
hearn-50265; ISBN: 0-13-015390-7 book August 8, 2003 14:53

C H A P T E R 3

Graphics Output Primitives

A scene from the wolfman video. The animated figure of this primitive lycanthrope is
modeled with 61 bones and eight layers of fur. Each frame of the computer animation

contains 100,000 surface polygons. (Courtesy of the NVIDIA Corporation.)

84

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-1 Coordinate Reference Frames
3-2 Specifying a Two-Dimensional

World-Coordinate Reference
Frame in OpenGL

3-3 OpenGL Point Functions
3-4 OpenGL Line Functions
3-5 Line-Drawing Algorithms
3-6 Parallel Line Algorithms
3-7 Setting Frame-Buffer Values
3-8 OpenGL Curve Functions
3-9 Circle-Generating Algorithms

3-10 Ellipse-Generating Algorithms
3-11 Other Curves
3-12 Parallel Curve Algorithms
3-13 Pixel Addressing and Object

Geometry

3-14 Fill-Area Primitives
3-15 Polygon Fill Areas
3-16 OpenGL Polygon Fill-Area

Functions
3-17 OpenGL Vertex Arrays
3-18 Pixel-Array Primitives
3-19 OpenGL Pixel-Array Functions
3-20 Character Primitives
3-21 OpenGL Character Functions
3-22 Picture Partitioning
3-23 OpenGL Display Lists
3-24 OpenGL Display-Window Reshape

Function
3-25 Summary

A
general software package for graphics applications, sometimes
referred to as a computer-graphics application programming in-
terface (CG API), provides a library of functions that we can use
within a programming language such as C++ to create pictures. As
we noted in Section 2-8, the set of library functions can be subdi-

vided into several categories. One of the first things we need to do when creating
a picture is to describe the component parts of the scene to be displayed. Picture
components could be trees and terrain, furniture and walls, storefronts and street
scenes, automobiles and billboards, atoms and molecules, or stars and galaxies.
For each type of scene, we need to describe the structure of the individual objects
and their coordinate locations within the scene. Those functions in a graphics
package that we use to describe the various picture components are called the
graphics output primitives, or simply primitives. The output primitives describ-
ing the geometry of objects are typically referred to as geometric primitives. Point
positions and straight-line segments are the simplest geometric primitives. Ad-
ditional geometric primitives that can be available in a graphics package include
circles and other conic sections, quadric surfaces, spline curves and surfaces, and
polygon color areas. And most graphics systems provide some functions for dis-
playing character strings. After the geometry of a picture has been specified within
a selected coordinate reference frame, the output primitives are projected to a two-
dimensional plane, corresponding to the display area of an output device, and
scan converted into integer pixel positions within the frame buffer.

In this chapter, we introduce the output primitives available in OpenGL, and
we also discuss the device-level algorithms for implementing the primitives. Ex-
ploring the implementation algorithms for a graphics library will give us valuable
insight into the capabilities of these packages. It will also provide us with an un-
derstanding of how the functions work, perhaps how they could be improved, and

85

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

86 CHAPTER 3 Graphics Output Primitives

how we might implement graphics routines ourselves for some special applica-
tion. Research in computer graphics is continually discovering new and improved
implementation techniques to provide us with methods for special applications,
such as Internet graphics, and for developing faster and more realistic graphics
displays in general.

3-1 COORDINATE REFERENCE FRAMES

To describe a picture, we first decide upon a convenient Cartesian coordinate
system, called the world-coordinate reference frame, which could be either two-
dimensional or three-dimensional. We then describe the objects in our picture by
giving their geometric specifications in terms of positions in world coordinates.
For instance, we define a straight-line segment with two endpoint positions, and
a polygon is specified with a set of positions for its vertices. These coordinate po-
sitions are stored in the scene description along with other information about the
objects, such as their color and their coordinate extents, which are the minimum
and maximum x, y, and z values for each object. A set of coordinate extents is also
described as a bounding box for an object. For a two-dimensional figure, the co-
ordinate extents are sometimes called an object’s bounding rectangle. Objects are
then displayed by passing the scene information to the viewing routines, which
identify visible surfaces and ultimately map the objects to positions on the video
monitor. The scan-conversion process stores information about the scene, such as
color values, at the appropriate locations in the frame buffer, and the objects in
the scene are displayed on the output device.

