RenderMan [for Poets

version 2.0 - 27 February 1994

Larry Gritz

Technical Report GWU-IIST-94-05
Department of EE & CS
The George Washington University
Washington, DC 20052

Abstract

The RenderMan Interface Standarevas created byixar to provide astandardfor detailed scene
specification for communication between 3D modelimggrams and rendering programs. Isigerficially
similar to PostScript, but designed as a scene description frathat than g@age description language. The
Computer Graphics Research Grous&/U useghe RenderMan standafdr much of its work, utilizing a
number ofsoftware toolswritten by graduate students which adhere to the RenderMan standard. This
document explainBow to usehe RenderMan Interfacend towrite simpleRIB files. It is intended for the
reader who is familiar with the concepts of computer graphics but has little experience using RenderMan. 1t is

designed to givéhe reader just enoudtmowledge to create simpRIB files, but not to explain thadvanced
features of RenderMan.

Table of Contents

1. INTRODUGCTION . .ottt e s e e e e e eeeeeeeens 3
1.1 What iS RENAEIMAIN?. ...t e et e e e eenaaaas 3
1.2 Procedural VS. RIB INTEITACE.ccoiiiiiiiiiei et 3
1.3 RIB CONVENTIONS. ...ttt e e e e e e e e e 3
1.4 Procedural CONVENTIONS.uuuueeeeiieetie ettt e et e e e e e et e e e e eenees 4
1.5 ACKNOWIEAGIMENTS. ... et e e e e e e 5

2. RIB FilE STIUCTUIottt e et e e e e e et e e e 6
P2 R [oo [F o1 1 o] o HO TSP PP PPSPPPPPPPRIN 6
2.2 CONLIOI REQUESES. ...ttt ettt ettt e e e et e et e e e e e eeennnes 7
2.3 Modifying Graphics State OPLiONS.ccovruiiuiiiie e 8
2.4 Modifying Graphics State AtrDULES.............uuiiiiiiiii e 9
2.5 Specifying Surface SNaderS.............uiiiiiiiii e 12
2.6 SPEeCIfYiNg LIGNT SOUICES.cooiiiiiiie et 14
2.7 Specifying GEOMEtriC PrMItIVESoiiiiiiiiiiie e 15
2.8 A SAMPIE RIB FilE. ...t 17
2.9 A SAMPIE PrOGIam....ccoieeiiiiii ettt e et e e et e e e e e e e enrnnne 18

3. REIEIENCES. ... ettt ettt 19

RenderMan for Poets 2

1. INTRODUCTION

This document explaindhow to use the RenderMan Interface and to write simple RIB
(RenderMan Interface ByteStream) files. linendedfor the readewho isfamiliar with the concepts
of computer graphicbut hadlittle experience using RenderMan. Itdiesigned to give theeader just
enough knowledge toreate simpldRIB files, but not to explain the advanced features of RenderMan.
For more detailed informatiorabout the RenderManstandard,you should seeThe RenderMan
Companion by Steve Upsitill, or the officidkenderMan Interface Specificatioavailable fronPixar.
Both of thesaexts ardully detailed and clearly written, and no attemjiit be made here to duplicate
all but the most basic information in these references.

1.1 What is RenderMan?

RenderMan is a standard, createdRayar, through whichmodeling prgrams can talk to
rendering programs or devices. It may be thought of as a scene description format in the same way that
PostScript is a pagdescription format. This standard is hardware and opersystgm independent.
RenderMan allows enodelingprogram to specifyhatto renderput not howto rendeiit. A renderer
which implements the RenderMatandardnay choose to use scanline methods traging, radiosity,
or any other method. These implementation details have no bearing on the writing of RIB.

1.2 Procedural vs. RIB Interface

The firstversion of the RenderMastandarddescribed a pradural interface, i.ehe function
calls for a librarywhich could be linked to anodelng program. When theprocedures arewvoked,
information is passed to the renderdrater vesions of the RenderMan interface af$efined the
RenderMan Interface Bytestream, or RIB protocol. RIB provides an ASCII interface to a renderer
which supports the RIB protocol.

