) shapes can be displayed in various widths
by changing the size of the mask. For example, the rectangular pen line in Fig. 4-9
could be narrowed with a 2 by 2 rectangular mask or widened with a 4 by 4 mask.
Also, lines can be displayed with selected patterns by superimposing the pattern
values onto the pen or brush mask.

FIGURE 4-7 Pen and brush shapes for line display.
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(a) (b)

Line
Path

1
1
1

1
1
1

1
1
1

FIGURE 4-8 A pixel mask (a) for a rectangular
pen, and the associated array of pixels (b) displayed
by centering the mask over a specified pixel position.

FIGURE 4-9 Generating a line with the
pen shape of Fig. 4-8.

4-6 CURVE ATTRIBUTES

Parameters for curve attributes are the same as those for straight-line segments.
We can display curves with varying colors, widths, dot-dash patterns, and avail-
able pen or brush options. Methods for adapting curve-drawing algorithms to
accommodate attribute selections are similar to those for line drawing.

Raster curves of various widths can be displayed using the method of hor-
izontal or vertical pixel spans. Where the magnitude of the curve slope is less
than or equal to 1.0, we plot vertical spans; where the slope magnitude is greater
than 1.0, we plot horizontal spans. Figure 4-10 demonstrates this method for dis-
playing a circular arc of width 4 in the first quadrant. Using circle symmetry, we
generate the circle path with vertical spans in the octant from x = 0 to x = y,
and then reflect pixel positions about the line y = x to obtain the remainder of
the curve shown. Circle sections in the other quadrants are obtained by reflecting
pixel positions in the first quadrant about the coordinate axes. The thickness of
curves displayed with this method is again a function of curve slope. Circles,
ellipses, and other curves will appear thinnest where the slope has a magni-
tude of 1.

Another method for displaying thick curves is to fill in the area between two
parallel curve paths, whose separation distance is equal to the desired width. We
could do this using the specified curve path as one boundary and setting up the
second boundary either inside or outside the original curve path. This approach,
however, shifts the original curve path either inward or outward, depending on
which direction we choose for the second boundary. We can maintain the original
curve position by setting the two boundary curves at a distance of one-half the
width on either side of the specified curve path. An example of this approach is
shown in Figure 4-11 for a circle segment with radius 16 and a specified width
of 4. The boundary arcs are then set at a separation distance of 2 on either side
of the radius of 16. To maintain the proper dimensions of the circular arc, as
discussed in Section 3-13, we can set the radii for the concentric boundary arcs at
r = 14 and r = 17. Although this method is accurate for generating thick circles,
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FIGURE 4-10 A circular arc of width 4
plotted with either vertical or horizontal pixel
spans, depending on the slope.

17

14

FIGURE 4-11 A circular arc of width 4
and radius 16 displayed by filling the
region between two concentric arcs.

it provides, in general, only an approximation to the true area of other thick curves.
For example, the inner and outer boundaries of a fat ellipse generated with this
method do not have the same foci.

The pixel masks discussed for implementing line-style options could also
be used in raster curve algorithms to generate dashed or dotted patterns. For
example, the mask 11100 produces the dashed circle shown in Figure 4-12. We can
generate the dashes in the various octants using circle symmetry, but we must shift
the pixel positions to maintain the correct sequence of dashes and spaces as we
move from one octant to the next. Also, as in straight-line algorithms, pixel masks
display dashes and inter-dash spaces that vary in length according to the slope
of the curve. If we want to display constant length dashes, we need to adjust the
number of pixels plotted in each dash as we move around the circle circumference.
Instead of applying a pixel mask with constant spans, we plot pixels along equal
angular arcs to produce equal-length dashes.

Pen (or brush) displays of curves are generated using the same techniques
discussed for straight-line segments. We replicate a pen shape along the line path,
as illustrated in Figure 4-13 for a circular arc in the first quadrant. Here, the center
of the rectangular pen is moved to successive curve positions to produce the
curve shape shown. Curves displayed with a rectangular pen in this manner will
be thicker where the magnitude of the curve slope is 1. A uniform curve thickness
can be displayed by rotating the rectangular pen to align it with the slope direction
as we move around the curve or by using a circular pen shape. Curves drawn with
pen and brush shapes can be displayed in different sizes and with superimposed
patterns or simulated brush strokes.

Painting and drawing programs allow pictures to be constructed interactively
by using a pointing device, such as a stylus and a graphics tablet, to sketch vari-
ous curve shapes. Some examples of such curve patterns are shown in Fig. 4-14.
An additional pattern option that can be provided in a paint package is the dis-
play of simulated brush strokes. Figure 4-15 illustrates some patterns that can be
produced by modeling different types of brush strokes.
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FIGURE 4-12 A dashed circular arc
displayed with a dash span of 3 pixels
and an inter-dash spacing of 2 pixels.

FIGURE 4-13 A circular arc displayed
with a rectangular pen.

FIGURE 4-14 Curved lines
drawn with a paint program
using various shapes and
patterns. From left to right, the
brush shapes are square, round,
diagonal line, dot pattern, and
faded airbrush.

FIGURE 4-15 A daruma doll, a symbol of good
fortune in Japan, drawn by computer artist Koichi
Kozaki using a paintbrush system. Daruma dolls
actually come without eyes. One eye is painted in when
a wish is made, and the other is painted in when the
wish comes true. (Courtesy of Wacom Technology, Corp.)

4-7 OpenGL POINT-ATTRIBUTE FUNCTIONS

The displayed color of a designated point position is controlled by the current
color values in the state list. And a color is specified with either the glColor
function or the glIndex function.

We set the size for an OpenGL point with

glPointSize (size);

and the point is then displayed as a square block of pixels. Parameter size is
assigned a positive floating-point value, which is rounded to an integer (unless
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the point is to be antialiased). The number of horizontal and vertical pixels in
the display of the point is determined by parameter size. Thus a point size
of 1.0 displays a single pixel, and a point size of 2.0 displays a 2 by 2 pixel array.
If we activate the antialiasing features of OpenGL, the size of a displayed block
of pixels will be modified to smooth the edges. The default value for point size
is 1.0.

Attribute functions may be listed inside or outside of aglBegin/glEndpair.
For example, the following code segment plots three points in varying colors and
sizes. The first is a standard-size red point, the second is a double-size green point,
and the third is a triple-size blue point.

glColor3f (1.0, 0.0, 0.0);
glBegin (GL_POINTS);

glVertex2i (50, 100);
glPointSize (2.0);
glColor3f (0.0, 1.0, 0.0);
glVertex2i (75, 150);
glPointSize (3.0);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (100, 200);

glEnd ( );

4-8 OpenGL LINE-ATTRIBUTE FUNCTIONS

We can control the appearance of a straight-line segment in OpenGL with three
attribute settings: line color, line width, and line style. We have already seen how to
make a color selection, and OpenGL provides a function for setting the width of a
line and another function for specifying a line style, such as a dashed or dotted line.

OpenGL Line-Width Function
Line width is set in OpenGL with the function

glLineWidth (width);

We assign a floating-point value to parameter width, and this value is rounded
to the nearest nonnegative integer. If the input value rounds to 0.0, the line is
displayed with a standard width of 1.0, which is the default width. However,
when antialiasing is applied to the line, its edges are smoothed to reduce the raster
stair-step appearance and fractional widths are possible. Some implementations
of the line-width function might support only a limited number of widths, and
some might not support widths other than 1.0.

The OpenGL line-width function is implemented using the methods de-
scribed in Section 4-5. That is, the magnitude of the horizontal and vertical sepa-
rations of the line endpoints, #x and #y, are compared to determine whether to
generate a thick line using vertical pixel spans or horizontal pixel spans.

OpenGL Line-Style Function
By default, a straight-line segment is displayed as a solid line. But we can also
display dashed lines, dotted lines, or a line with a combination of dashes and
dots. And we can vary the length of the dashes and the spacing between dashes
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or dots. We set a current display style for lines with the OpenGL function:

glLineStipple (repeatFactor, pattern);

Parameter pattern is used to reference a 16-bit integer that describes how the
line should be displayed. A 1 bit in the pattern denotes an “on” pixel position, and
a 0 bit indicates an “off” pixel position. The pattern is applied to the pixels along
the line path starting with the low-order bits in the pattern. The default pattern is
0xFFFF (each bit position has a value of 1), which produces a solid line. Integer pa-
rameter repeatFactor specifies how many times each bit in the pattern is to be
repeated before the next bit in the pattern is applied. The default repeat value is 1.

With a polyline, a specified line-style pattern is not restarted at the beginning
of each segment. It is applied continuously across all the segments, starting at the
first endpoint of the polyline and ending at the final endpoint for the last segment
in the series.

As an example of specifying a line style, suppose parameter pattern is
assigned the hexadecimal representation 0x00FF and the repeat factor is 1. This
would display a dashed line with eight pixels in each dash and eight pixel posi-
tions that are “off” (an eight-pixel space) between two dashes. Also, since low-
order bits are applied first, a line begins with an eight-pixel dash starting at the first
endpoint. This dash is followed by an eight-pixel space, then another eight-pixel
dash, and so forth, until the second endpoint position is reached.

Before a line can be displayed in the current line-style pattern, we must ac-
tivate the line-style feature of OpenGL. We accomplish this with the following
function.

glEnable (GL_LINE_STIPPLE);

If we forget to include this enable function, solid lines are displayed; that is, the
default pattern 0xFFFF is used to display line segments. At any time, we can turn
off the line-pattern feature with

glDisable (GL_LINE_STIPPLE);

This replaces the current line-style pattern with the default pattern (solid lines).
In the following program outline, we illustrate use of the OpenGL line-

attribute functions by plotting three line graphs in different styles and widths.
Figure 4-16 shows the data plots that could be generated by this program.

FIGURE 4-16 Plotting three data sets with
three different OpenGL line styles and line
widths: single-width dash-dot pattern,
double-width dash pattern, and triple-width
dot pattern.
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/* Define a two-dimensional world-coordinate data type. */
typedef struct { float x, y; } wcPt2D;

wcPt2D dataPts [5];

void linePlot (wcPt2D dataPts [5])
{

int k;

glBegin (GL_LINE_STRIP);
for (k = 0; k < 5; k++)

glVertex2f (dataPts [k].x, dataPts [k].y);

glFlush ( );

glEnd ( );
}

/* Invoke a procedure here to draw coordinate axes. */

glEnable (GL_LINE_STIPPLE);

/* Input first set of (x, y) data values. */
glLineStipple (1, 0x1C47); // Plot a dash-dot, standard-width polyline.
linePlot (dataPts);

/* Input second set of (x, y) data values. */
glLineStipple (1, 0x00FF); // Plot a dashed, double-width polyline.
glLineWidth (2.0);
linePlot (dataPts);

/* Input third set of (x, y) data values. */
glLineStipple (1, 0x0101); // Plot a dotted, triple-width polyline.
glLineWidth (3.0);
linePlot (dataPts);

glDisable (GL_LINE_STIPPLE);

Other OpenGL Line Effects
In addition to specifying width, style, and a solid color, we can display lines with
color gradations. For example, we can vary the color along the path of a solid
line by assigning a different color to each line endpoint as we define the line. In
the following code segment we illustrate this by assigning a blue color to one
endpoint of a line and a red color to the other endpoint. The solid line is then
displayed as a linear interpolation of the colors at the two endpoints.

glShadeModel (GL_SMOOTH);

glBegin (GL_LINES);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (50, 50);
glColor3f (1.0, 0.0, 0.0);
glVertex2i (250, 250);

glEnd ( );
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Function glShadeModel can also be given the argument GL FLAT. In that case,
the line segment would have been displayed in a single color: the color of the
second endpoint, (250, 250). That is, we would have generated a red line. Actually,
GL SMOOTH is the default, so we would generate a smoothly interpolated color
line segment even if we did not include this function in our code.