Screen Coordinates
Locations on a video monitor are referenced in integer screen coordinates, which
correspond to the pixel positions in the frame buffer. Pixel coordinate values give
the scan line number (the y value) and the column number (the x value along a
scan line). Hardware processes, such as screen refreshing, typically address pixel
positions with respect to the top-left corner of the screen. Scan lines are then
referenced from 0, at the top of the screen, to some integer value, ymax, at the
bottom of the screen, and pixel positions along each scan line are numbered from
0 to xmax, left to right. However, with software commands, we can set up any
convenient reference frame for screen positions. For example, we could specify
an integer range for screen positions with the coordinate origin at the lower-left of
a screen area (Fig. 3-1), or we could use noninteger Cartesian values for a picture
description. The coordinate values we use to describe the geometry of a scene
are then converted by the viewing routines to integer pixel positions within the
frame buffer.

x

y

0

0

1 2 3 4 5

1

2

3

4

5

FIGURE 3-1 Pixel
positions referenced with
respect to the lower-left
corner of a screen area.

Scan-line algorithms for the graphics primitives use the defining coordinate
descriptions to determine the locations of pixels that are to be displayed. For
example, given the endpoint coordinates for a line segment, a display algorithm
must calculate the positions for those pixels that lie along the line path between
the endpoints. Since a pixel position occupies a finite area of the screen, the finite
size of a pixel must be taken into account by the implementation algorithms. For
the present, we assume that each integer screen position references the center of
a pixel area. (In Section 3-13, we consider alternative pixel-addressing schemes.)

Once pixel positions have been identified for an object, the appropriate color
values must be stored in the frame buffer. For this purpose, we will assume that

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-2 Specifying a Two-Dimensional World-Coordinate Reference Frame in OpenGL 87

we have available a low-level procedure of the form

setPixel (x, y);

This procedure stores the current color setting into the frame buffer at integer
position (x, y), relative to the selected position of the screen-coordinate origin. We
sometimes also will want to be able to retrieve the current frame-buffer setting for
a pixel location. So we will assume that we have the following low-level function
for obtaining a frame-buffer color value.

getPixel (x, y, color);

In this function, parameter color receives an integer value corresponding to the
combined RGB bit codes stored for the specified pixel at position (x, y).

Although, we need only specify color values at (x, y) positions for a two-
dimensional picture, additional screen-coordinate information is needed for
three-dimensional scenes. In this case, screen coordinates are stored as three-
dimensional values, where the third dimension references the depth of object
positions relative to a viewing position. For a two-dimensional scene, all depth
values are 0.

Absolute and Relative Coordinate Specifications
So far, the coordinate references that we have discussed are stated as absolute
coordinate values. This means that the values specified are the actual positions
within the coordinate system in use.

However, some graphics packages also allow positions to be specified us-
ing relative coordinates. This method is useful for various graphics applications,
such as producing drawings with pen plotters, artist’s drawing and painting sys-
tems, and graphics packages for publishing and printing applications. Taking this
approach, we can specify a coordinate position as an offset from the last position
that was referenced (called the current position). For example, if location (3, 8)
is the last position that has been referenced in an application program, a relative
coordinate specification of (2, −1) corresponds to an absolute position of (5, 7). An
additional function is then used to set a current position before any coordinates
for primitive functions are specified. To describe an object, such as a series of con-
nected line segments, we then need to give only a sequence of relative coordinates
(offsets), once a starting position has been established. Options can be provided
in a graphics system to allow the specification of locations using either relative or
absolute coordinates. In the following discussions, we will assume that all coor-
dinates are specified as absolute references unless explicitly stated otherwise.