A modeling or motion control program may create RIB in two ways:
1. Make procedural interface calls which result in the output of RIB.
2. Output RIB directly (e.g., using printf).

In the remainder of this documeR®B and procedural interface callsll be intermixed. Since
there is a nearly one-to-one correspondence betweéndhé should be fairly straightforwaridr the
reader to follow the discussion.

1.3 RIB Conventions

RIB files are ASCIIfiles organized intoRIB requests The following information may be
helpful in creating useful RIB files:

1. Each RIB request is on its own line, and subsequent requests are separated by carriage returns.

2. Any line beginning with a single hash character (#) indicates that the line is a comment and will
be ignored by the RIB interpreter.

RenderMan for Poets 3

3. Any line beginning with twdash characters (##) indicateseaderer hint The most useful
hint is the##Include directive. When followed by a file name in douldeotes, this causes
the file to beread into the input stream at this pojost like the#include macro works in
the C language. For example:

#.This line is a comment
Translate 10 4 4
##Include "car.rib"

1.4 Procedural Conventions

The procedural interface is a linkablbrary with function call bindingsfor the C or C++
languages. The following information may be helpful in using the procedural interface:

1. All of theprocedural calls arkinctions beginning with thprefix “Ri”. Function prototypes
and type definitions may be found in the headerrifite .

2. Use of the RenderMdibrary should begin with aall to RiBegin, andend with acall to
RIiEnd:

RiBegin (RI_NULL);

RIENd ():

No RenderMan calls should be made pridriBegin or afterRiEnd .

3. The following useful type definitions are giverrii

typedef char *RtToken;

typedef float RtFloat;

typedef RtFloat RtPoint[3], RtColor[3];
typedef RtFloat RtMatrix[4][4];

4. Many of the calls take optional arguments. The optional argunaeatsaranged into
“token/value” pairs. The token is a quoted string (char *), and the value is a (void *) to a value
appropriate tdhe token name. THest is terminated with the reservemkenRI_NULL. For
example, the declaration for the RiSurface procedure is as follows:

void RiSurface (RtToken name, ...);
This indicates that the function takes one mandatory argument, a string (RtToken), and a

number of optional parameters. Theample below shows how two token/valpeirs are
passed to the RiSurface procedure:

RiSurface ("matte”, "Kd", &kd, "Ks", &ks, RI_NULL);

RenderMan for Poets 4

1.5 Acknowledgments
| am required to state the following:

The RenderMdn Interface Procedures and RIB Protocol are:
Copyright 1988, 1989, Pixar.
All rights reserved.
RenderManl is a registered trademark of Pixar.

Pixar's RenderMan Interface Specificatiadocumentstipulates thayyou may writemodeling
programs that incorporathe RenderMan procedure callstbat output RIB, royalty-free, deng as
you include the copyright notice above. Thaocumenglso allows for a no-chardieensefor anyone
who wishes to write a renderer that executes the Pixar RenderMan procedure calls or RIB requests.

RenderMan for Poets 5

2. RIB File Structure

2.1 Introduction
Almost all RenderMan requests fall into the following three categories:

1. Modification of the graphics state options.
2. Madification of the graphics state attributes.
3. Declaration of geometry.

As geometry is declared, each object will inherit tioairrent” graphics state attributes.
Modifications to the graphicstate attributesvill affect any subsequentiyefined geometrybut not
geometry which has already been declared.

The graphics state may be saved and restored AgiitgiteBegin andAttributeEnd

Most geometric objects have preferred coordinate systems. A spbeexanple, is always
declared withits center athe origin. If you want the sphesamelace else, you have wve the
appropriate transformation firghen declare the geometry. The default coordinate system (before any
transformation arapplied) is with the origin at the imaging planeaxis tothe right, yaxis up,and z
axis “into” the screen. Note that this is a left handed coordinate system.

A correct RIB file contains the following features:

1. Setting options that are constant for all frames. Examples include image resolution and
pixel samples.

2. FrameBegin statement.

3. Setting graphics state options for this frame, such as output filename.

4. Setting graphics state options and attributes which are constant for this frame, such as the

camera transformation and projection type, depth of field, and light source declarations.

