
RenderMan  for Poets

version 2.0 - 27 February 1994

Larry Gritz

Technical Report GWU-IIST-94-05
Department of EE & CS

The George Washington University
Washington, DC 20052

Abstract
The RenderMan Interface Standard was created by Pixar to provide a standard for detailed scene

specification for communication between 3D modeling programs and rendering programs. It is superficially
similar to PostScript, but designed as a scene description format rather than a page description language. The
Computer Graphics Research Group at GWU uses the RenderMan standard for much of its work, utilizing a
number of software tools written by graduate students which adhere to the RenderMan standard. This
document explains how to use the RenderMan Interface and to write simple RIB files. It is intended for the
reader who is familiar with the concepts of computer graphics but has little experience using RenderMan. It is
designed to give the reader just enough knowledge to create simple RIB files, but not to explain the advanced
features of RenderMan.

RenderMan for Poets 2

Table of Contents

1. INTRODUCTION.. 3

1.1 What is RenderMan?... 3

1.2 Procedural vs. RIB Interface.. 3

1.3 RIB Conventions... 3

1.4 Procedural Conventions... 4

1.5 Acknowledgments... 5

2. RIB File Structure.. 6

2.1 Introduction.. 6

2.2 Control Requests... 7

2.3 Modifying Graphics State Options... 8

2.4 Modifying Graphics State Attributes.. 9

2.5 Specifying Surface Shaders... 12

2.6 Specifying Light Sources... 14

2.7 Specifying Geometric Primitives.. 15

2.8 A Sample RIB File.. 17

2.9 A Sample Program.. 18

3. References.. 19

RenderMan for Poets 3

1. INTRODUCTION
This document explains how to use the RenderMan Interface and to write simple RIB

(RenderMan Interface ByteStream) files. It is intended for the reader who is familiar with the concepts
of computer graphics but has little experience using RenderMan. It is designed to give the reader just
enough knowledge to create simple RIB files, but not to explain the advanced features of RenderMan.
For more detailed information about the RenderMan standard, you should see The RenderMan
Companion, by Steve Upstill, or the official RenderMan Interface Specification, available from Pixar.
Both of these texts are fully detailed and clearly written, and no attempt will be made here to duplicate
all but the most basic information in these references.

1.1 What is RenderMan?
RenderMan is a standard, created by Pixar, through which modeling programs can talk to

rendering programs or devices. It may be thought of as a scene description format in the same way that
PostScript is a page description format. This standard is hardware and operating system independent.
RenderMan allows a modeling program to specify what to render, but not how to render it. A renderer
which implements the RenderMan standard may choose to use scanline methods, ray tracing, radiosity,
or any other method. These implementation details have no bearing on the writing of RIB.

1.2 Procedural vs. RIB Interface
The first version of the RenderMan standard described a procedural interface, i.e. the function

calls for a library which could be linked to a modeling program. When the procedures are invoked,
information is passed to the renderer. Later versions of the RenderMan interface also defined the
RenderMan Interface Bytestream, or RIB protocol. RIB provides an ASCII interface to a renderer
which supports the RIB protocol.

A modeling or motion control program may create RIB in two ways:

1. Make procedural interface calls which result in the output of RIB.

2. Output RIB directly (e.g., using printf).

In the remainder of this document, RIB and procedural interface calls will be intermixed. Since
there is a nearly one-to-one correspondence between the two, it should be fairly straightforward for the
reader to follow the discussion.

1.3 RIB Conventions
RIB files are ASCII files organized into RIB requests. The following information may be

helpful in creating useful RIB files:

1. Each RIB request is on its own line, and subsequent requests are separated by carriage returns.

2. Any line beginning with a single hash character (#) indicates that the line is a comment and will
be ignored by the RIB interpreter.

RenderMan for Poets 4

3. Any line beginning with two hash characters (##) indicates a renderer hint. The most useful
hint is the ##Include directive. When followed by a file name in double quotes, this causes
the file to be read into the input stream at this point, just like the #include macro works in
the C language. For example:

...
This line is a comment
Translate 10 4 4
##Include "car.rib"
...