We can produce other effects by displaying adjacent lines that have different
colors and patterns. And we can also make use of the color-blending features of
OpenGL by superimposing lines or other objects with varying alpha values. A
brush stroke, and other painting effects, can be simulated with a pixelmap and
color blending. The pixelmap can then be moved interactively to generate line
segments. Individual pixels in the pixmap can be assigned different alpha values
to display lines as brush or pen strokes.

4-9 FILL-AREA ATTRIBUTES

Most graphics packages limit fill areas to polygons, because they are described
with linear equations. A further restriction requires fill areas to be convex poly-
gons, so that scan lines do not intersect more than two boundary edges. However,
in general, we can fill any specified regions, including circles, ellipses, and other
objects with curved boundaries. And applications systems, such as paint pro-
grams, provide fill options for arbitrarily shaped regions.

There are two basic procedures for filling an area on raster systems, once the
definition of the fill region has been mapped to pixel coordinates. One procedure
first determines the overlap intervals for scan lines that cross the area. Then, pixel
positions along these overlap intervals are set to the fill color. Another method for
area filling is to start from a given interior position and “paint” outward, pixel-
by-pixel, from this point until we encounter specified boundary conditions. The
scan-line approach is usually applied to simple shapes such as circles or regions
with polyline boundaries, and general graphics packages use this fill method. Fill
algorithms that use a starting interior point are useful for filling areas with more
complex boundaries and in interactive painting systems.

Fill Styles
A basic fill-area attribute provided by a general graphics library is the display
style of the interior. We can display a region with a single color, a specified fill
pattern, or in a “hollow” style by showing only the boundary of the region. These
three fill styles are illustrated in Fig. 4-17. We can also fill selected regions of a
scene using various brush styles, color-blending combinations, or textures. Other
options include specifications for the display of the boundaries of a fill area.
For polygons, we could show the edges in different colors, widths, and styles.
And we can select different display attributes for the front and back faces of a
region.

Hollow
(a)

Solid
(b)

Patterned
(c)

FIGURE 4-17 Basic
polygon fill styles.

Fill patterns can be defined in rectangular color arrays that list different colors
for different positions in the array. Or, a fill pattern could be specified as a bit array
that indicates which relative positions are to be displayed in a single selected
color. An array specifying a fill pattern is a mask that is to be applied to the
display area. Some graphics systems provide an option for selecting an arbitrary
initial position for overlaying the mask. From this starting position, the mask
is replicated in the horizontal and vertical directions until the display area is
filled with nonoverlapping copies of the pattern. Where the pattern overlaps
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FIGURE 4-18 Areas filled
with hatch patterns.

Diagonal
Hatch Fill

Diagonal
Crosshatch Fill

specified fill areas, the array pattern indicates which pixels should be displayed
in a particular color. This process of filling an area with a rectangular pattern is
called tiling, and a rectangular fill pattern is sometimes referred to as a tiling
pattern. Sometimes, predefined fill patterns are available in a system, such as the
hatch fill patterns shown in Fig. 4-18.

We can implement a pattern fill by determining where the pattern overlaps
those scan lines that cross a fill area. Beginning from a specified start position
for a pattern fill, we map the rectangular patterns vertically across scan lines and
horizontally across pixel positions on the scan lines. Each replication of the pattern
array is performed at intervals determined by the width and height of the mask.
Where the pattern overlaps the fill area, pixel colors are set according to the values
stored in the mask.

Hatch fill could be applied to regions by drawing sets of line segments to
display either single hatching or crosshatching. Spacing and slope for the hatch
lines could be set as parameters in a hatch table. Alternatively, hatch fill can be
specified as a pattern array that produces sets of diagonal lines.

A reference point (xp, yp) for the starting position of a fill pattern can be set at
any convenient position, inside or outside the fill region. For instance, the refer-
ence point could be set at a polygon vertex. Or the reference point could be chosen
as the lower left corner of the bounding rectangle (or bounding box) determined
by the coordinate extents of the region. To simplify selection of the reference coor-
dinates, some packages always use the coordinate origin of the display window
as the pattern start position. Always setting (xp, yp) at the coordinate origin also
simplifies the tiling operations when each element of a pattern is to be mapped to
a single pixel. For example, if the row positions in the pattern array are referenced
from bottom to top, starting with the value 1, a color value is then assigned to
pixel position (x, y) in screen coordinates from pattern position (y mod ny + 1,
x mod nx+1). Here, ny and nx specify the number of rows and number of columns
in the pattern array. Setting the pattern start position at the coordinate origin, how-
ever, effectively attaches the pattern fill to the screen background, rather than to
the fill regions. Adjacent or overlapping areas filled with the same pattern would
show no apparent boundary between the areas. Also, repositioning and refill-
ing an object with the same pattern can result in a shift in the assigned pixel
values over the object interior. A moving object would appear to be transparent
against a stationary pattern background, instead of moving with a fixed interior
pattern.

Color-Blended Fill Regions
It is also possible to combine a fill pattern with background colors in various
ways. A pattern could be combined with background colors using a transparency
factor that determines how much of the background should be mixed with the
object color. Or we could use simple logical or replace operations. Figure 4-19
demonstrates how logical and replace operations would combine a 2 by 2 fill
pattern with a background pattern for a binary (black-and-white) system.
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Pattern Background

Pixel Values

and

or

xorxor

replace

FIGURE 4-19 Combining
a fill pattern with a back-
ground pattern using logical
operations and, or, and xor
(exclusive or), and using
simple replacement.

Some fill methods using blended colors have been referred to as soft-fill or
tint-fill algorithms. One use for these fill methods is to soften the fill colors at
object borders that have been blurred to antialias the edges. Another application
of a soft-fill algorithm is to allow repainting of a color area that was originally
filled with a semitransparent brush, where the current color is then a mixture of
the brush color and the background colors “behind” the area. In either case, we
want the new fill color to have the same variations over the area as the current fill
color.

As an example of this type of fill, the linear soft-fill algorithm repaints an area
that was originally painted by merging a foreground color F with a single back-
ground color B, where F = B. Assuming we know the values for F and B, we can
check the current contents of the frame buffer to determine how these colors were
combined. The current RGB color P of each pixel within the area to be refilled is
some linear combination of F and B:

P = tF + (1 − t)B (4-2)

where the transparency factor t has a value between 0 and 1 for each pixel. For
values of t less than 0.5, the background color contributes more to the interior
color of the region than does the fill color. Vector Eq. 4-2 holds for each RGB
component of the colors, with

P = (PR, PG , PB), F = (FR, FG , FB), B = (BR, BG , BB) (4-3)

We can thus calculate the value of parameter t using one of the RGB color com-
ponents as

t = Pk − Bk

Fk − Bk
(4-4)
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where k = R, G, or B; and Fk q= Bk . Theoretically, parameter t has the same value
for each RGB component, but the round-off calculations to obtain integer codes
can result in different values of t for different components. We can minimize this
round-off error by selecting the component with the largest difference between
F and B. This value of t is then used to mix the new fill color NF with the back-
ground color. We can accomplish this mixing using either a modified flood-fill or
boundary-fill procedure, as described in Section 4-13.

Similar color-blending procedures can be applied to an area whose fore-
ground color is to be merged with multiple background color areas, such as a
checkerboard pattern. When two background colors B1 and B2 are mixed with
foreground color F, the resulting pixel color P is

P = t0F + t1B1 + (1 − t0 − t1)B2 (4-5)

where the sum of the color-term coefficients t0, t1, and (1 − t0 − t1) must equal
1. We can set up two simultaneous equations using two of the three RGB color
components to solve for the two proportionality parameters, t0 and t1. These
parameters are then used to mix the new fill color with the two background colors
to obtain the new pixel color. With three background colors and one foreground
color, or with two background and two foreground colors, we need all three RGB
equations to obtain the relative amounts of the four colors. For some foreground
and background color combinations, however, the system of two or three RGB
equations cannot be solved. This occurs when the color values are all very similar
or when they are all proportional to each other.

4-10 GENERAL SCAN-LINE POLYGON-FILL ALGORITHM

A scan-line fill of a region is performed by first determining the intersection
positions of the boundaries of the fill region with the screen scan lines. Then the
fill colors are applied to each section of a scan line that lies within the interior of
the fill region. The scan-line fill algorithm identifies the same interior regions as
the odd-even rule (Section 3-15). The simplest area to fill is a polygon, because
each scan-line intersection point with a polygon boundary is obtained by solving
a pair of simultaneous linear equations, where the equation for the scan line is
simply y = constant.

Figure 4-20 illustrates the basic scan-line procedure for a solid-color fill of a
polygon. For each scan line that crosses the polygon, the edge intersections are
sorted from left to right, and then the pixel positions between, and including,
each intersection pair are set to the specified fill color. In the example of Fig. 4-20,
the four pixel intersection positions with the polygon boundaries define two
stretches of interior pixels. Thus, the fill color is applied to the five pixels from
x = 10 to x = 14 and to the seven pixels from x = 18 to x = 24. If a pattern fill
is to be applied to the polygon, then the color for each pixel along a scan line is
determined from its overlap position with the fill pattern.

However, the scan-line fill algorithm for a polygon is not quite as simple as
Fig. 4-20 might suggest. Whenever a scan line passes through a vertex, it intersects
two polygon edges at that point. In some cases, this can result in an odd number of
boundary intersections for a scan line. Figure 4-21 shows two scan lines that cross
a polygon fill area and intersect a vertex. Scan line y′ intersects an even number
of edges, and the two pairs of intersection points along this scan line correctly
identify the interior pixel spans. But scan line y intersects five polygon edges. To
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y

x
10 14 18 24

FIGURE 4-20 Interior pixels along a scan line
passing through a polygon fill area.

Scan Line y.

Scan Line y

1

1 2

2 1

1 1

FIGURE 4-21 Intersection points along scan lines that
intersect polygon vertices. Scan line y generates an odd
number of intersections, but scan line y′ generates an even
number of intersections that can be paired to identify correctly
the interior pixel spans.

identify the interior pixels for scan line y, we must count the vertex intersection
as only one point. Thus, as we process scan lines, we need to distinguish between
these cases.

We can detect the topological difference between scan line y and scan line y′

in Fig. 4-21 by noting the position of the intersecting edges relative to the scan
line. For scan line y, the two edges sharing an intersection vertex are on opposite
sides of the scan line. But for scan line y′, the two intersecting edges are both
above the scan line. Thus, a vertex that has adjoining edges on opposite sides
of an intersecting scan line should be counted as just one boundary intersection
point. We can identify these vertices by tracing around the polygon boundary in
either clockwise or counterclockwise order and observing the relative changes in
vertex y coordinates as we move from one edge to the next. If the three endpoint
y values of two consecutive edges monotonically increase or decrease, we need
to count the shared (middle) vertex as a single intersection point for the scan
line passing through that vertex. Otherwise, the shared vertex represents a local
extremum (minimum or maximum) on the polygon boundary, and the two edge
intersections with the scan line passing through that vertex can be added to the
intersection list.