WorldBegin statement.

Intermixed graphics state attribute modifications and geometry declarations for the current

frame.

7. WorldEnd statement. This causes the following actions: The current frame is rendered
and saved. Any geometry and lighting declared in (6) is destroyed. The graphics state is
returned to the way it was right before (5).

8. FrameEnd statement. This causes the graphics state to return to itéi@ondi
immediately before (2).

9. If more frames are to be specified, steps 2-8 may repeat.

o u

RenderMan for Poets 6

2.2 Control Requests

RiBegin (RtToken name, ...)

When using therocedural interface, a call to RiBegin must precedecaliy to other Ri
routines. Generallyonly the reserved tokeRl_NULL should be passed to RiBegin. There is no
corresponding RIB request.

RIENd (void)

This statement should be tlzest Ri callmade by grogram. It serves to clean up tiness
caused by the renderer, freemory,etc. There is no corresponding RIB request étpaivalent
operations are performed when the end of the RIB file is reached).

RiArchiveRecord (RtToken type, RtString format, ...)

When theprocedural calls cause RIB to be outfas isthe case with thébribout.a
library), this call causemformation to beput into theRIB stream. The value dfpe may be
either"comment” or "structure” . In the case dfcomment" , the call results in thepecified
information being place into thRIB file as a comment. In thease of"structure” , the
specified information is placed into the RIB file as a “renderer hint.” In estethe format and
optional arguments work just like the C ‘printf’ function. Here are two examples:

RiArchiveRecord ("comment", "This will be a comment”, RI_NULL);

RiArchiveRecord ("structure”, "Include \"myfile.rib\"", RI_NULL);
RiArchiveRecord ("structure”, "Include \"%s\"", filename, RI_NULL);

FrameBegin framenum
RiFrameBegin (int framenum)

Denotes the beginning of franfeamenumfor a multi-frame RIB file,which results in
pushing the current options onto tistack. Optionsmay be changed outside of the
FrameBegin/FrameEnd blockput all geometry andattribute declarations(including the
WorldBegin/WorldEnd blockinustoccur inside the frame block.

FrameEnd
RiFrameEnd ()

Denotes the end of frame for a multi-frame RIB file, resulting itne restoration of the
graphics state to that which was in effect at the correspoRdamgeBegin statement.

WorldBegin
RiWorldBegin ()

Saves the current options and uses the current coordinate transformationtéo"derld
space." All declarations of geometry @ttributechanges must occhbetweenWorldBegin and

RenderMan for Poets 7

WorldEnd , but options may behanged outside of this block. Coordinate transformations before
WorldBegin denote movements of the cara, while transformationgnside the World block
apply to individual geometric primitives.

WorldEnd
RiWorldEnd ()

Denotes the end of the world block, generally resulting in rendering of the scene.

2.3 Modifying Graphics State Options

Display name type mode
RiDisplay (char *name, RtToken type, RtToken mode, ...)

name enclosed in double quotes, is the name of the file to whiotutinent image should be
saved (iftypeis "file"), or the name of thieamebuffer inwhich to display the image (ifpeis
"framebuffer")

modeis a string,enclosed in doublguotes, which gives the file type of theaige. mode
may be any combination tfgb” ,"a" , and"z" .

For example:
"rgha" Renders an RGB image plus an alpha channel (the default).
"rgh" Renders an RGB three-channel image.
"z" Renders a depth-only image.
Examples:

Display "myfile.tif" "file" "rgba"
RiDisplay ("myfile.tif", "file", "rgba", RI_NULL);

Format xres yres pixelaspectratio
RiFormat (RtFloat xres, RtFloat yres, RtFloat pixelaspectratio)

Set the totaimage resolution tarescolumns byyresrows. pixelaspectratidas the width of
a screen pixel divided by the height of a screierl. If screen pixelsire squarepixelaspectratio
should be 1. According to the RenderMaandardthe default values (if nBormat statement is
found) are 640 x 48Qesolution andl.0 aspect ratio.xres yres and pixelaspectratioare all
numerical arguments.
Format 640 480 1

RiFormat (640, 480, 1);

RenderMan for Poets 8

PixelSamples xvy
RiPixelSamples (RtFloat x, RtFloat y)

Set thedegree of imageupersampling For onesample per pixel, botk andy should be 1.
If both x andy are 2,the image will be computed withtatal of 4 samples per pixel. Note that
more sampleper pixelwill reducealiasing, buwill increase rendering time linearly with thatal
number of samples. Botandy are numerical arguments.
PixelSamples 1 1

RiPixelSamples (1,1);

Projection type parameters
RiProjection (RtToken type, ...)