1.4 Procedural Conventions
The procedural interface is a linkable library with function call bindings for the C or C++

languages. The following information may be helpful in using the procedural interface:

1. All of the procedural calls are functions beginning with the prefix “Ri”. Function prototypes
and type definitions may be found in the header file ri.h .

2. Use of the RenderMan library should begin with a call to RiBegin, and end with a call to
RiEnd:

 ...
 RiBegin (RI_NULL);
 ...
 RiEnd ();
 ...

 No RenderMan calls should be made prior to RiBegin or after RiEnd .

3. The following useful type definitions are given in ri.h :

typedef char *RtToken;
typedef float RtFloat;
typedef RtFloat RtPoint[3], RtColor[3];
typedef RtFloat RtMatrix[4][4];

4. Many of the calls take optional arguments. The optional arguments are arranged into
“token/value” pairs. The token is a quoted string (char *), and the value is a (void *) to a value
appropriate to the token name. The list is terminated with the reserved token RI_NULL . For
example, the declaration for the RiSurface procedure is as follows:

void RiSurface (RtToken name, ...);

This indicates that the function takes one mandatory argument, a string (RtToken), and a
number of optional parameters. The example below shows how two token/value pairs are
passed to the RiSurface procedure:

RiSurface ("matte", "Kd", &kd, "Ks", &ks, RI_NULL);

RenderMan for Poets 5

1.5 Acknowledgments
I am required to state the following:

The RenderMan Interface Procedures and RIB Protocol are:
Copyright 1988, 1989, Pixar.

All rights reserved.
RenderMan is a registered trademark of Pixar.

Pixar's RenderMan Interface Specification document stipulates that you may write modeling
programs that incorporate the RenderMan procedure calls or that output RIB, royalty-free, as long as
you include the copyright notice above. Their document also allows for a no-charge license for anyone
who wishes to write a renderer that executes the Pixar RenderMan procedure calls or RIB requests.

RenderMan for Poets 6

2. RIB File Structure

2.1 Introduction
Almost all RenderMan requests fall into the following three categories:

1. Modification of the graphics state options.
2. Modification of the graphics state attributes.
3. Declaration of geometry.

As geometry is declared, each object will inherit the “current” graphics state attributes.
Modifications to the graphics state attributes will affect any subsequently defined geometry, but not
geometry which has already been declared.

The graphics state may be saved and restored using AttributeBegin and AttributeEnd .

Most geometric objects have preferred coordinate systems. A sphere, for example, is always
declared with its center at the origin. If you want the sphere someplace else, you have to give the
appropriate transformation first, then declare the geometry. The default coordinate system (before any
transformation are applied) is with the origin at the imaging plane, x axis to the right, y axis up, and z
axis “into” the screen. Note that this is a left handed coordinate system.

A correct RIB file contains the following features:

1. Setting options that are constant for all frames. Examples include image resolution and
pixel samples.

2. FrameBegin statement.
3. Setting graphics state options for this frame, such as output filename.
4. Setting graphics state options and attributes which are constant for this frame, such as the

camera transformation and projection type, depth of field, and light source declarations.
5. WorldBegin statement.
6. Intermixed graphics state attribute modifications and geometry declarations for the current

frame.
7. WorldEnd statement. This causes the following actions: The current frame is rendered

and saved. Any geometry and lighting declared in (6) is destroyed. The graphics state is
returned to the way it was right before (5).

8. FrameEnd statement. This causes the graphics state to return to its condition
immediately before (2).

9. If more frames are to be specified, steps 2-8 may repeat.

RenderMan for Poets 7

2.2 Control Requests

RiBegin (RtToken name, ...)

When using the procedural interface, a call to RiBegin must precede any calls to other Ri
routines. Generally, only the reserved token RI_NULL should be passed to RiBegin. There is no
corresponding RIB request.