One method for implementing the adjustment to the vertex-intersection count
is to shorten some polygon edges to split those vertices that should be counted
as one intersection. We can process nonhorizontal edges around the polygon
boundary in the order specified, either clockwise or counterclockwise. As we
process each edge, we can check to determine whether that edge and the next
nonhorizontal edge have either monotonically increasing or decreasing endpoint
y values. If so, the lower edge can be shortened to ensure that only one intersection
point is generated for the scan line going through the common vertex joining the
two edges. Figure 4-22 illustrates shortening of an edge. When the endpoint y
coordinates of the two edges are increasing, the y value of the upper endpoint for
the current edge is decreased by 1, as in Fig. 4-22 (a). When the endpoint y values
are monotonically decreasing, as in Fig. 4-22 (b), we decrease the y coordinate of
the upper endpoint of the edge following the current edge.

Typically, certain properties of one part of a scene are related in some way to
the properties in other parts of the scene, and these coherence properties can be
used in computer-graphics algorithms to reduce processing. Coherence methods
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Scan Line y " 1

Scan Line y

Scan Line y # 1

(a) (b)

FIGURE 4-22 Adjusting endpoint y values for a polygon, as we process edges in
order around the polygon perimeter. The edge currently being processed is indicated
as a solid line. In (a), the y coordinate of the upper endpoint of the current edge is
decreased by 1. In (b), the y coordinate of the upper endpoint of the next edge is
decreased by 1.

FIGURE 4-23 Two
successive scan lines
intersecting a polygon
boundary.

Scan Line yk " 1 (xk " 1, yk " 1)

 (xk, yk) Scan Line yk

often involve incremental calculations applied along a single scan line or between
successive scan lines. For example, in determining fill-area edge intersections, we
can set up incremental coordinate calculations along any edge by exploiting the
fact that the slope of the edge is constant from one scan line to the next. Figure 4-23
shows two successive scan lines crossing the left edge of a triangle. The slope of
this edge can be expressed in terms of the scan-line intersection coordinates:

m = yk+1 − yk

xk+1 − xk
(4-6)

Since the change in y coordinates between the two scan lines is simply

yk+1 − yk = 1 (4-7)

the x-intersection value xk+1 on the upper scan line can be determined from the
x-intersection value xk on the preceding scan line as

xk+1 = xk + 1
m

(4-8)

Each successive x intercept can thus be calculated by adding the inverse of the
slope and rounding to the nearest integer.

An obvious parallel implementation of the fill algorithm is to assign each scan
line that crosses the polygon to a separate processor. Edge intersection calculations
are then performed independently. Along an edge with slope m, the intersection
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xk value for scan line k above the initial scan line can be calculated as

xk = x0 + k
m

(4-9)

In a sequential fill algorithm, the increment of x values by the amount 1
m along

an edge can be accomplished with integer operations by recalling that the slope
m is the ratio of two integers:

m = #y
#x

where #x and #y are the differences between the edge endpoint x and y coor-
dinate values. Thus, incremental calculations of x intercepts along an edge for
successive scan lines can be expressed as

xk+1 = xk + #x
#y

(4-10)

Using this equation, we can perform integer evaluation of the x intercepts by
initializing a counter to 0, then incrementing the counter by the value of #x each
time we move up to a new scan line. Whenever the counter value becomes equal to
or greater than #y, we increment the current x intersection value by 1 and decrease
the counter by the value #y. This procedure is equivalent to maintaining integer
and fractional parts for x intercepts and incrementing the fractional part until we
reach the next integer value.

As an example of this integer-incrementing scheme, suppose we have an
edge with slope m = 7

3 . At the initial scan line, we set the counter to 0 and the
counter increment to 3. As we move up to the next three scan lines along this
edge, the counter is successively assigned the values 3, 6, and 9. On the third scan
line above the initial scan line, the counter now has a value greater than 7. So we
increment the x intersection coordinate by 1, and reset the counter to the value
9 − 7 = 2. We continue determining the scan-line intersections in this way until
we reach the upper endpoint of the edge. Similar calculations are carried out to
obtain intersections for edges with negative slopes.

We can round to the nearest pixel x intersection value, instead of truncating
to obtain integer positions, by modifying the edge-intersection algorithm so that
the increment is compared to #y/2. This can be done with integer arithmetic by
incrementing the counter with the value 2#x at each step and comparing the
increment to #y. When the increment is greater than or equal to #y, we increase
the x value by 1 and decrement the counter by the value of 2#y. In our previous
example with m = 7

3 , the counter values for the first few scan lines above the initial
scan line on this edge would now be 6, 12 (reduced to −2), 4, 10 (reduced to −4),
2, 8 (reduced to −6), 0, 6, and 12 (reduced to −2). Now x would be incremented
on scan lines 2, 4, 6, 9, and so forth, above the initial scan line for this edge.
The extra calculations required for each edge are 2#x = #x + #x and 2#y =
#y + #y, which are carried out as preprocessing steps.

To efficiently perform a polygon fill, we can first store the polygon boundary
in a sorted edge table that contains all the information necessary to process the scan
lines efficiently. Proceeding around the edges in either a clockwise or a counter-
clockwise order, we can use a bucket sort to store the edges, sorted on the smallest
y value of each edge, in the correct scan-line positions. Only nonhorizontal edges
are entered into the sorted edge table. As the edges are processed, we can also
shorten certain edges to resolve the vertex-intersection question. Each entry in
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FIGURE 4-24 A polygon and its sorted edge table, with edge DC shortened by one
unit in the y direction.

the table for a particular scan line contains the maximum y value for that edge,
the x-intercept value (at the lower vertex) for the edge, and the inverse slope of the
edge. For each scan line, the edges are in sorted order from left to right. Figure 4-24
shows a polygon and the associated sorted edge table.

Next, we process the scan lines from the bottom of the polygon to its top,
producing an active edge list for each scan line crossing the polygon boundaries.
The active edge list for a scan line contains all edges crossed by that scan line,
with iterative coherence calculations used to obtain the edge intersections.

Implementation of edge-intersection calculations can be facilitated by storing
#x and #y values in the sorted edge list. Also, to ensure that we correctly fill
the interior of specified polygons, we can apply the considerations discussed
in Section 3-13. For each scan line, we fill in the pixel spans for each pair of x
intercepts starting from the leftmost x intercept value and ending at one position
before the rightmost x intercept. And each polygon edge can be shortened by one
unit in the y direction at the top endpoint. These measures also guarantee that
pixels in adjacent polygons will not overlap.

4-11 SCAN-LINE FILL OF CONVEX POLYGONS

When we apply a scan-line fill procedure to a convex polygon, there can be no
more than a single interior span for each screen scan line. So we need to process
the polygon edges only until we have found two boundary intersections for each
scan line crossing the polygon interior.

The general polygon scan-line algorithm discussed in the preceding section
can be simplified considerably for convex-polygon fill. We again use coordinate
extents to determine which edges cross a scan line. Intersection calculations with
these edges then determine the interior pixel span for that scan line, where any
vertex crossing is counted as a single boundary intersection point. When a scan
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line intersects a single vertex (at an apex, for example), we plot only that point.
Some graphics packages further restrict fill areas to be triangles. This makes filling
even easier, because each triangle has just three edges to process.

4-12 SCAN-LINE FILL FOR REGIONS WITH
CURVED BOUNDARIES

Since an area with curved boundaries is described with nonlinear equations, a
scan-line fill generally takes more time than a polygon scan-line fill. We can use
the same general approach detailed in Section 4-10, but the boundary intersection
calculations are performed with curve equations. And the slope of the bound-
ary is continuously changing, so we cannot use the straightforward incremental
calculations that are possible with straight-line edges.

For simple curves such as circles or ellipses, we can apply fill methods
similar to those for convex polygons. Each scan line crossing a circle or ellipse
interior has just two boundary intersections. And we can determine these two
intersection points along the boundary of a circle or an ellipse using the incre-
mental calculations in the midpoint method. Then we simply fill in the hori-
zontal pixel spans from one intersection point to the other. Symmetries between
quadrants (and between octants for circles) are used to reduce the boundary
calculations.

Similar methods can be used to generate a fill area for a curve section.
For example, an area bounded by an elliptical arc and a straight line section
(Fig. 4-25) can be filled using a combination of curve and line procedures. Sym-
metries and incremental calculations are exploited whenever possible to reduce
computations.

Filling other curve areas can involve considerably more processing. We could
use similar incremental methods in combination with numerical techniques to
determine the scan-line intersections, but usually such curve boundaries are
approximated with straight-line segments.

FIGURE 4-25 Interior fill
of an elliptical arc.

4-13 FILL METHODS FOR AREAS WITH
IRREGULAR BOUNDARIES

Another approach for filling a specified area is to start at an inside position and
“paint” the interior, point by point, out to the boundary. This is a particularly
useful technique for filling areas with irregular borders, such as a design created
with a paint program. Generally, these methods require an input starting position
inside the area to be filled and some color information about either the boundary
or the interior.

We can fill irregular regions with a single color or with a color pattern. For
a pattern fill, we overlay a color mask, as discussed in Section 4-9. As each pixel
within the region is processed, its color is determined by the corresponding values
in the overlaid pattern.

Boundary-Fill Algorithm
If the boundary of some region is specified in a single color, we can fill the interior
of this region, pixel by pixel, until the boundary color is encountered. This method,
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(a) (b)

FIGURE 4-26 Example color boundaries for a
boundary-fill procedure.

called the boundary-fill algorithm, is employed in interactive painting packages,
where interior points are easily selected. Using a graphics tablet or other interac-
tive device, an artist or designer can sketch a figure outline, select a fill color from
a color menu, specify the area boundary color, and pick an interior point. The
figure interior is then painted in the fill color. Both inner and outer boundaries
can be set up to define an area for boundary fill, and Fig. 4-26 illustrates examples
for specifying color regions.

Basically, a boundary-fill algorithm starts from an interior point (x, y) and
tests the color of neighboring positions. If a tested position is not displayed in
the boundary color, its color is changed to the fill color and its neighbors are
tested. This procedure continues until all pixels are processed up to the designated
boundary color for the area.

(a)

(b)

FIGURE 4-27 Fill
methods applied to a
4-connected area (a) and to an
8-connected area (b). Hollow
circles represent pixels to be
tested from the current test
position, shown as a solid
color.

Figure 4-27 shows two methods for processing neighboring pixels from a
current test position. In Fig. 4-27(a), four neighboring points are tested. These
are the pixel positions that are right, left, above, and below the current pixel.
Areas filled by this method are called 4-connected. The second method, shown
in Fig. 4-27(b), is used to fill more complex figures. Here the set of neighboring
positions to be tested includes the four diagonal pixels, as well as those in the
cardinal directions. Fill methods using this approach are called 8-connected. An
8-connected boundary-fill algorithm would correctly fill the interior of the area
defined in Fig. 4-28, but a 4-connected boundary-fill algorithm would only fill
part of that region.