3-2 SPECIFYING A TWO-DIMENSIONAL
WORLD-COORDINATE REFERENCE FRAME
IN OpenGL

In our first example program (Section 2-9), we introduced the gluOrtho2D com-
mand, which is a function we can use to set up any two-dimensional Cartesian
reference frame. The arguments for this function are the four values defining
the x and y coordinate limits for the picture we want to display. Since the

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

88 CHAPTER 3 Graphics Output Primitives

FIGURE 3-2
World-coordinate limits for a
display window, as specified
in the glOrtho2D function.

Video Screen

Display
Window

ymax

xmax

xmin

ymin

gluOrtho2D function specifies an orthogonal projection, we need also to be sure
that the coordinate values are placed in the OpenGL projection matrix. In addition,
we could assign the identity matrix as the projection matrix before defining the
world-coordinate range. This would ensure that the coordinate values were not
accumulated with any values we may have previously set for the projection ma-
trix. Thus, for our initial two-dimensional examples, we can define the coordinate
frame for the screen display window with the following statements.

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (xmin, xmax, ymin, ymax);

The display window will then be referenced by coordinates (xmin, ymin) at the
lower-left corner and by coordinates (xmax, ymax) at the upper-right corner, as
shown in Fig. 3-2.

We can then designate one or more graphics primitives for display using the
coordinate reference specified in the gluOrtho2D statement. If the coordinate
extents of a primitive are within the coordinate range of the display window, all
of the primitive will be displayed. Otherwise, only those parts of the primitive
within the display-window coordinate limits will be shown. Also, when we set up
the geometry describing a picture, all positions for the OpenGL primitives must
be given in absolute coordinates, with respect to the reference frame defined in
the gluOrtho2D function.

3-3 OpenGL POINT FUNCTIONS

To specify the geometry of a point, we simply give a coordinate position in the
world reference frame. Then this coordinate position, along with other geometric
descriptions we may have in our scene, is passed to the viewing routines. Unless
we specify other attribute values, OpenGL primitives are displayed with a default
size and color. The default color for primitives is white and the default point size
is equal to the size of one screen pixel.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-3 OpenGL Point Functions 89

We use the following OpenGL function to state the coordinate values for a
single position

glVertex* ();

where the asterisk (*) indicates that suffix codes are required for this function.
These suffix codes are used to identify the spatial dimension, the numerical data
type to be used for the coordinate values, and a possible vector form for the coor-
dinate specification. A glVertex function must be placed between a glBegin
function and a glEnd function. The argument of the glBegin function is used
to identify the kind of output primitive that is to be displayed, and glEnd takes
no arguments. For point plotting, the argument of the glBegin function is the
symbolic constant GL POINTS. Thus, the form for an OpenGL specification of a
point position is

glBegin (GL_POINTS);
glVertex* ();

glEnd ();

Although the term vertex strictly refers to a “corner” point of a polygon, the
point of intersection of the sides of an angle, a point of intersection of an
ellipse with its major axis, or other similar coordinate positions on geometric
structures, the glVertex function is used in OpenGL to specify coordinates for
any point position. In this way, a single function is used for point, line, and poly-
gon specifications—and, most often, polygon patches are used to describe the
objects in a scene.

Coordinate positions in OpenGL can be given in two, three, or four dimen-
sions. We use a suffix value of 2, 3, or 4 on the glVertex function to indi-
cate the dimensionality of a coordinate position. A four-dimensional specifica-
tion indicates a homogeneous-coordinate representation, where the homogeneous
parameter h (the fourth coordinate) is a scaling factor for the Cartesian-coordinate
values. Homogeneous-coordinate representations are useful for expressing
transformation operations in matrix form, and they are discussed in detail in
Chapter 5. Since OpenGL treats two dimensions as a special case of three dimen-
sions, any (x, y) coordinate specification is equivalent to (x, y, 0) with h = 1.