RiEnd (void)

This statement should be the last Ri call made by a program. It serves to clean up the mess
caused by the renderer, free memory, etc. There is no corresponding RIB request (the equivalent
operations are performed when the end of the RIB file is reached).

RiArchiveRecord (RtToken type, RtString format, ...)

When the procedural calls cause RIB to be output (as is the case with the libribout.a
library), this call causes information to be put into the RIB stream. The value of type may be
either "comment" or "structure" . In the case of "comment" , the call results in the specified
information being place into the RIB file as a comment. In the case of "structure" , the
specified information is placed into the RIB file as a “renderer hint.” In either case, the format and
optional arguments work just like the C ‘printf’ function. Here are two examples:

RiArchiveRecord ("comment", "This will be a comment", RI_NULL);
RiArchiveRecord ("structure", "Include \"myfile.rib\"", RI_NULL);
RiArchiveRecord ("structure", "Include \"%s\"", filename, RI_NULL);

FrameBegin framenum
RiFrameBegin (int framenum)

Denotes the beginning of frame framenum for a multi-frame RIB file, which results in
pushing the current options onto the stack. Options may be changed outside of the
FrameBegin/FrameEnd block, but all geometry and attribute declarations (including the
WorldBegin/WorldEnd block) must occur inside the frame block.

FrameEnd
RiFrameEnd ()

Denotes the end of a frame for a multi-frame RIB file, resulting in the restoration of the
graphics state to that which was in effect at the corresponding FrameBegin statement.

WorldBegin
RiWorldBegin ()

Saves the current options and uses the current coordinate transformation to denote "world
space." All declarations of geometry or attribute changes must occur between WorldBegin and

RenderMan for Poets 8

WorldEnd , but options may be changed outside of this block. Coordinate transformations before
WorldBegin denote movements of the camera, while transformations inside the World block
apply to individual geometric primitives.

WorldEnd
RiWorldEnd ()

Denotes the end of the world block, generally resulting in rendering of the scene.

2.3 Modifying Graphics State Options

Display name type mode
RiDisplay (char *name, RtToken type, RtToken mode, ...)

name, enclosed in double quotes, is the name of the file to which the current image should be
saved (if type is "file"), or the name of the framebuffer in which to display the image (if type is
"framebuffer").

mode is a string, enclosed in double quotes, which gives the file type of the image. mode
may be any combination of "rgb" , "a" , and "z" .

For example:

"rgba" Renders an RGB image plus an alpha channel (the default).
"rgb" Renders an RGB three-channel image.
"z" Renders a depth-only image.

Examples:
Display "myfile.tif" "file" "rgba"

RiDisplay ("myfile.tif", "file", "rgba", RI_NULL);

Format xres yres pixelaspectratio
RiFormat (RtFloat xres, RtFloat yres, RtFloat pixelaspectratio)

Set the total image resolution to xres columns by yres rows. pixelaspectratio is the width of
a screen pixel divided by the height of a screen pixel. If screen pixels are square, pixelaspectratio
should be 1. According to the RenderMan standard, the default values (if no Format statement is
found) are 640 x 480 resolution and 1.0 aspect ratio. xres, yres and pixelaspectratio are all
numerical arguments.

Format 640 480 1

RiFormat (640, 480, 1);

RenderMan for Poets 9

PixelSamples x y
RiPixelSamples (RtFloat x, RtFloat y)

Set the degree of image supersampling. For one sample per pixel, both x and y should be 1.
If both x and y are 2, the image will be computed with a total of 4 samples per pixel. Note that
more samples per pixel will reduce aliasing, but will increase rendering time linearly with the total
number of samples. Both x and y are numerical arguments.

PixelSamples 1 1

RiPixelSamples (1,1);

Projection type parameters
RiProjection (RtToken type, ...)

Set the camera projection type. type may be "perspective" or "orthogonal" . If
type is "perspective" , the following parameter may be used:

"fov" fov

where fov is a numerical argument for the field of view, in degrees.