The following procedure illustrates a recursive method for painting a
4-connected area with a solid color, specified in parameter fillColor, up to
a boundary color specified with parameter borderColor. We can extend this

Start Position
(a) (b)

FIGURE 4-28 The area defined within the color
boundary (a) is only partially filled in (b) using a
4-connected boundary-fill algorithm.
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procedure to fill an 8-connected region by including four additional statements
to test the diagonal positions (x ± 1, y ± 1).

void boundaryFill4 (int x, int y, int fillColor, int borderColor)
{

int interiorColor;

/* Set current color to fillColor, then perform following oprations. */
getPixel (x, y, interiorColor);
if ((interiorColor != borderColor) && (interiorColor != fillColor)) {

setPixel (x, y); // Set color of pixel to fillColor.
boundaryFill4 (x + 1, y , fillColor, borderColor);
boundaryFill4 (x - 1, y , fillColor, borderColor);
boundaryFill4 (x , y + 1, fillColor, borderColor);
boundaryFill4 (x , y - 1, fillColor, borderColor)

}
}

Recursive boundary-fill algorithms may not fill regions correctly if some inte-
rior pixels are already displayed in the fill color. This occurs because the algorithm
checks next pixels both for boundary color and for fill color. Encountering a pixel
with the fill color can cause a recursive branch to terminate, leaving other interior
pixels unfilled. To avoid this, we can first change the color of any interior pixels
that are initially set to the fill color before applying the boundary-fill procedure.

Also, since this procedure requires considerable stacking of neighboring
points, more efficient methods are generally employed. These methods fill hor-
izontal pixel spans across scan lines, instead of proceeding to 4-connected or
8-connected neighboring points. Then we need only stack a beginning position
for each horizontal pixel span, instead of stacking all unprocessed neighboring
positions around the current position. Starting from the initial interior point with
this method, we first fill in the contiguous span of pixels on this starting scan line.
Then we locate and stack starting positions for spans on the adjacent scan lines,
where spans are defined as the contiguous horizontal string of positions bounded
by pixels displayed in the border color. At each subsequent step, we retrieve the
next start position from the top of the stack and repeat the process.

An example of how pixel spans could be filled using this approach is il-
lustrated for the 4-connected fill region in Figure 4-29. In this example, we first
process scan lines successively from the start line to the top boundary. After all
upper scan lines are processed, we fill in the pixel spans on the remaining scan
lines in order down to the bottom boundary. The leftmost pixel position for each
horizontal span is located and stacked, in left to right order across successive scan
lines, as shown in Fig. 4-29. In (a) of this figure, the initial span has been filled, and
starting positions 1 and 2 for spans on the next scan lines (below and above) are
stacked. In Fig. 4-29(b), position 2 has been unstacked and processed to produce
the filled span shown, and the starting pixel (position 3) for the single span on the
next scan line has been stacked. After position 3 is processed, the filled spans and
stacked positions are as shown in Fig. 4-29(c). And Fig. 4-29(d) shows the filled
pixels after processing all spans in the upper right of the specified area. Position 5
is next processed, and spans are filled in the upper left of the region; then position
4 is picked up to continue the processing for the lower scan lines.
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FIGURE 4-29 Boundary
fill across pixel spans for a
4-connected area: (a) Initial
scan line with a filled pixel
span, showing the position of
the initial point (hollow) and
the stacked positions for pixel
spans on adjacent scan lines.
(b) Filled pixel span on the
first scan line above the initial
scan line and the current
contents of the stack. (c) Filled
pixel spans on the first two
scan lines above the initial
scan line and the current
contents of the stack.
(d) Completed pixel spans
for the upper-right portion of
the defined region and the
remaining stacked positions
to be processed.
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Flood-Fill Algorithm
Sometimes we want to fill in (or recolor) an area that is not defined within a single
color boundary. Figure 4-30 shows an area bordered by several different color
regions. We can paint such areas by replacing a specified interior color instead
of searching for a particular boundary color. This fill procedure is called a flood-
fill algorithm. We start from a specified interior point (x, y) and reassign all pixel
values that are currently set to a given interior color with the desired fill color. If the
area we want to paint has more than one interior color, we can first reassign pixel
values so that all interior points have the same color. Using either a 4-connected
or 8-connected approach, we then step through pixel positions until all interior
points have been repainted. The following procedure flood fills a 4-connected
region recursively, starting from the input position.

FIGURE 4-30 An area
defined within multiple color
boundaries.

void floodFill4 (int x, int y, int fillColor, int interiorColor)
{

int color;

/* Set current color to fillColor, then perform following operations. */
getPixel (x, y, color);
if (color = interiorColor) {

setPixel (x, y); // Set color of pixel to fillColor.
floodFill4 (x + 1, y, fillColor, interiorColor);
floodFill4 (x - 1, y, fillColor, interiorColor);
floodFill4 (x, y + 1, fillColor, interiorColor);
floodFill4 (x, y - 1, fillColor, interiorColor)

}
}

We can modify the above procedure to reduce the storage requirements of
the stack by filling horizontal pixel spans, as discussed for the boundary-fill
algorithm. In this approach, we stack only the beginning positions for those pixel
spans having the value interiorColor. The steps in this modified flood-fill
algorithm are similar to those illustrated in Fig. 4-29 for a boundary fill. Starting
at the first position of each span, the pixel values are replaced until a value other
than interiorColor is encountered.

4-14 OpenGL FILL-AREA ATTRIBUTE FUNCTIONS

In the OpenGL graphics package, fill-area routines are available for convex poly-
gons only. We generate displays of filled convex polygons in four steps:

(1) Define a fill pattern.
(2) Invoke the polygon-fill routine.
(3) Activate the polygon-fill feature of OpenGL.
(4) Describe the polygons to be filled.

A polygon fill pattern is displayed up to and including the polygon edges. Thus,
there are no boundary lines around the fill region unless we specifically add them
to the display.
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In addition to specifying a fill pattern for a polygon interior, there are a number
of other options available. One option is to display a hollow polygon, where no
interior color or pattern is applied and only the edges are generated. A hollow
polygon is equivalent to the display of a closed polyline primitive. Another option
is to show the polygon vertices, with no interior fill and no edges. Also, we
designate different attributes for the front and back faces of a polygon fill area.

OpenGL Fill-Pattern Function
By default, a convex polygon is displayed as a solid-color region, using the current
color setting. To fill the polygon with a pattern in OpenGL, we use a 32-bit by 32-
bit mask. A value of 1 in the mask indicates that the corresponding pixel is to
be set to the current color, and a 0 leaves the value of that frame-buffer position
unchanged. The fill pattern is specified in unsigned bytes using the OpenGL data
typeGLubyte, just as we did with theglBitmap function. We define a bit pattern
with hexadecimal values as, for example,

GLubyte fillPattern [ ] = {
0xff, 0x00, 0xff, 0x00, ... };

The bits must be specified starting with the bottom row of the pattern, and con-
tinuing up to the topmost row (32) of the pattern, as we did with bitShape in
Section 3-19. This pattern is replicated across the entire area of the display win-
dow, starting at the lower-left window corner, and specified polygons are filled
where the pattern overlaps those polygons (Fig. 4-31).

Once we have set a mask, we can establish it as the current fill pattern with
the function

glPolygonStipple (fillPattern);

Next, we need to enable the fill routines before we specify the vertices for the
polygons that are to be filled with the current pattern. We do this with the
statement

glEnable (GL_POLYGON_STIPPLE);

Similarly, we turn off pattern filling with

glDisable (GL_POLYGON_STIPPLE);

FIGURE 4-31 Tiling a
rectangular fill pattern across
a display window to fill two
convex polygons. Start Position

 Display Window
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Top-Right
Pattern
Corner

(a) (b)

FIGURE 4-32 A 3 by 3 bit
pattern (a) superimposed on a
parallelogram to produce the
fill area in (b), where the
top-right corner of the pattern
coincides with the lower-left
corner of the parallelogram.

Figure 4-32 illustrates how a 3 by 3 bit pattern, repeated over a 32 by 32 bit mask,
might be applied to fill a parallelogram.

OpenGL Texture and Interpolation Patterns
Another method for filling polygons is to use texture patterns, as discussed in
Chapter 10. This can produce fill patterns that simulate the surface appearance
of wood, brick, brushed steel, or some other material. Also, we can obtain an
interpolation coloring of a polygon interior just as we did with the line primitive.
To do this, we assign different colors to polygon vertices. Interpolation fill of a
polygon interior is used to produce realistic displays of shaded surfaces under
various lighting conditions.

As an example of an interpolation fill, the following code segment assigns
either a blue, red, or green color to each of the three vertices of a triangle. The
polygon fill is then a linear interpolation of the colors at the vertices.

glShadeModel (GL_SMOOTH);

glBegin (GL_TRIANGLES);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (50, 50);
glColor3f (1.0, 0.0, 0.0);
glVertex2i (150, 50);
glColor3f (0.0, 1.0, 0.0);
glVertex2i (75, 150);

glEnd ( );

Of course, if a single color is set for the triangle as a whole, the polygon is filled with
that one color. And if we change the argument in the glShadeModel function
to GL FLAT in this example, the polygon is filled with the last color specified
(green). The value GL SMOOTH is the default shading, but we can include that
specification to remind us that the polygon is to be filled as an interpolation of
the vertex colors.

OpenGL Wire-Frame Methods
We can also choose to show only polygon edges. This produces a wire-frame
or hollow display of the polygon. Or we could display a polygon by only plot-
ting a set of points at the vertex positions. These options are selected with the
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function

glPolygonMode (face, displayMode);

We use parameter face to designate which face of the polygon we want to
show as edges only or vertices only. This parameter is then assigned either
GL FRONT,GL BACK, orGL FRONT AND BACK. Then, if we want only the poly-
gon edges displayed for our selection, we assign the constant GL LINE to param-
eterdisplayMode. To plot only the polygon vertex points, we assign the constant
GL POINT to parameter displayMode. A third option is GL FILL. But this is
the default display mode, so we usually only invoke glPolygonMode when we
want to set attributes for the polygon edges or vertices.

Another option is to display a polygon with both an interior fill and a different
color or pattern for its edges (or for its vertices). This is accomplished by specify-
ing the polygon twice: once with parameter displayMode set to GL FILL and
then again with displayMode set to GL LINE (or GL POINT). For example, the
following code section fills a polygon interior with a green color, and then the
edges are assigned a red color.

glColor3f (0.0, 1.0, 0.0);
\* Invoke polygon-generating routine. */

glColor3f (1.0, 0.0, 0.0);
glPolygonMode (GL_FRONT, GL_LINE);
\* Invoke polygon-generating routine again. */

For a three-dimensional polygon (one that does not have all vertices in the xy
plane), this method for displaying the edges of a filled polygon may produce
gaps along the edges. This effect, sometimes referred to as stitching, is caused by
differences between calculations in the scan-line fill algorithm and calculations in
the edge line-drawing algorithm. As the interior of a three-dimensional polygon
is filled, the depth value (distance from the xy plane) is calculated for each (x, y)
position. But this depth value at an edge of the polygon is often not exactly the
same as the depth value calculated by the line-drawing algorithm for the same
(x, y) position. Therefore, when visibility tests are made, the interior fill color
could be used instead of an edge color to display some points along the boundary
of a polygon.