Set the camera projection typg/pe may be'perspective" or "orthogonal” L f
typeis "perspective"” , the following parameter may be used:
"fov" fov

where fovis a numerical argument for the field of view, in degrees.

Example:
Projection "perspective" "fov" 45
RiProjection ("perspective”, "fov", &fov, RI_NULL);

2.4 Modifying Graphics State Attributes

TransformBegin
TransformEnd
RiTransformBegin()
RiTransformEnd()

TransformBegin ~ pushes the current transformation onto #t@ck so that itmay be
restored later witA ransformEnd

AttributeBegin
AttributeEnd
RiAttributeBegin()
RIiAttributeEnd()

AttributeBegin pushes the entire graphistate(including thecurrent transformation)
onto the stack so that it may be restored later witAtbybuteEnd

Translate xyz
RiTranslate (RtFloat x, RtFloat y, RtFloat z)

Modify the current transformation by appending a translation.

RenderMan for Poets 9

Translate 5 0 23
RiTranslate (5.0, 0.0, 23.0);

Rotate thetaxyz
RiRotate (RtFloat theta, RtFloat x, RtFloat y, RtFloat z)

Modify the current transformation by appending a rotatiorthafta degreesabout an axis
defined by X, v, 2). Notethat rotation iggoverned by the left handle, unless th@rientation
statement has previously been used.

Rotate 45.0 100
RiRotate (45.0, 1, 0, 0);

Scale sx sy sz
RiScale (RtFloat sx, RtFloat sy, RtFloat sz)
Append a linear scaling factor to the current transformation.
Scale222
RiScale (2, 2, 2);

Identity
Rildentity()

Change the current transformation to identity.

Transform < 16 floats >
RiTransform (RtMatrix m)

Change the current transformationthat given by thematrix, specified in row major order.
Notethat it isassumedhat transformations aone by postmultiplying aector by a matrix. In
other words, the translation part of the matrix is the bottommotthe right column.

Transform[1000010000100001]
RiTransform (m);

ConcatTransform <16 floats>
RiConcatTransform (RtMatrix m)

Append the given matrix to the current transformation. The matspesified in row major
order. Notethat it isassumedhat transformations ardone by postmultiplying aector by a
matrix. In other words, the translation part of the matrix is the bottomn@iihe right column.

ConcatTransform[1000010000100001]
RiConcatTransform (m);

RenderMan for Poets 10

Color rghb
RiColor (RtColor c)
Change the current surface colorrtog, b).
Color1.5.5
RiColor (C);

Opacity rghb
RiOpacity (RtColor c)

Change the currensurface opacity tor(g, b). Completely transparent is (0,0,0).
Completely opaque, which is the default, is (1,1,1).
RiOpacity (C);
Opacity111

Surface name parameters
RiSurface (RtToken name, ...)

nameis a thesurface type. Standard surfaces and their acceptable paramestrsvaren
the following section. A particular RenderMan implementation may include more surface types.
Surface "matte” "Kd" 0.5
RiSurface ("matte”, "Kd", &kd, RI_NULL);

LightSource name sequence parameters
RiLightSource (RtToken name, ...)

nameis one of the light source types availabdequencés a numericahrgunent. Thefirst
light source declared should have sequence 1, the second should be 2, etc.