Example:

Projection "perspective" "fov" 45

RiProjection ("perspective", "fov", &fov, RI_NULL);

2.4 Modifying Graphics State Attributes

TransformBegin
TransformEnd
RiTransformBegin()
RiTransformEnd()

TransformBegin pushes the current transformation onto the stack so that it may be
restored later with TransformEnd .

AttributeBegin
AttributeEnd
RiAttributeBegin()
RiAttributeEnd()

AttributeBegin pushes the entire graphics state (including the current transformation)
onto the stack so that it may be restored later with by AttributeEnd .

Translate x y z
RiTranslate (RtFloat x, RtFloat y, RtFloat z)

Modify the current transformation by appending a translation.

RenderMan for Poets 10

Translate 5 0 23

RiTranslate (5.0, 0.0, 23.0);

Rotate theta x y z
RiRotate (RtFloat theta, RtFloat x, RtFloat y, RtFloat z)

Modify the current transformation by appending a rotation of theta degrees about an axis
defined by (x, y, z). Note that rotation is governed by the left hand rule, unless the Orientation

statement has previously been used.

Rotate 45.0 1 0 0

RiRotate (45.0, 1, 0, 0);

Scale sx sy sz
RiScale (RtFloat sx, RtFloat sy, RtFloat sz)

Append a linear scaling factor to the current transformation.

Scale 2 2 2

RiScale (2, 2, 2);

Identity
RiIdentity()

Change the current transformation to identity.

Transform < 16 floats >
RiTransform (RtMatrix m)

Change the current transformation to that given by the matrix, specified in row major order.
Note that it is assumed that transformations are done by postmultiplying a vector by a matrix. In
other words, the translation part of the matrix is the bottom row, not the right column.

Transform [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

RiTransform (m);

ConcatTransform <16 floats>
RiConcatTransform (RtMatrix m)

Append the given matrix to the current transformation. The matrix is specified in row major
order. Note that it is assumed that transformations are done by postmultiplying a vector by a
matrix. In other words, the translation part of the matrix is the bottom row, not the right column.

ConcatTransform [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

RiConcatTransform (m);

RenderMan for Poets 11

Color r g b
RiColor (RtColor c)

Change the current surface color to (r, g, b).

Color 1 .5 .5

RiColor (C);

Opacity r g b
RiOpacity (RtColor c)

Change the current surface opacity to (r, g, b). Completely transparent is (0,0,0).
Completely opaque, which is the default, is (1,1,1).

RiOpacity (C);

Opacity 1 1 1

Surface name parameters
RiSurface (RtToken name, ...)

name is a the surface type. Standard surfaces and their acceptable parameters are shown in
the following section. A particular RenderMan implementation may include more surface types.

Surface "matte" "Kd" 0.5

RiSurface ("matte", "Kd", &kd, RI_NULL);

LightSource name sequence parameters
RiLightSource (RtToken name, ...)

name is one of the light source types available. sequence is a numerical argument. The first
light source declared should have sequence 1, the second should be 2, etc.

Standard light sources and their acceptable parameters are explained later in this chapter.
Examples of Light source declarations:

LightSource "ambientlight" 1 "intensity" 0.5
LightSource "pointlight" 2 "from" [0 0 10] "intensity" 8
LightSource "distantlight" 3 "from" [0 0 0] "to" [0 0 1]

RiLightSource ("ambientlight", "intensity", &intensity, 0.5, RI_NULL);
RiLightSource ("pointlight", "from", from, "intensity", &intensity,

RI_NULL);
RiLightSource ("distantlight", "from", from, "to", to, RI_NULL);

RenderMan for Poets 12

2.5 Specifying Surface Shaders

Surface name parameters
RiSurface (RtToken name, ...)

name is a surface type. Standard surfaces and their acceptable parameters are shown below.
A particular RenderMan implementation may include more surface types. Please note that only
minimal information about these shaders is given below.

2.5.1 Surface "constant'' --- constant shading with no lighting
Parameters and Defaults

This shader has no parameters.