One way to eliminate the gaps along displayed edges of a three-dimensional
polygon is to shift the depth values calculated by the fill routine so that they do
not overlap with the edge depth values for that polygon. We do this with the
following two OpenGL functions.

glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (factor1, factor2);

The first function activates the offset routine for scan-line filling, and the second
function is used to set a couple of floating-point values factor1 and factor2
that are used to calculate the amount of depth offset. The calculation for this depth
offset is

depthOffset = factor1 · maxSlope + factor2 · const (4-11)
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where maxSlope is the maximum slope of the polygon and const is an imple-
mentation constant. For a polygon in the xy plane, the slope is 0. Otherwise, the
maximum slope is calculated as the change in depth of the polygon divided by
either the change in x or the change in y. A typical value for the two factors is
either 0.75 or 1.0, although some experimentation with the factor values is often
necessary to produce good results. As an example of assigning values to offset
factors, we can modify the previous code segment as follows:

glColor3f (0.0, 1.0, 0.0);
glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (1.0, 1.0);
\* Invoke polygon-generating routine. */
glDisable (GL_POLYGON_OFFSET_FILL);

glColor3f (1.0, 0.0, 0.0);
glPolygonMode (GL_FRONT, GL_LINE);
\* Invoke polygon-generating routine again. */

Now the interior fill of the polygon is pushed a little farther away in depth, so that
it does not interfere with the depth values of its edges. It is also possible to imple-
ment this method by applying the offset to the line-drawing algorithm, by chang-
ing the argument of the glEnable function to GL POLYGON OFFSET LINE. In
this case, we want to use negative factors to bring the edge depth values closer.
And if we just wanted to display different color points at the vertex positions,
instead of highlighted edges, the argument in the glEnable function would be
GL POLYGON OFFSET POINT.

Another method for eliminating the stitching effect along polygon edges is
to use the OpenGL stencil buffer to limit the polygon interior filling so that it
does not overlap the edges. But this approach is more complicated and generally
slower, so the polygon depth-offset method is preferred.

To display a concave polygon using OpenGL routines, we must first split it
into a set of convex polygons. We typically divide a concave polygon into a set
of triangles, using the methods described in Section 3-15. Then we could display
the concave polygon as a fill region by filling the triangles. Similarly, if we want
to show only the polygon vertices, we plot the triangle vertices. But to display
the original concave polygon in a wire-frame form, we cannot just set the display
mode toGL LINE, because that would show all the triangle edges that are interior
to the original concave polygon (Fig. 4-33).

Fortunately, OpenGL provides a mechanism that allows us to eliminate se-
lected edges from a wire-frame display. Each polygon vertex is stored with a
one-bit flag that indicates whether or not that vertex is connected to the next ver-
tex by a boundary edge. So all we need do is set that bit flag to “off” and the edge

(a) (b)

FIGURE 4-33 Dividing a
concave polygon (a) into a set
of triangles (b) produces
triangle edges (dashed) that
are interior to the original
polygon.
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FIGURE 4-34 The triangle
in (a) can be displayed as in
(b) by setting the edge flag for
vertex v2 to the value
GL FALSE, assuming that the
vertices are specified in a
counterclockwise order.

(a)
v3

v2

v1

(b)
v3

v2

v1

following that vertex will not be displayed. We set this flag for an edge with the
following function.

glEdgeFlag (flag);

To indicate that a vertex does not precede a boundary edge, we assign the OpenGL
constant GL FALSE to parameter flag. This applies to all subsequently spec-
ified vertices until the next call to glEdgeFlag is made. The OpenGL con-
stant GL TRUE turns the edge flag back on again, which is the default. Function
glEdgeFlag can be placed between glBegin/glEnd pairs. As an illustration of
the use of an edge flag, the following code displays only two edges of the defined
triangle (Fig. 4-34).

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

glBegin (GL_POLYGON);
glVertex3fv (v1);
glEdgeFlag (GL_FALSE);
glVertex3fv (v2);
glEdgeFlag (GL_TRUE);
glVertex3fv (v3);

glEnd ( );

Polygon edge flags can also be specified in an array that could be combined or
associated with a vertex array (Sections 3-17 and 4-3). The statements for creating
an array of edge flags are

glEnableClientState (GL_EDGE_FLAG_ARRAY);

glEdgeFlagPointer (offset, edgeFlagArray);

Parameter offset indicates the number of bytes between the values for the edge
flags in the array edgeFlagArray. The default value for parameter offset is 0.

OpenGL Front-Face Function
Although, by default, the ordering of polygon vertices controls the identification
of front and back faces, we can independently label selected surfaces in a scene
as front or back with the function

glFrontFace (vertexOrder);

If we set parameter vertexOrder to the OpenGL constant GL CW, then a subse-
quently defined polygon with a clockwise ordering for its vertices is considered
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to be front facing. This OpenGL feature can be used to swap faces of a polygon
for which we have specified vertices in a clockwise order. The constant GL CCW
labels a counterclockwise ordering of polygon vertices as front facing, which is
the default ordering.

4-15 CHARACTER ATTRIBUTES

We control the appearance of displayed characters with attributes such as font,
size, color, and orientation. In many packages, attributes can be set both for entire
character strings (text) and for individual characters that can be used for special
purposes such as plotting a data graph.

There are a great many possible text-display options. First of all, there is the
choice of font (or typeface), which is a set of characters with a particular design
style such as New York, Courier, Helvetica, London, Times Roman, and various
special symbol groups. The characters in a selected font can also be displayed with
assorted underlining styles (solid, - - - - - - -dotted, double), in boldface, in italics, and in
OUTLINE or shadow styles.

Color settings for displayed text can be stored in the system attribute list and
used by the procedures that generate character definitions in the frame buffer.
When a character string is to be displayed, the current color is used to set pixel
values in the frame buffer corresponding to the character shapes and positions.

We could adjust text size by scaling the overall dimensions (height and
width) of characters or by scaling only the height or the width. Character size
(height) is specified by printers and compositors in points, where 1 point is about
0.035146 centimeters (or 0.013837 inch, which is approximately 1

72 inch). For ex-
ample, the characters in this book are set in a 10-point font. Point measurements
specify the size of the body of a character (Fig. 4-35), but different fonts with the
same point specifications can have different character sizes, depending on the
design of the typeface. The distance between the bottomline and the topline of
the character body is the same for all characters in a particular size and typeface,
but the body width may vary. Proportionally spaced fonts assign a smaller body
width to narrow characters such as i, j, l, and f compared to broad characters
such as W or M. Character height is defined as the distance between the baseline and
the capline of characters. Kerned characters, such as f and j in Fig. 4-35, typically
extend beyond the character body limits, and letters with descenders (g, j, p, q , y)

extend below the baseline. Each character is positioned within the character body
by a font designer in such a way that suitable spacing is attained along and be-
tween print lines when text is displayed with character bodies touching.

Top

Character
body

Kern

Cap

Base

Character
height

Character
body

Bottom

Kern
FIGURE 4-35 Examples
of character bodies.
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Height 1

Height 3
Height 2

FIGURE 4-36 Text strings
displayed with different
character-height settings and a
constant width-to-height ratio.

width 0.5

width 1.0

width 2.0

FIGURE 4-37 Text
strings displayed with
varying sizes for the
character widths and a
fixed height.

Spacing 0.0

S p a c i n g  0 . 5

S p a c i n g  1 . 0

FIGURE 4-38 Text
strings displayed with
different character-spacing
values.

SLA
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 TEXT

(b)

Up Vector
(a)

FIGURE 4-39 Direction of the up vector (a)
controls the orientation of displayed text (b).
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FIGURE 4-40 Text-path attributes can
be set to produce horizontal or vertical
arrangements of character strings.

Sometimes, text size is adjusted without changing the width-to-height ratio
of characters. Figure 4-36 shows a character string displayed with three different
character heights, while maintaining the ratio of width to height. Examples of text
displayed with a constant height and varying widths are given in Fig. 4-37.

Spacing between characters is another attribute that can often be assigned
to a character string. Figure 4-38 shows a character string displayed with three
different settings for the intercharacter spacing.

The orientation for a character string can be set according to the direction of
a character up vector. Text is then displayed so that the orientation of characters
from baseline to capline is in the direction of the up vector. For example, with the
direction of the up vector at 45◦, text would be displayed as shown in Fig. 4-39.
A procedure for orienting text could rotate characters so that the sides of charac-
ter bodies, from baseline to capline, are aligned with the up vector. The rotated
character shapes are then scan converted into the frame buffer.

g
n
i
r
t
s

stringgnirts

s
t
r
i
n
g

FIGURE 4-41 A text
string displayed with the four
text-path options: left, right,
up, and down.

It is useful in many applications to be able to arrange character strings verti-
cally or horizontally. Examples of this are given in Fig. 4-40. We could also arrange
the characters in a text string so that the string is displayed forward or backward.
Examples of text displayed with these options are shown in Fig. 4-41. A proce-
dure for implementing text-path orientation adjusts the position of the individual
characters in the frame buffer according to the option selected.

Character strings could also be oriented using a combination of up-vector
and text-path specifications to produce slanted text. Fig. 4-42 shows the directions
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FIGURE 4-42 An up-vector
specification (a) and associated
directions for the text path (b).
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FIGURE 4-43 The 45◦ up
vector in Fig. 4-42 produces the
display (a) for a down path and
the display (b) for a right path.

of character strings generated by various text path settings for a 45◦ up vector.
Examples of character strings generated for text-path values down and right with
this up vector are illustrated in Fig. 4-43.
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FIGURE 4-44 Character
alignments for horizontal and
vertical strings.Another possible attribute for character strings is alignment. This attribute

specifies how text is to be displayed with respect to a reference position. For
example, individual characters could be aligned according to the base lines or the
character centers. Figure 4-44 illustrates typical character positions for horizontal
and vertical alignments. String alignments are also possible, and Fig. 4-45 shows
common alignment positions for horizontal and vertical text labels.
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FIGURE 4-45
Character-string alignments.

In some graphics packages, a text-precision attribute is also available. This
parameter specifies the amount of detail and the particular processing options
that are to be used with a text string. For a low-precision text string, many at-
tribute selections, such as text path, are ignored, and faster procedures are used
for processing the characters through the viewing pipeline.

Finally, a library of text-processing routines often supplies a set of special char-
acters, such as a small circle or cross, which are useful in various applications. Most
often these characters are used as marker symbols in network layouts or in graph-
ing data sets. The attributes for these marker symbols are typically color and size.

4-16 OpenGL CHARACTER-ATTRIBUTE FUNCTIONS

We have two methods for displaying characters with the OpenGL package. Either
we can design a font set using the bitmap functions in the core library, or we
can invoke the GLUT character-generation routines. The GLUT library contains
functions for displaying predefined bitmap and stroke character sets. Therefore,
the character attributes we can set are those that apply to either bitmaps or line
segments.
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For either bitmap or outline fonts, the display color is determined by the
current color state. In general, the spacing and size of characters is deter-
mined by the font designation, such as GLUT BITMAP 9 BY 15 and GLUT
STROKE MONO ROMAN. But we can also set the line width and line type for the
outline fonts. We specify the width for a line with the glLineWidth function,
and we select a line type with the glLineStipple function. The GLUT stroke
fonts will then be displayed using the current values we specified for the OpenGL
line-width and line-type attributes.

We can accomplish some other text-display characteristics using the transfor-
mation functions described in Chapter 5. The transformation routines allow us to
scale, position, and rotate the GLUT stroke characters in either two-dimensional
space or three-dimensional space. In addition, the three-dimensional viewing
transformations (Chapter 7) can be used to generate other display effects.

4-17 ANTIALIASING

Line segments and other graphics primitives generated by the raster algorithms
discussed in Chapter 3 have a jagged, or stair-step, appearance because the sam-
pling process digitizes coordinate points on an object to discrete integer pixel
positions. This distortion of information due to low-frequency sampling (under-
sampling) is called aliasing. We can improve the appearance of displayed raster
lines by applying antialiasing methods that compensate for the undersampling
process.