We need to state also which data type is to be used for the numerical-value
specifications of the coordinates. This is accomplished with a second suffix code
on the glVertex function. Suffix codes for specifying a numerical data type
are i (integer), s (short), f (float), and d (double). Finally, the coordinate values
can be listed explicitly in the glVertex function, or a single argument can be
used that references a coordinate position as an array. If we use an array speci-
fication for a coordinate position, we need to append a third suffix code: v (for
“vector”).

In the following example, three equally spaced points are plotted along a
two-dimensional straight-line path with a slope of 2 (Fig. 3-3). Coordinates are
given as integer pairs.

glBegin (GL_POINTS);
glVertex2i (50, 100);
glVertex2i (75, 150);
glVertex2i (100, 200);

glEnd ();

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

90 CHAPTER 3 Graphics Output Primitives

FIGURE 3-3 Display of three point positions
generated with glBegin (GL POINTS). x

y

200

50 100 150

100

50

150

Alternatively, we could specify the coordinate values for the preceding points in
arrays such as

int point1 [] = {50, 100};
int point2 [] = {75, 150};
int point3 [] = {100, 200};

and call the OpenGL functions for plotting the three points as

glBegin (GL_POINTS);
glVertex2iv (point1);
glVertex2iv (point2);
glVertex2iv (point3);

glEnd ();

And here is an example of specifying two point positions in a three-
dimensional world reference frame. In this case, we give the coordinates as
explicit floating-point values.

glBegin (GL_POINTS);
glVertex3f (-78.05, 909.72, 14.60);
glVertex3f (261.91, -5200.67, 188.33);

glEnd ();

We could also define a C++ class or structure (struct) for specifying point
positions in various dimensions. For example,

class wcPt2D {
public:

GLfloat x, y;
};

Using this class definition, we could specify a two-dimensional, world-coordinate
point position with the statements

wcPt2D pointPos;

pointPos.x = 120.75;
pointPos.y = 45.30;
glBegin (GL_POINTS);

glVertex2f (pointPos.x, pointPos.y);
glEnd ();

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-4 OpenGL Line Functions 91

And we can use the OpenGL point-plotting functions within a C++ procedure to
implement the setPixel command.

3-4 OpenGL LINE FUNCTIONS

Graphics packages typically provide a function for specifying one or more
straight-line segments, where each line segment is defined by two endpoint co-
ordinate positions. In OpenGL, we select a single endpoint coordinate position
using the glVertex function, just as we did for a point position. And we enclose
a list of glVertex functions between the glBegin/glEnd pair. But now we use
a symbolic constant as the argument for the glBegin function that interprets a
list of positions as the endpoint coordinates for line segments. There are three
symbolic constants in OpenGL that we can use to specify how a list of endpoint
positions should be connected to form a set of straight-line segments. By default,
each symbolic constant displays solid, white lines.

A set of straight-line segments between each successive pair of endpoints in a
list is generated using the primitive line constant GL LINES. In general, this will
result in a set of unconnected lines unless some coordinate positions are repeated.
Nothing is displayed if only one endpoint is specified, and the last endpoint is not
processed if the number of endpoints listed is odd. For example, if we have five
coordinate positions, labeled p1 through p5, and each is represented as a two-
dimensional array, then the following code could generate the display shown in
Fig. 3-4(a).

glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

Thus, we obtain one line segment between the first and second coordinate posi-
tions, and another line segment between the third and fourth positions. In this
case, the number of specified endpoints is odd, so the last coordinate position is
ignored.