Description

This shader simply makes the object appear on the screen exactly as the surface color has been
set when the object is instanced. The surface color is set by using the Color RIB request. Note
that this is the only standard surface shader available which does not require a light source to
illuminate it.

Example

Color [1 .5 .5]
Surface "constant"
RiSurface ("constant", RI_NULL);

2.5.2 Surface "matte'' --- a Lambertian diffuse surface
 Parameters and Defaults

float Ka = 1, Kd = 1;

Description

This surface is a perfectly uniformly diffuse (Lambertian) surface. There are no specular
highlights or reflections on such an object. The base color of the object is given by the graphics
state's surface color attribute (set by a Color RIB request). Kd is the coefficient of diffuse
reflection, and Ka is the ambient coefficient.

Example

Color [1 .5 .5]
Surface "matte" "Kd" 0.8
RiSurface ("matte", "Kd", &kd, RI_NULL);

2.5.3 Surface "metal'' --- a metallic surface
Parameters and Defaults

 float Ka = 1, Ks = 1, roughness = .1;

Description

RenderMan for Poets 13

This surface has a metallic appearance with specular highlights from the light sources, but
does not have any mirror-like reflections. Therefore it looks more like a metal object with a roughly
textured surface.

As is typical of metals, specular highlights on this surface will have the same color as the base
color of the object, which is specified by the graphics state's surface color attribute (set by a
Color RIB request).

Ks is the coefficient of specular reflection, and Ka is the ambient coefficient. roughness is
related to the size of the specular highlight. Note that there is no "Kd" parameter, and therefore
no uniform diffuse reflection.

Example

Color [1 1 .5]
Surface "metal" "Ks" .8 "roughness" .01
RiSurface ("metal", "Ks", &ks, "roughness", &roughness, RI_NULL);

2.5.4 Surface "plastic'' --- a plastic surface
Parameters and Defaults

float Ka = 1, Kd = .5, Ks = .5, roughness = .1;
color specularcolor = [1 1 1];

Description

This surface has an appearance that looks like plastic: uniform diffuse reflection that is the
base color of the object and specular highlights from the light sources. To give an appearance that
looks like plastic, the color of the specular highlights should be the same as the color of the light
sources. Therefore the value of "specularcolor" should remain as a neutral filter (the default).

Example

Color [1 1 .5]
Surface "plastic" "Ks" .8 "roughness" .01
RiSurface ("plastic", "Ks", &ks, "roughness", &rough, RI_NULL);

2.5.5 Surface "paintedplastic'' --- a texture mapped plastic surface
Parameters and Defaults

float Ka = 1, Kd = .5, Ks = .5, roughness = .1;
color specularcolor = [1 1 1];
string texturename = " '';

Description

This surface has the same reflectance characteristics as the "plastic" surface, but the base
color at any particular point is determined by lookup into an image file stored on disk. The
"texturename" parameter should be set to the name of the disk file containing a texture map
image.

Example

Color [1 1 .5]
Surface "paintedplastic" "Kd" .8 "texturename" "myfile.tif"

RenderMan for Poets 14

char *txtname = “myfile.tif”
RiSurface (“paintedplastic”, “Kd”, &Kd, “texturename”,
 &txtname, RI_NULL);

2.6 Specifying Light Sources

2.6.1 Light "ambientlight'' --- ambient light source
Parameters and Defaults

 float intensity = 1;
 color lightcolor = [1 1 1];

Description

This is an ambient light source.

Example

LightSource "ambientlight" "intensity" 0.5

2.6.2 Light "distantlight'' --- solar light
Parameters and Defaults

float intensity = 1;
color lightcolor = [1 1 1];
point from = point "shader'' [0 0 0];
point to = point "shader'' [0 0 1];

Description

This is a sun-like light source. Light rays are parallel, and show no falloff with distance. This
light has no actual physical location, but only a direction, which is determined by the vector
connecting the "from" and "to" points specified.