An example of the effects of undersampling is shown in Fig. 4-46. To avoid
losing information from such periodic objects, we need to set the sampling fre-
quency to at least twice that of the highest frequency occurring in the object,
referred to as the Nyquist sampling frequency (or Nyquist sampling rate) fs :

fs = 2 fmax (4-12)

Another way to state this is that the sampling interval should be no larger than
one-half the cycle interval (called the Nyquist sampling interval). For x-interval
sampling, the Nyquist sampling interval #xs is

#xs = #xcycle

2
(4-13)

where #xcycle = 1/ fmax. In Fig. 4-46, our sampling interval is one and one-half

* * * * * Sampling
Positions(a)

(b)

FIGURE 4-46 Sampling the
periodic shape in (a) at the indicated
positions produces the aliased
lower-frequency representation
in (b).
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times the cycle interval, so the sampling interval is at least three times too large.
If we want to recover all the object information for this example, we need to cut
the sampling interval down to one-third the size shown in the figure.

One way to increase sampling rate with raster systems is simply to display
objects at higher resolution. But even at the highest resolution possible with cur-
rent technology, the jaggies will be apparent to some extent. There is a limit to how
big we can make the frame buffer and still maintain the refresh rate at 60 frames
or more per second. And to represent objects accurately with continuous param-
eters, we need arbitrarily small sampling intervals. Therefore, unless hardware
technology is developed to handle arbitrarily large frame buffers, increased screen
resolution is not a complete solution to the aliasing problem.

With raster systems that are capable of displaying more than two intensity
levels per color, we can apply antialiasing methods to modify pixel intensities. By
appropriately varying the intensities of pixels along the boundaries of primitives,
we can smooth the edges to lessen their jagged appearance.

A straightforward antialiasing method is to increase sampling rate by treating
the screen as if it were covered with a finer grid than is actually available. We can
then use multiple sample points across this finer grid to determine an appropriate
intensity level for each screen pixel. This technique of sampling object character-
istics at a high resolution and displaying the results at a lower resolution is called
supersampling (or postfiltering, since the general method involves computing
intensities at subpixel grid positions, then combining the results to obtain the pixel
intensities). Displayed pixel positions are spots of light covering a finite area of
the screen, and not infinitesimal mathematical points. Yet in the line and fill-area
algorithms we have discussed, the intensity of each pixel is determined by the
location of a single point on the object boundary. By supersampling, we obtain
intensity information from multiple points that contribute to the overall intensity
of a pixel.

An alternative to supersampling is to determine pixel intensity by calculating
the areas of overlap of each pixel with the objects to be displayed. Antialiasing by
computing overlap areas is referred to as area sampling (or prefiltering, since the
intensity of the pixel as a whole is determined without calculating subpixel inten-
sities). Pixel overlap areas are obtained by determining where object boundaries
intersect individual pixel boundaries.

Raster objects can also be antialiased by shifting the display location of pixel
areas. This technique, called pixel phasing, is applied by “micropositioning” the
electron beam in relation to object geometry. For example, pixel positions along a
straight-line segment can be moved closer to the defined line path to smooth out
the raster stair-step effect.

Supersampling Straight-Line Segments
We can perform supersampling in several ways. For a straight-line segment, we
can divide each pixel into a number of subpixels and count the number of sub-
pixels that overlap the line path. The intensity level for each pixel is then set to
a value that is proportional to this subpixel count. An example of this method
is given in Fig. 4-47. Each square pixel area is divided into nine equal-sized
square subpixels, and the shaded regions show the subpixels that would be se-
lected by Bresenham’s algorithm. This scheme provides for three intensity settings
above zero, since the maximum number of subpixels that can be selected within
any pixel is three. For this example, the pixel at position (10, 20) is set to the
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FIGURE 4-47 Supersampling subpixel
positions along a straight-line segment whose
left endpoint is at screen coordinates (10, 20).
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FIGURE 4-48 Supersampling subpixel
positions in relation to the interior of a line
of finite width.

maximum intensity (level 3); pixels at (11, 21) and (12, 21) are each set to the next
highest intensity (level 2); and pixels at (11, 20) and (12, 22) are each set to the
lowest intensity above zero (level 1). Thus the line intensity is spread out over
a greater number of pixels to smooth the original jagged effect. This procedure
displays a somewhat blurred line in the vicinity of the stair steps (between hori-
zontal runs). If we want to use more intensity levels to antialiase the line with this
method, we increase the number of sampling positions across each pixel. Sixteen
subpixels gives us four intensity levels above zero; twenty-five subpixels gives us
five levels; and so on.

In the supersampling example of Fig. 4-47, we considered pixel areas of finite
size, but we treated the line as a mathematical entity with zero width. Actually,
displayed lines have a width approximately equal to that of a pixel. If we take
the finite width of the line into account, we can perform supersampling by set-
ting pixel intensity proportional to the number of subpixels inside the polygon
representing the line area. A subpixel can be considered to be inside the line if its
lower left corner is inside the polygon boundaries. An advantage of this super-
sampling procedure is that the number of possible intensity levels for each pixel
is equal to the total number of subpixels within the pixel area. For the example in
Fig. 4-47, we can represent this line with finite width by positioning the polygon
boundaries parallel to the line path as in Fig. 4-48. And each pixel can now be set
to one of nine possible brightness levels above zero.

Another advantage of supersampling with a finite-width line is that the to-
tal line intensity is distributed over more pixels. In Fig. 4-48, we now have the
pixel at grid position (10, 21) turned on (at intensity level 2), and we also pick up
contributions from pixels immediately below and immediately to the left of po-
sition (10, 21). Also, if we have a color display, we can extend the method to take
background colors into account. A particular line might cross several different
color areas, and we can average subpixel intensities to obtain pixel color settings.
For instance, if five subpixels within a particular pixel area are determined to be
inside the boundaries for a red line and the remaining four subpixels fall within
a blue background area, we can calculate the color for this pixel as

pixelcolor = (5 · red + 4 · blue)

9
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The trade-off for these gains from supersampling a finite-width line is that
identifying interior subpixels requires more calculations than simply determining
which subpixels are along the line path. Also, we need to take into account the
positioning of the line boundaries in relation to the line path. This positioning
depends on the slope of the line. For a 45◦ line, the line path is centered on the
polygon area; but for either a horizontal or a vertical line, we want the line path
to be one of the polygon boundaries. As an example, a horizontal line passing
through grid coordinates (10, 20) could be represented as the polygon bounded
by horizontal grid lines y = 20 and y = 21. Similarly, the polygon representing a
vertical line through (10, 20) can have vertical boundaries along grid lines x = 10
and x = 11. For lines with slope |m| < 1, the mathematical line path is positioned
proportionately closer to the lower polygon boundary; and for lines with slope
|m| > 1, the line path is placed closer to the upper polygon boundary.
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FIGURE 4-49 Relative
weights for a grid of 3 by
3 subpixels.

Subpixel Weighting Masks
Supersampling algorithms are often implemented by giving more weight to sub-
pixels near the center of a pixel area, since we would expect these subpixels to
be more important in determining the overall intensity of a pixel. For the 3 by 3
pixel subdivisions we have considered so far, a weighting scheme as in Fig. 4-49
could be used. The center subpixel here is weighted four times that of the cor-
ner subpixels and twice that of the remaining subpixels. Intensities calculated for
each of the nine subpixels would then be averaged so that the center subpixel is
weighted by a factor of 1

4 ; the top, bottom, and side subpixels are each weighted
by a factor of 1

8 ; and the corner subpixels are each weighted by a factor of 1
16 . An

array of values specifying the relative importance of subpixels is usually referred
to as a weighting mask. Similar masks can be set up for larger subpixel grids. Also,
these masks are often extended to include contributions from subpixels belonging
to neighboring pixels, so that intensities can be averaged with adjacent pixels to
provide a smoother intensity variation between pixels.

Area Sampling Straight-Line Segments
We perform area sampling for a straight line by setting pixel intensity proportional
to the area of overlap of the pixel with the finite-width line. The line can be treated
as a rectangle, and the section of the line area between two adjacent vertical (or
two adjacent horizontal) screen grid lines is then a trapezoid. Overlap areas for
pixels are calculated by determining how much of the trapezoid overlaps each
pixel in that column (or row). In Fig. 4-48, the pixel with screen grid coordinates
(10, 20) is about 90 percent covered by the line area, so its intensity would be
set to 90 percent of the maximum intensity. Similarly, the pixel at (10, 21) would
be set to an intensity of about 15 percent of maximum. A method for estimating
pixel overlap areas is illustrated by the supersampling example in Fig. 4-48. The
total number of subpixels within the line boundaries is approximately equal to
the overlap area, and this estimation is improved by using finer subpixel grids.

Filtering Techniques
A more accurate method for antialiasing lines is to use filtering techniques. The
method is similar to applying a weighted pixel mask, but now we imagine a con-
tinuous weighting surface (or filter function) covering the pixel. Figure 4-50 shows
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FIGURE 4-50 Common
filter functions used to
antialias line paths. The
volume of each filter is
normalized to 1.0, and the
height gives the relative
weight at any subpixel
position.

Box Filter Cone Filter Gaussian Filter
(a) (b) (c)

examples of rectangular, conical, and Gaussian filter functions. Methods for apply-
ing the filter function are similar to those for applying a weighting mask, but now
we integrate over the pixel surface to obtain the weighted average intensity. To
reduce computation, table lookups are commonly used to evaluate the integrals.

Pixel Phasing
On raster systems that can address subpixel positions within the screen grid,
pixel phasing can be used to antialias objects. A line display is smoothed with
this technique by moving (micropositioning) pixel positions closer to the line
path. Systems incorporating pixel phasing are designed so that the electron beam
can be shifted by a fraction of a pixel diameter. The electron beam is typically
shifted by 1

4 , 1
2 , or 3

4 of a pixel diameter to plot points closer to the true path of
a line or object edge. Some systems also allow the size of individual pixels to be
adjusted as an additional means for distributing intensities. Figure 4-51 illustrates
the antialiasing effects of pixel phasing on a variety of line paths.

Compensating for Line-Intensity Differences
Antialiasing a line to soften the stair-step effect also compensates for another
raster effect, illustrated in Fig. 4-52. Both lines are plotted with the same number
of pixels, yet the diagonal line is longer than the horizontal line by a factor of

√
2.

For example, if the horizontal line had a length of 10 centimeters, the diagonal line
would have a length of more than 14 centimeters. The visual effect of this is that
the diagonal line appears less bright than the horizontal line, since the diagonal
line is displayed with a lower intensity per unit length. A line-drawing algorithm
could be adapted to compensate for this effect by adjusting the intensity of each
line according to its slope. Horizontal and vertical lines would be displayed with
the lowest intensity, while 45◦ lines would be given the highest intensity. But
if antialiasing techniques are applied to a display, intensities are automatically
compensated. When the finite width of a line is taken into account, pixel intensities
are adjusted so that the line displays a total intensity proportional to its length.
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FIGURE 4-51 Jagged
lines (a), plotted on the Merlin
9200 system, are smoothed (b)
with an antialiasing technique
called pixel phasing. This
technique increases the
number of addressable points
on the system from 768 by 576
to 3072 by 2304. (Courtesy of
Peritek Corp.)

FIGURE 4-52 Unequal length lines
displayed with the same number of pixels in
each line.