With the OpenGL primitive constantGL LINE STRIP, we obtain a polyline.

p3

p1

(c)

p4p2

p5

p3

p1

(b)

p4p2

p5

p3

p1

(a)

p4p2

FIGURE 3-4 Line segments that can be displayed in OpenGL using a list of five
endpoint coordinates. (a) An unconnected set of lines generated with the primitive line
constant GL LINES. (b) A polyline generated with GL LINE STRIP. (c) A closed
polyline generated with GL LINE LOOP.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

92 CHAPTER 3 Graphics Output Primitives

In this case, the display is a sequence of connected line segments between the first
endpoint in the list and the last endpoint. The first line segment in the polyline is
displayed between the first endpoint and the second endpoint; the second line
segment is between the second and third endpoints; and so forth, up to the last line
endpoint. Nothing is displayed if we do not list at least two coordinate positions.
Using the same five coordinate positions as in the previous example, we obtain
the display in Fig. 3-4(b) with the code

glBegin (GL_LINE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

The third OpenGL line primitive isGL LINE LOOP, which produces a closed
polyline. An additional line is added to the line sequence from the previous
example, so that the last coordinate endpoint in the sequence is connected to the
first coordinate endpoint of the polyline. Figure 3-4(c) shows the display of our
endpoint list when we select this line option.

glBegin (GL_LINE_LOOP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

As noted earlier, picture components are described in a world-coordinate ref-
erence frame that is eventually mapped to the coordinate reference for the output
device. Then the geometric information about the picture is scan converted to pixel
positions. In the next section, we take a look at the scan-conversion algorithms
for implementing the OpenGL line functions.

3-5 LINE-DRAWING ALGORITHMS

A straight-line segment in a scene is defined by the coordinate positions for the
endpoints of the segment. To display the line on a raster monitor, the graphics sys-
tem must first project the endpoints to integer screen coordinates and determine
the nearest pixel positions along the line path between the two endpoints. Then the
line color is loaded into the frame buffer at the corresponding pixel coordinates.
Reading from the frame buffer, the video controller plots the screen pixels. This
process digitizes the line into a set of discrete integer positions that, in general,
only approximates the actual line path. A computed line position of (10.48, 20.51),
for example, is converted to pixel position (10, 21). This rounding of coordinate
values to integers causes all but horizontal and vertical lines to be displayed with
a stair-step appearance (“the jaggies”), as represented in Fig. 3-5. The character-
istic stair-step shape of raster lines is particularly noticeable on systems with low
resolution, and we can improve their appearance somewhat by displaying them

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-5 Line-Drawing Algorithms 93

FIGURE 3-5 Stair-step
effect (jaggies) produced
when a line is generated as a
series of pixel positions.

on high-resolution systems. More effective techniques for smoothing a raster line
are based on adjusting pixel intensities along the line path (Section 4-17).

yend

y0

x0 xend

FIGURE 3-6 Line path
between endpoint positions
(x0, y0) and (xend, yend).

Line Equations
We determine pixel positions along a straight-line path from the geometric prop-
erties of the line. The Cartesian slope-intercept equation for a straight line is

y = m · x + b (3-1)

with m as the slope of the line and b as the y intercept. Given that the two endpoints
of a line segment are specified at positions (x0, y0) and (xend, yend), as shown in
Fig. 3-6, we can determine values for the slope m and y intercept b with the
following calculations:

m = yend − y0

xend − x0
(3-2)

b = y0 − m · x0 (3-3)

Algorithms for displaying straight lines are based on the line equation 3-1 and
the calculations given in Eqs. 3-2 and 3-3.

For any given x interval δx along a line, we can compute the corresponding
y interval δy from Eq. 3-2 as

δy = m · δx (3-4)

Similarly, we can obtain the x interval δx corresponding to a specified δy as

δx = δy
m

(3-5)

These equations form the basis for determining deflection voltages in analog dis-
plays, such as a vector-scan system, where arbitrarily small changes in deflection
voltage are possible. For lines with slope magnitudes |m| < 1, δx can be set pro-
portional to a small horizontal deflection voltage, and the corresponding verti-
cal deflection is then set proportional to δy as calculated from Eq. 3-4. For lines
whose slopes have magnitudes |m| > 1, δy can be set proportional to a small ver-
tical deflection voltage with the corresponding horizontal deflection voltage set
proportional to δx, calculated from Eq. 3-5. For lines with m = 1, δx = δy and the
horizontal and vertical deflections voltages are equal. In each case, a smooth line
with slope m is generated between the specified endpoints.

yend

y0

x0 xend

FIGURE 3-7 Straight-line
segment with five sampling
positions along the x axis
between x0 and xend.