Standardight sources and their acceptable paramedezexplainedlater in this chapter.
Examples of Light source declarations:

LightSource "ambientlight” 1 "intensity” 0.5
LightSource "pointlight” 2 "from" [0 0 10] "intensity" 8
LightSource "distantlight” 3 "from"[000]"t0"[00 1]

RiLightSource ("ambientlight”, "intensity", &intensity, 0.5, RI_NULL);

RiLightSource ("pointlight”, "from", from, "intensity”, &intensity,
RI_NULL);

RiLightSource ("distantlight", "from", from, "to", to, RI_NULL);

RenderMan for Poets 11

2.5 Specifying Surface Shaders

Surface name parameters
RiSurface (RtToken name, ...)

nameis a surface type. Standard surfaces and their acceptable parametiosvarbelow.
A particularRenderMan implementation may include more surfgpes. Pleaseaote that only
minimal information about these shaders is given below.

2.5.1 Surface "constant" --- constant shading with no lighting
Parameters and Defaults

This shader has no parameters.

Description

This shader simply makes the object appear on the screen exactly as the surfaeesoedor
setwhen theobject is instanced. The surface color is set by ub@@§olor RIB request.Note
that this isthe only standard surface shader availatMeich does not require a liglsburce to
illuminate it.

Example

Color[1.5.5]
Surface "constant”
RiSurface ("constant”, RI_NULL);

2.5.2 Surface "matte" --- a Lambertian diffuse surface
Parameters and Defaults

float Ka=1, Kd =1;

Description

This surface is a perfectiyniformly diffuse (Lambertiansurface. There are no specular
highlights or reflections on such an object. Hase color othe object is given by thgraphics
state's surface color attribute (set byCalor RIB request). Kd is the coefficient of diffuse
reflection, andKa is the ambient coefficient.

Example

Color[1.5.5]
Surface "matte" "Kd" 0.8
RiSurface ("matte", "Kd", &kd, RI_NULL);

2.5.3 Surface "metal" --- a metallic surface
Parameters and Defaults

float Ka =1, Ks = 1, roughness = .1;

Description

RenderMan for Poets 12

This surface has metallic appearance witbpecularhighlights from the lightsources, but

does not have any mirror-like reflections. Therefore it looks more like a metal object with a roughly

textured surface.

As is typical of metals, speculhighlights on thisurfacewill have the same color as thase
color of the object, which is specified by thgeaphics state's surface color attribute (set by a
Color RIB request).

Ks is the coefficient okpecular reflection, anKa is the ambient coefficient. roughnesss
related to the size of the specutéghlight. Notethatthere is no'Kd" parameter, antherefore
no uniform diffuse reflection.

Example

Color[11.5]
Surface "metal" "Ks" .8 "roughness" .01
RiSurface ("metal”, "Ks", &ks, "roughness”, &roughness, RI_NULL);

2.5.4 Surface "plastic" --- a plastic surface
Parameters and Defaults

float Ka = 1, Kd = .5, Ks = .5, roughness = .1;
color specularcolor=[111];

Description

This surface has an appearance tbaks like plastic: uniform diffuse reflectiothat is the
base color of the object and specuighlights from the lightources. Tagive anappearance that
looks like plastic,the color of the speculdnighlights should be the same as the color of the light
sources. Therefore the value of "specularcolor” should remain as a neutral filter (the default).

Example

Color[11.5]
Surface "plastic" "Ks" .8 "roughness" .01
RiSurface ("plastic”, "Ks", &ks, "roughness”, &rough, RI_NULL);

2.5.5 Surface "paintedplastic” --- a texture mapped plastic surface
Parameters and Defaults

float Ka = 1, Kd = .5, Ks = .5, roughness = .1;
color specularcolor=[111];

"o,

string texturename =" ";
Description

This surface hathe same reflectance characteristics as'glastic” surface, buthe base
color at anyparticular point is determined by lookup into an image St@red on disk. The
"texturename” parameter should be set to theme of the disk file containing taxture map
image.

Example

Color[11.5]
Surface "paintedplastic” "Kd" .8 "texturename" "myfile.tif"

RenderMan for Poets 13

char *txtname = “myfile.tif"
RiSurface (“paintedplastic”, “Kd”, &Kd, “texturename”,
&txtname, RI_NULL);

2.6 Specifying Light Sources

2.6.1 Light "ambientlight" --- ambient light source
Parameters and Defaults

float intensity = 1;
color lightcolor=[1111];

Description
This is an ambient light source.