Antialiasing Area Boundaries
The antialiasing concepts we have discussed for lines can also be applied to the
boundaries of areas to remove their jagged appearance. We can incorporate these
procedures into a scan-line algorithm to smooth the boundaries as the area is
generated.

If system capabilities permit the repositioning of pixels, we could smooth
area boundaries by shifting pixel positions closer to the boundary. Other methods
adjust pixel intensity at a boundary position according to the percent of the pixel
area that is interior to the object. In Fig. 4-53, the pixel at position (x, y) has about
half its area inside the polygon boundary. Therefore, the intensity at that position
would be adjusted to one-half its assigned value. At the next position (x+1, y+1)
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FIGURE 4-53 Adjusting pixel
intensities along an area boundary.

FIGURE 4-54 A 4 by
4 pixel section of a raster
display subdivided into an
8 by 8 grid.
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FIGURE 4-55 A sub-
divided pixel area with
three subdivisions inside
an object boundary line.

along the boundary, the intensity is adjusted to about one-third the assigned value
for that point. Similar adjustments, based on the percent of pixel area coverage,
are applied to the other intensity values around the boundary.

y & mx " b

yk " 1

xk"1xk

yk " 0.5
yk

FIGURE 4-56 Boundary
edge of a fill area passing
through a pixel grid section.

Supersampling methods can be applied by determining the number of sub-
pixels that are in the interior of an object. A partitioning scheme with four subareas
per pixel is shown in Fig. 4-54. The original 4 by 4 grid of pixels is turned into
an 8 by 8 grid, and we now process eight scan lines across this grid instead of
four. Figure 4-55 shows one of the pixel areas in this grid that overlaps an object
boundary. Along the two scan lines, we determine that three of the subpixel areas
are inside the boundary. So we set the pixel intensity at 75 percent of its maximum
value.

Another method for determining the percentage of pixel area within a fill
region, developed by Pitteway and Watkinson, is based on the midpoint line
algorithm. This algorithm selects the next pixel along a line by testing the location
of the midposition between two pixels. As in the Bresenham algorithm, we set up
a decision parameter p whose sign tells us which of the next two candidate pixels
is closer to the line. By slightly modifying the form of p, we obtain a quantity that
also gives the percentage of the current pixel area that is covered by an object.

We first consider the method for a line with slope m in the range from 0 to 1.
In Fig. 4-56, a straight-line path is shown on a pixel grid. Assuming that the pixel
at position (xk , yk) has been plotted, the next pixel nearest the line at x = xk + 1 is
either the pixel at yk or the one at yk + 1. We can determine which pixel is nearer
with the calculation

y − ymid = [m(xk + 1) + b] − (yk + 0.5) (4-14)

This gives the vertical distance from the actual y coordinate on the line to the
halfway point between pixels at position yk and yk + 1. If this difference calculation
is negative, the pixel at yk is closer to the line. If the difference is positive, the pixel
at yk + 1 is closer. We can adjust this calculation so that it produces a positive
number in the range from 0 to 1 by adding the quantity 1 − m:

p = [m(xk + 1) + b] − (yk + 0.5) + (1 − m) (4-15)

Now the pixel at yk is nearer if p < 1 − m, and the pixel at yk + 1 is nearer if
p > 1 − m.
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FIGURE 4-57 Overlap area of a pixel rectangle, centered at
position (xk , yk ), with the interior of a polygon fill area.

FIGURE 4-58 Polygons
with more than one boundary
line passing through individual
pixel regions.

Parameter p also measures the amount of the current pixel that is overlapped
by the area. For the pixel at (xk , yk) in Fig. 4-57, the interior part of the pixel has
an area that can be calculated as

area = m · xk + b − yk + 0.5 (4-16)

This expression for the overlap area of the pixel at (xk , yk) is the same as that for
parameter p in Eq. 4-15. Therefore, by evaluating p to determine the next pixel
position along the polygon boundary, we also determine the percentage of area
coverage for the current pixel.

We can generalize this algorithm to accommodate lines with negative slopes
and lines with slopes greater than 1. This calculation for parameter p could then
be incorporated into a midpoint line algorithm to locate pixel positions along a
polygon edge and, concurrently, adjust pixel intensities along the boundary lines.
Also, we can adjust the calculations to reference pixel coordinates at their lower-
left coordinates and maintain area proportions, as discussed in Section 3-13.

At polygon vertices and for very skinny polygons, as shown in Fig. 4-58, we
have more than one boundary edge passing through a pixel area. For these cases,
we need to modify the Pitteway-Watkinson algorithm by processing all edges
passing through a pixel and determining the correct interior area.

Filtering techniques discussed for line antialiasing can also be applied to area
edges. And the various antialiasing methods can be applied to polygon areas or to
regions with curved boundaries. Equations describing the boundaries are used to
estimate the amount of pixel overlap with the area to be displayed, and coherence
techniques are used along and between scan lines to simplify the calculations.

4-18 OpenGL ANTIALIASING FUNCTIONS

We activate the antialiasing routines in OpenGL with the function

glEnable (primitiveType);

where parameter primitiveType is assigned one of the symbolic constant
values GL POINT SMOOTH, GL LINE SMOOTH, or GL POLYGON SMOOTH.
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Assuming we are specifying color values using the RGBA mode, we also need to
activate the OpenGL color-blending operations.

glEnable (GL_BLEND);

Next, we apply the color-blending method described in Section 4-3 using the
function

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

The smoothing operations are more effective if we use large alpha values in the
color specifications for the objects.

Antialiasing can also be applied when we use color tables. However, in this
color mode, we must create a color ramp, which is a table of color graduations
from the background color to the object color. This color ramp is then used to
antialias object boundaries.

4-19 OpenGL QUERY FUNCTIONS

We can retrieve current values for any of the state parameters, including attribute
settings, using OpenGL query functions. These functions copy specified state
values into an array, which we can save for later reuse or to check the current
state of the system if an error occurs.

For current attribute values we use an appropriate “glGet” function, such as

glGetBooleanv ( ) glGetFloatv ( )
glGetIntegerv ( ) glGetDoublev ( )

In each of the preceding functions, we specify two arguments. The first argument
is an OpenGL symbolic constant that identifies an attribute or other state param-
eter. The second argument is a pointer to an array of the data type indicated by
the function name. For instance, we can retrieve the current RGBA floating-point
color settings with

glGetFloatv (GL_CURRENT_COLOR, colorValues);

The current color components are then passed to the array colorValues. To ob-
tain the integer values for the current color components, we invoke the glGet-
Integerv function. In some cases, a type conversion may be necessary to return
the specified data type.

Other OpenGL constants, such as GL POINT SIZE, GL LINE WIDTH, and
GL CURRENT RASTER POSITION, can be used in these functions to return
current state values. And we could check the range of point sizes or line
widths that are supported using the constants GL POINT SIZE RANGE and
GL LINE WIDTH RANGE.

Although we can retrieve and reuse settings for a single attribute with the
glGet functions, OpenGL provides other functions for saving groups of attributes
and reusing their values. We consider the use of these functions for saving current
attribute settings in the next section.

There are many other state and system parameters that are often useful to
query. For instance, to determine how many bits per pixel are provided in the
frame buffer on a particular system, we can ask the system how many bits are
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available for each individual color component, such as

glGetIntegerv (GL_RED_BITS, redBitSize);

Here, array redBitSize is assigned the number of red bits available in each of
the buffers (frame buffer, depth buffer, accumulation buffer, and stencil buffer).
Similarly, we can make an inquiry for the other color bits usingGL GREEN BITS,
GL BLUE BITS, GL ALPHA BITS, or GL INDEX BITS.

We can also find out whether edge flags have been set, whether a polygon face
was tagged as a front face or a back face, and whether the system supports double
buffering. And we can inquire whether certain routines, such as color blending,
line stippling or antialiasing, have been enabled or disabled.

4-20 OpenGL ATTRIBUTE GROUPS

Attributes and other OpenGL state parameters are arranged in attribute groups.
Each group contains a set of related state parameters. For instance, the point-
attribute group contains the size and point-smooth (antialiasing) parameters,
and the line-attribute group contains the width, stipple status, stipple pattern,
stipple repeat counter, and line-smooth status. Similarly, the polygon-attribute
group contains eleven polygon parameters, such as fill pattern, front-face flag,
and polygon-smooth status. Since color is an attribute for all primitives, it has its
own attribute group. And some parameters are included in more than one group.

About twenty different attribute groups are available in OpenGL, and all
parameters in one or more groups can be saved or reset with a single function.
We save all parameters within a specified group using the following command.

glPushAttrib (attrGroup);

Parameter attrGroup is assigned an OpenGL symbolic constant that identifies
an attribute group, such as GL POINT BIT, GL LINE BIT, or GL POLYGON
BIT. To save color parameters, we use the symbolic constant GL CURRENT BIT.
And we can save all state parameters in all attribute groups with the constant
GL ALL ATTRIB BITS. The glPushAttrib function places all parameters
within the specified group onto an attribute stack.

We can also save parameters within two or more groups by combining their
symbolic constants with a logical OR operation. The following statement places
all parameters for points, lines, and polygons on the attribute stack.

glPushAttrib (GL_POINT_BIT | GL_LINE_BIT | GL_POLYGON_BIT);

Once we have saved a group of state parameters, we can reinstate all values
on the attribute stack with this function:

glPopAttrib ( );

No arguments are used in the glPopAttrib function since it resets the current
state of OpenGL using all values on the stack.

These commands for saving and resetting state parameters use a server
attribute stack. There is also a client attribute stack available in OpenGL for saving
and resetting client state parameters. The functions for accessing this stack are
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glPushClientAttrib and glPopClientAttrib. Only two client attribute
groups are available: one for pixel-storage modes and the other for vertex arrays.
Pixel-storage parameters include information such as byte alignment and the type
of arrays used to store subimages of a display. Vertex-array parameters give in-
formation about the current vertex-array state, such as the enable/disable state
of various arrays.

4-21 SUMMARY

Attributes control the display characteristics of graphics primitives. In many
graphics systems, attribute values are stored as state variables and primitives
are generated using the current attribute values. When we change the value of a
state variable, it affects only those primitives defined after the change.

A common attribute for all primitives is color, which is most often specified
in terms of RGB (or RGBA) components. The red, green, and blue color values are
stored in the frame buffer, and they are used to control the intensity of the three
electron guns in an RGB monitor. Color selections can also be made using color-
lookup tables. In this case, a color in the frame buffer is indicated as a table index,
and the table location at that index stores a particular set of RGB color values.
Color tables are useful in data-visualization and image-processing applications,
and they can also be used to provide a wide range of colors without requiring a
large frame buffer. Often, computer-graphics packages provide options for using
either color tables or storing color values directly in the frame buffer.

The basic point attributes are color and size. On raster systems, various point
sizes are displayed as square pixel arrays. Line attributes are color, width, and
style. Specifications for line width are given in terms of multiples of a standard,
one-pixel-wide line. The line-style attributes include solid, dashed, and dotted
lines, as well as various brush or pen styles. These attributes can be applied to
both straight lines and curves.