Example

LightSource "distantlight" "to" [1 1 -1]

2.6.3 Light "pointlight'' --- point light source
Parameters and Defaults

float intensity = 1;
color lightcolor = [1 1 1];
point from = point "shader'' [0 0 0];

Description

This is a point light source at the location given by the "from" parameter. The light has a
falloff of 1/r2. The parameter given by "intensity" is the flux of the light source when one
unit from the source position.

Example

LightSource "pointlight" "from" [1 1 10] "intensity" 10

RenderMan for Poets 15

2.6.4 Light "spotlight'' --- spot light source
Parameters and Defaults

float intensity = 1;
color lightcolor = [1 1 1];
point from = [0 0 0], to = [0 0 1];
float coneangle = radians(30), conedeltaangle = radians(5);
float beamdistribution = 2;

Description

This is a spot light source, illuminating a particular solid angle. The angles must be specified
in radians, not degrees. Please refer to [Upstill89] or [Pixar89] for more details on the meanings
of the parameters.

Example

LightSource "spotlight" "from" [1 1 10] "to" [1 1 0]

2.7 Specifying Geometric Primitives

Polygon parameters
RiPolygon (int nvertices, ...)

Give a simple convex polygon. The "P" parameter is required, all others are optional. The
number of vertices is specified implicitly by the number of points given after "P" . Points should
be given in clockwise order. Valid parameters include:

"P" points Enclosed in brackets, all points in the polygon are given as x,y,z
triples.

"Cs" points RGB values are given for colors at each vertex in the polygon. This
is how Gouraud shading is done.

"N" points Vectors are given for normals at each vertex in the polygon. This is
how Phong shading is done.

Examples:

Polygon "P" [1 1 0 0 4 5 0 9 0]
Polygon "P" [0 1 0 0 8 0 4 4 0] "N" [1 0 0 1 0 0 0 1 0]

RiPolygon (3, "P", (float *)p, "N", (float *)n, RI_NULL);

Sphere radius zmin zmax thetamax
RiSphere (RtFloat rad, RtFloat zmin, RtFloat zmax, RtFloat thetamax, ...)

Declare a sphere of given radius. Chop off the parts below zmin and above zmax, and
sweep a total of thetamax degrees. A full sphere has zmin = -radius, zmax = radius, and
thetamax=360.

Sphere 1 -1 1 360

RenderMan for Poets 16

RiSphere (1, -1, 1, 360, RI_NULL);

Cone height radius thetamax
RiCone (RtFloat height, RtFloat radius, RtFloat thetamax, ...)

Declare a cone with a base of radius at the origin, and its tip on the z axis with a z value of
height. Argument thetamax defines the sweep angle in degrees, and should be 360 for a
“complete” cone.

Cone 5 1 360

RiCone (5, 1, 360, RI_NULL);

Cylinder radius zmin zmax thetamax
RiCylinder (RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat thetamax, ...)

Declare a cylinder aligned with the z axis, with given radius, minimum and maximum z
values and with a sweep angle of thetamax.

Cylinder 2 0 8 180

RiCylinder (2, 0, 8, 180, RI_NULL);

Disk height radius thetamax
RiDisk (RtFloat height, RtFloat radius, RtFloat thetamax, ...)

Declare a disk of given radius perpendicular to the z axis and with a z value of height.

Disk 5 0.5 360

RiDisk (5, 0.5, 360, RI_NULL);

Note: Many more primitives may be declared in RenderMan, including nonconvex polygons
with multiple loops, paraboloids, hyperboloids, tori, bilinear and bicubic patches and patch meshes,
and NURBS. Please consult The RenderMan Companion or The RenderMan Interface Specification
for more details on these primitives and the use of constructive solid geometry (CSG).