Example
LightSource "ambientlight" "intensity” 0.5

2.6.2 Light "distantlight” --- solar light
Parameters and Defaults

float intensity = 1,

color lightcolor=[111];

point from = point "shader" [0 00];
point to = point "shader" [0 0 1];

Description

This is a sun-like light source. Light rays peralel, and show no falloff with distance. This
light has no actual physical locatiobut only a direction, which is determined by the vector
connecting théfrom” and"to" points specified.

Example
LightSource "distantlight” "to" [1 1 -1]

2.6.3 Light "pointlight" --- point light source
Parameters and Defaults

float intensity = 1,
color lightcolor=[111];
point from = point "shader" [0 00];

Description

This is a point light source at the locatigiwen by the'from" parameter. The lightas a
falloff of 1/r2. The parametagiven by intensity" is the flux of the light sourceshen one
unit from the source position.

Example
LightSource "pointlight” "from" [1 1 10] "intensity" 10

RenderMan for Poets 14

2.6.4 Light "spotlight” --- spot light source

Parameters and Defaults
float intensity = 1,
color lightcolor=[111];
pointfrom=[000],to=[001];
float coneangle = radians(30), conedeltaangle = radians(5);
float beamdistribution = 2;

Description

This is a spotight source, illuminating @articularsolid angle. The angles must $gecified
in radians, not degrees. Please refer to [Upstill89][Bixar89] formore details on theeanings
of the parameters.

Example
LightSource "spotlight” "from"[1110]"t0"[110]

2.7 Specifying Geometric Primitives

Polygon parameters
RiPolygon (int nvertices, ...)

Give a simple convex polygon. ThR" parameter is required, all others are optional. The
number of vertices is specified implicitly by the number of pagen after"P" . Points should
be given in clockwise order. Valid parameters include:

"P" points Enclosed in brackets, all points in the polygon are given as x,y,z
triples.
"Cs" points RGB values are given for colors at each vertex in the polygon. This

is how Gouraud shading is done.

"N" points Vectors are given for normals at each vertex in the polygon. This is
how Phong shading is done.
Examples:

Polygon "P"[110 045 090]
Polygon "P"[010080440]"N"[100100010]

RiPolygon (3, "P", (float *)p, "N", (float *)n, RI_NULL);

Sphere radius zmin zmax thetamax
RiSphere (RtFloat rad, RtFloat zmin, RtFloat zmax, RtFloat thetamax, ...)

Declare a sphere gfiven radius Chop off thepartsbelow zmin and above zmax and
sweep atotal of thetamaxdegrees. A full spherbaszmin = +adius zmax= radius and
thetamax360.

Sphere 1 -1 1 360

RenderMan for Poets 15

RiSphere (1, -1, 1, 360, RI_NULL);

Cone height radius thetamax
RiCone (RtFloat height, RtFloat radius, RtFloat thetamax, ...)

Declare a cone with base ofradius at the origin, ands tip onthe zaxiswith a z value of
height Argumentthetamaxdefines the sweep angle in degrees, and shoul@6Befor a
“‘complete” cone.

Cone 5 1 360
RiCone (5, 1, 360, RI_NULL);

Cylinder radius zmin zmax thetamax
RiCylinder (RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat thetamayx, ...)

Declare a cylinder aligned with theaxis, with givenradius minimum and maximum z
values and with a sweep anglelvétamax
Cylinder 2 0 8 180

RiCylinder (2, 0, 8, 180, RI_NULL);

Disk height radius thetamax
RIiDisk (RtFloat height, RtFloat radius, RtFloat thetamax, ...)

Declare a disk of given radius perpendicular to the z axis and with a z value of height.
Disk 5 0.5 360
RiDisk (5, 0.5, 360, RI_NULL);

Note: Manymore primitives may be declared in RenderMan, includingconvex polygons
with multiple loops, paraboloids, hyperboloidsri, bilinear and bicubic patches and patobshes,
and NURBS. Please constihe RenderMan Companiat The RenderMan Interface Specification
for more details on these primitives and the use of constructive solid geometry (CSG).