Fill-area attributes include a solid-color fill, a fill pattern, or a hollow dis-
play that shows only the area boundaries. Various pattern fills can be specified
in color arrays, which are then mapped to the interior of the region. Scan-line
methods are commonly used to fill polygons, circles, and ellipses. Across each
scan line, the interior fill is applied to pixel positions between each pair of bound-
ary intersections, left to right. For polygons, scan-line intersections with vertices
can result in an odd number of intersections. This can be resolved by shortening
some polygon edges. Scan-line fill algorithms can be simplified if fill areas are
restricted to convex polygons. A further simplification is achieved if all fill areas
in a scene are triangles. The interior pixels along each scan line are assigned
appropriate color values, depending on the fill-attribute specifications. Painting
programs generally display fill regions using a boundary-fill method or a flood-
fill method. Each of these two fill methods requires an initial interior point. The
interior is then painted pixel by pixel from the initial point out to the region
boundaries.

Areas can also be filled using color blending. This type of fill has applications
in antialiasing and in painting packages. Soft-fill procedures provide a new fill
color for a region that has the same variations as the previous fill color. One
example of this approach is the linear soft-fill algorithm that assumes that the
previous fill was a linear combination of foreground and background colors. This
same linear relationship is then determined from the frame buffer settings and
used to repaint the area in a new color.
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TABLE 4-2

SUMMARY OF OpenGL ATTRIBUTE FUNCTIONS
Function Description

glutInitDisplayMode Select the color mode, which can be either
GLUT RGB or GLUT INDEX.

glColor* Specify an RGB or RGBA color.

glIndex* Specify a color using a color-table index.

glutSetColor (index, r, g, b); Load a color into a color-table position.

glEnable (GL BLEND); Activate color blending.

glBlendFunc (sFact, dFact); Specify factors for color blending.

glEnableClientState Activate color-array features of OpenGL.
(GL COLOR ARRAY);

glColorPointer Specify an RGB color array.
(size, type, stride, array);

glIndexPointer Specify a color array using color-index
(type, stride, array); mode.

glPointSize (size) Specify a point size.

glLineWidth (width); Specify a line width.

glEnable (GL LINE STIPPLE); Activate line style.

glEnable (GL POLYGON STIPPLE); Activate fill style.

glLineStipple (repeat, pattern); Specify a line-style pattern.

glPolygonStipple (pattern); Specify a fill-style pattern.

glPolygonMode Display front or back face as either a set
of edges or a set of vertices.

glEdgeFlag Set fill-polygon edge flag to GL TRUE
or GL FALSE to determine display
status for an edge.

glFrontFace Specify front-face vertex order as
either GL CCW or GL CW.

glEnable Activate antialiasing with
GL POINT SMOOTH, GL LINE SMOOTH,
or GL POLYGON SMOOTH. (Also need
to activate color blending.)

glGet** Various query functions, requiring
specification of data type, symbolic
name of a state parameter, and an
array pointer.

glPushAttrib Save all state parameters within a
specified attribute group.

glPopAttrib ( ); Reinstate all state parameter values that
were last saved.
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Characters can be displayed in different styles (fonts), colors, sizes, spacing,
and orientations. To set the orientation of a character string, we can specify a
direction for the character up vector and a direction for the text path. In addition,
we can set the alignment of a text string in relation to the start coordinate position.
Individual characters, called marker symbols, can be used for applications such
as plotting data graphs. Marker symbols can be displayed in various sizes and
colors using standard characters or special symbols.

Because scan conversion is a digitizing process on raster systems, displayed
primitives have a jagged appearance. This is due to the undersampling of in-
formation, which rounds coordinate values to pixel positions. We can improve
the appearance of raster primitives by applying antialiasing procedures that ad-
just pixel intensities. One method for doing this is to supersample. That is, we
consider each pixel to be composed of subpixels and we calculate the intensity
of the subpixels and average the values of all subpixels. We can also weight the
subpixel contributions according to position, giving higher weights to the central
subpixels. Alternatively, we can perform area sampling and determine the per-
centage of area coverage for a screen pixel, then set the pixel intensity proportional
to this percentage. Another method for antialiasing is to build special hardware
configurations that can shift pixel positions.

In OpenGL, attribute values for the primitives are maintained as state vari-
ables. An attribute setting remains in effect for all subsequently defined primitives
until that attribute value is changed. Changing an attribute value does not affect
previously displayed primitives. We can specify colors in OpenGL using either the
RGB (RGBA) color mode or the color-index mode, which uses color-table indices
to select colors. Also, we can blend color values using the alpha color component.
And we can specify values in color arrays that are to be used in conjunction with
vertex arrays. In addition to color, OpenGL provides functions for selecting point
size, line width, line style, and convex-polygon fill style, as well as providing func-
tions for the display of polygon fill areas as either a set of edges or a set of vertex
points. We can also eliminate selected polygon edges from a display, and we can
reverse the specification of front and back faces. We can generate text strings in
OpenGL using bitmaps or routines that are available in GLUT. Attributes that can
be set for the display of GLUT characters include color, font, size, spacing, line
width, and line type. The OpenGL library also provides functions to antialias the
display of output primitives. We can use query functions to obtain the current
value for state variables, and we can also obtain all values within an OpenGL
attribute group using a single function.

Table 4-2 summarizes the OpenGL attribute functions discussed in this
chapter. Additionally, the table lists some attribute-related functions.
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EXERCISES

4-1 Use the glutSetColor function to set up a color table for an input set of color
values.

4-2 Using vertex and color arrays, set up the description for a scene containing at least
six two-dimensional objects.

4-3 Write a program to display the two-dimensional scene description in the previous
exercise.

4-4 Using vertex and color arrays, set up the description for a scene containing at least
four three-dimensional objects.

4-5 Write a program to display a two-dimensional, gray-scale “cloud” scene, where
the cloud shapes are to be described as point patterns on a blue-sky background.
The light and dark regions of the clouds are to be modeled using points of varying
sizes and interpoint spacing. (For example, a very light region can be modeled with
small, widely spaced, light-gray points. Similarly, a dark region can be modeled
with larger, more closely spaced, dark-gray points.)

4-6 Modify the program in the previous exercise to display the clouds in red and yellow
color patterns as they might be seen at sunrise or at sunset. To achieve a realistic
effect, use different shades of red and yellow (and perhaps green) for the points.

4-7 Implement a general line-style function by modifying Bresenham’s line-drawing
algorithm to display solid, dashed, or dotted lines.

4-8 Implement a line-style function using a midpoint line algorithm to display solid,
dashed, or dotted lines.

4-9 Devise a parallel method for implementing a line-style function.

4-10 Devise a parallel method for implementing a line-width function.

4-11 A line specified by two endpoints and a width can be converted to a rectangular
polygon with four vertices and then displayed using a scan-line method. Develop
an efficient algorithm for computing the four vertices needed to define such a
rectangle, with the line endpoints and line width as input parameters.

4-12 Implement a line-width function in a line-drawing program so that any one of three
line widths can be displayed.

4-13 Write a program to output a line graph of three data sets defined over the same
x-coordinate range. Input to the program is to include the three sets of data values
and the labels for the graph. The data sets are to be scaled to fit within a defined
coordinate range for a display window. Each data set is to be plotted with a different
line style.

4-14 Modify the program in the previous exercise to plot the three data sets in different
colors, as well as different line styles.

4-15 Set up an algorithm for displaying thick lines with butt caps, round caps, or pro-
jecting square caps. These options can be provided in an option menu.

4-16 Devise an algorithm for displaying thick polylines with a miter join, a round join,
or a bevel join. These options can be provided in an option menu.

4-17 Modify the code segments in Section 4-8 for displaying data line plots, so that the
line-width parameter is passed to procedure linePlot.

4-18 Modify the code segments in Section 4-8 for displaying data line plots, so that the
line-style parameter is passed to procedure linePlot.

4-19 Complete the program in Section 4-8 for displaying line plots using input values
from a data file.

4-20 Complete the program in Section 4-8 for displaying line plots using input values
from a data file. In addition, the program should provide labeling for the axes and
the coordinates for the display area on the screen. The data sets are to be scaled to fit
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the coordinate range of the display window, and each plotted line is to be displayed
in a different line style, width, and color.

4-21 Implement pen and brush menu options for a line-drawing procedure, including
at least two options: round and square shapes.

4-22 Modify a line-drawing algorithm so that the intensity of the output line is set ac-
cording to its slope. That is, by adjusting pixel intensities according to the value of
the slope, all lines are displayed with the same intensity per unit length.

4-23 Define and implement a function for controlling the line style (solid, dashed, dotted)
of displayed ellipses.

4-24 Define and implement a function for setting the width of displayed ellipses.

4-25 Write a routine to display a bar graph in any specified screen area. Input is to include
the data set, labeling for the coordinate axes, and the coordinates for the screen area.
The data set is to be scaled to fit the designated screen area, and the bars are to be
displayed in designated colors or patterns.

4-26 Write a procedure to display two data sets defined over the same x-coordinate
range, with the data values scaled to fit a specified region of the display screen.
The bars for one of the data sets are to be displaced horizontally to produce an
overlapping bar pattern for easy comparison of the two sets of data. Use a different
color or a different fill pattern for the two sets of bars.

4-27 Devise an algorithm for implementing a color lookup table.

4-28 Suppose you have a system with an 8 inch by 10 inch video screen that can display
100 pixels per inch. If a color lookup table with 64 positions is used with this system,
what is the smallest possible size (in bytes) for the frame buffer?

4-29 Consider an RGB raster system that has a 512-by-512 frame buffer with 20 bits per
pixel and a color lookup table with 24 bits per pixel. (a) How many distinct gray
levels can be displayed with this system? (b) How many distinct colors (including
gray levels) can be displayed? (c) How many colors can be displayed at any one
time? (d) What is the total memory size? (e) Explain two methods for reducing
memory size while maintaining the same color capabilities.

4-30 Modify the scan-line algorithm to apply any specified rectangular fill pattern to a
polygon interior, starting from a designated pattern position.

4-31 Write a program to scan convert the interior of a specified ellipse into a solid color.

4-32 Write a procedure to fill the interior of a given ellipse with a specified pattern.

4-33 Write a procedure for filling the interior of any specified set of fill-area vertices,
including one with crossing edges, using the nonzero winding number rule to
identify interior regions.

4-34 Modify the boundary-fill algorithm for a 4-connected region to avoid excessive
stacking by incorporating scan-line methods.

4-35 Write a boundary-fill procedure to fill an 8-connected region.

4-36 Explain how an ellipse displayed with the midpoint method could be properly
filled with a boundary-fill algorithm.

4-37 Develop and implement a flood-fill algorithm to fill the interior of any specified
area.

4-38 Define and implement a procedure for changing the size of an existing rectangular
fill pattern.

4-39 Write a procedure to implement a soft-fill algorithm. Carefully define what the
soft-fill algorithm is to accomplish and how colors are to be combined.

4-40 Devise an algorithm for adjusting the height and width of characters defined as
rectangular grid patterns.

4-41 Implement routines for setting the character up vector and the text path for con-
trolling the display of character strings.
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4-42 Write a program to align text as specified by input values for the alignment
parameters.

4-43 Develop procedures for implementing marker attributes (size and color).

4-44 Implement an antialiasing procedure by extending Bresenham’s line algorithm to
adjust pixel intensities in the vicinity of a line path.

4-45 Implement an antialiasing procedure for the midpoint line algorithm.

4-46 Develop an algorithm for antialiasing elliptical boundaries.

4-47 Modify the scan-line algorithm for area fill to incorporate antialiasing. Use coher-
ence techniques to reduce calculations on successive scan lines.

4-48 Write a program to implement the Pitteway-Watkinson antialiasing algorithm as
a scan-line procedure to fill a polygon interior, using the OpenGL point-plotting
function.