RenderMan for Poets 17

2.8 A Sample RIB File
A sample RIB file of two frames is shown below:

Format 512 512 1
PixelSamples 2 2
FrameBegin 1
 Display "t1.tif" "file" "rgb"
 Projection "perspective" "fov" 45
 Translate 0 -1.5 10
 Rotate -90 1 0 0
 Rotate -10 0 1 0
 WorldBegin
 LightSource "ambientlight" 1 "intensity" 0.5
 LightSource "distantlight" 2 "from" [0 0 1] "to" [0 10 0]
 Surface "plastic" "Ka" 0.5 "Kd" 0.8 "Ks" 0.2
 Translate .5 .5 .8
 Sphere 5 -5 5 360
 WorldEnd
FrameEnd
FrameBegin 2
 Display "t2.tif" "file" "rgb"
 Projection "perspective" "fov" 45
 Translate 0 -2 10
 Rotate -90 1 0 0
 Rotate -20 0 1 0
 WorldBegin
 LightSource "ambientlight" 1 "intensity" 0.5
 LightSource "distantlight" 2 "from" [0 0 1] "to" [0 10 0]
 Surface "plastic" "Ka" 0.5 "Kd" 0.8 "Ks" 0.2
 Translate 1 1 1
 Sphere 8 -8 8 360
 WorldEnd
FrameEnd

RenderMan for Poets 18

2.9 A Sample Program
A sample C program to generate two frames is shown below:

#include <math.h>
#include "ri.h"

void main (void)
{
 static RtFloat fov = 45, intensity = 0.5;
 static RtFloat Ka = 0.5, Kd = 0.8, Ks = 0.2;
 static RtPoint from = {0,0,1}, to = {0,10,0};

 RiBegin (RI_NULL);
 RiFormat (512, 512, 1);
 RiPixelSamples (2, 2);
 RiFrameBegin (1);
 RiDisplay ("t1.tif", "file", "rgb", RI_NULL);
 RiProjection ("perspective", "fov", &fov, RI_NULL);
 RiTranslate (0, -1.5, 10);
 RiRotate (-90, 1, 0, 0);
 RiRotate (-10, 0, 1, 0);
 RiWorldBegin ();
 RiLightSource ("ambientlight", "intensity", &intensity,RI_NULL);
 RiLightSource ("distantlight", "from", from, "to", to, RI_NULL);
 RiSurface ("plastic", "Ka", &Ka, "Kd", &Kd, "Ks", &Ks, RI_NULL);
 RiTranslate (.5, .5, .8);
 RiSphere (5, -5, 5, 360, RI_NULL);
 RiWorldEnd ();
 RiFrameEnd ();
 RiFrameBegin (2);
 RiDisplay ("t2.tif", "file", "rgb", RI_NULL);
 RiProjection ("perspective", "fov", &fov, RI_NULL);
 RiTranslate (0, -2, 10);
 RiRotate (-90, 1, 0, 0);
 RiRotate (-20, 0, 1, 0);
 RiWorldBegin ();
 RiLightSource ("ambientlight", "intensity", &intensity,RI_NULL);
 RiLightSource ("distantlight", "from", from, "to", to, RI_NULL);
 RiSurface ("plastic", "Ka", &Ka, "Kd", &Kd, "Ks", &Ks, RI_NULL);
 RiTranslate (1, 1, 1);
 RiSphere (8, -8, 8, 360, RI_NULL);
 RiWorldEnd ();
 RiFrameEnd ();
 RiEnd ();
}

RenderMan for Poets 19

3. References
[Upstill89] Upstill, Steve. The RenderMan Companion: A Programmer's Guide to Realistic

Computer Graphics. Addison-Wesley, 1989.

[Pixar89] Pixar. “The RenderMan Interface, version 3.1 official specification.” Published by
Pixar, 1989.

[Siggraph90] “The RenderMan Interface and Shading Language,” Siggraph '90 course notes (course
18), 1990.

[Siggraph92] “Writing RenderMan Shaders,” Siggraph '92 course notes (course 21), 1992.

[Gritz93] Gritz, Larry. “Computing Specular-to-Diffuse Illumination for Two-Pass Rendering,”
Master's Thesis, The George Washington University, Dept. of EE & CS, May, 1993.