RenderMan for Poets 16

2.8 A Sample RIB File

A sample RIB file of two frames is shown below:

Format 512 512 1
PixelSamples 2 2
FrameBegin 1
Display "t1.tif" "file" "rgb"
Projection "perspective” "fov" 45
Translate 0 -1.5 10
Rotate -90 100
Rotate -10 010
WorldBegin
LightSource "ambientlight” 1 "intensity" 0.5
LightSource "distantlight” 2 "from”" [0 0 1] "to" [0 10 0]
Surface "plastic” "Ka" 0.5 "Kd" 0.8 "Ks" 0.2
Translate .5.5 .8
Sphere 5 -5 5 360
WorldEnd
FrameEnd
FrameBegin 2
Display "t2.tif" "file” "rgb"
Projection "perspective" "fov" 45
Translate 0 -2 10
Rotate -90 100
Rotate -20 010
WorldBegin
LightSource "ambientlight” 1 "intensity" 0.5
LightSource "distantlight" 2 "from" [0 0 1] "to" [0 10 0]
Surface "plastic” "Ka" 0.5 "Kd" 0.8 "Ks" 0.2
Translate 111
Sphere 8 -8 8 360
WorldEnd
FrameEnd

RenderMan for Poets

17

2.9 A Sample Program

A sample C program to generate two frames is shown below:

#include <math.h>
#include "ri.h"

void main (void)

static RtFloat fov = 45, intensity = 0.5;
static RtFloat Ka = 0.5, Kd = 0.8, Ks = 0.2;
static RtPoint from = {0,0,1}, to = {0,10,0};

RiBegin (RI_NULL);
RiFormat (512, 512, 1);
RiPixelSamples (2, 2);
RiFrameBegin (1);
RiDisplay ("t1.tif", "file", "rgb", RI_NULL);
RiProjection ("perspective”, "fov", &fov, RI_NULL);
RiTranslate (0, -1.5, 10);
RiRotate (-90, 1, 0, 0);
RiRotate (-10, 0, 1, 0);
RiWorldBegin ();
RiLightSource ("ambientlight", "intensity", &intensity,RI_NULL);
RiLightSource ("distantlight", "from", from, "to", to, RI_NULL);
RiSurface ("plastic”, "Ka", &Ka, "Kd", &Kd, "Ks", &Ks, RI_NULL);
RiTranslate (.5, .5, .8);
RiSphere (5, -5, 5, 360, RI_NULL);
RiWorldEnd ();
RiFrameENd ();
RiFrameBegin (2);
RiDisplay ("t2.tif", "file", "rgb", RI_NULL);
RiProjection ("perspective”, "fov", &fov, RI_NULL);
RiTranslate (0, -2, 10);
RiRotate (-90, 1, 0, 0);
RiRotate (-20, 0, 1, 0);
RiWorldBegin ();
RiLightSource ("ambientlight”, "intensity", &intensity,RI_NULL);
RiLightSource ("distantlight", "from", from, "to", to, RI_NULL);
RiSurface ("plastic”, "Ka", &Ka, "Kd", &Kd, "Ks", &Ks, RI_NULL);
RiTranslate (1, 1, 1);
RiSphere (8, -8, 8, 360, RI_NULL);
RiWorldEnd ();
RiFrameEnd ();
RIiEnd ();

RenderMan for Poets

3. References

[Upstill89] Upstill, Steve. The RenderMan Companion: A Programmer's Guide to Realistic
Computer Graphics. Addison-Wesley, 1989.

[Pixar89] Pixar. “TheRenderMan Interface, versidhl official specification.” Published by
Pixar, 1989.

[Siggraph90] “The RenderMan Interface and Shading Language,” Sig§bursenotes (course
18), 1990.

[Siggraph92] “Writing RenderMan Shaders,” Siggraph '92 course notes (course 21), 1992.

[Gritz93] Gritz, Larry.“Computing Specular-to-Diffuse Illuminatiofor Two-PassRendering,”
Master's Thesis, The George Washington University, Dept. of EE & CS, May, 1993.

RenderMan for Poets 19