On raster systems, lines are plotted with pixels, and step sizes in the horizontal
and vertical directions are constrained by pixel separations. That is, we must
“sample” a line at discrete positions and determine the nearest pixel to the line at
each sampled position. This scan-conversion process for straight lines is illustrated
in Fig. 3-7 with discrete sample positions along the x axis.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

94 CHAPTER 3 Graphics Output Primitives

DDA Algorithm
The digital differential analyzer (DDA) is a scan-conversion line algorithm based
on calculating either δy or δx, using Eq. 3-4 or Eq. 3-5. A line is sampled at unit
intervals in one coordinate and the corresponding integer values nearest the line
path are determined for the other coordinate.

We consider first a line with positive slope, as shown in Fig. 3-6. If the slope
is less than or equal to 1, we sample at unit x intervals (δx = 1) and compute
successive y values as

yk+1 = yk + m (3-6)

Subscript k takes integer values starting from 0, for the first point, and increases
by 1 until the final endpoint is reached. Since m can be any real number between
0.0 and 1.0, each calculated y value must be rounded to the nearest integer corre-
sponding to a screen pixel position in the x column we are processing.

For lines with a positive slope greater than 1.0, we reverse the roles of x and y.
That is, we sample at unit y intervals (δy = 1) and calculate consecutive x values as

xk+1 = xk + 1
m

(3-7)

In this case, each computed x value is rounded to the nearest pixel position along
the current y scan line.

Equations 3-6 and 3-7 are based on the assumption that lines are to be pro-
cessed from the left endpoint to the right endpoint (Fig. 3-6). If this processing is
reversed, so that the starting endpoint is at the right, then either we have δx = −1
and

yk+1 = yk − m (3-8)

or (when the slope is greater than 1) we have δy = −1 with

xk+1 = xk − 1
m

(3-9)

Similar calculations are carried out using equations 3-6 through 3-9 to deter-
mine pixel positions along a line with negative slope. Thus, if the absolute value
of the slope is less than 1 and the starting endpoint is at the left, we set δx = 1 and
calculate y values with Eq. 3-6. When the starting endpoint is at the right (for the
same slope), we set δx = −1 and obtain y positions using Eq. 3-8. For a negative
slope with absolute value greater than 1, we use δy = −1 and Eq. 3-9 or we use
δy = 1 and Eq. 3-7.

This algorithm is summarized in the following procedure, which accepts as
input two integer screen positions for the endpoints of a line segment. Horizontal
and vertical differences between the endpoint positions are assigned to parame-
ters dx and dy. The difference with the greater magnitude determines the value
of parameter steps. Starting with pixel position (x0, y0), we determine the offset
needed at each step to generate the next pixel position along the line path. We
loop through this process steps times. If the magnitude of dx is greater than
the magnitude of dy and x0 is less than xEnd, the values for the increments in
the x and y directions are 1 and m, respectively. If the greater change is in the x
direction, but x0 is greater than xEnd, then the decrements −1 and −m are used
to generate each new point on the line. Otherwise, we use a unit increment (or
decrement) in the y direction and an x increment (or decrement) of 1

m .

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-5 Line-Drawing Algorithms 95

#include <stdlib.h>
#include <math.h>

inline int round (const float a) { return int (a + 0.5); }

void lineDDA (int x0, int y0, int xEnd, int yEnd)
{

int dx = xEnd - x0, dy = yEnd - y0, steps, k;
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);

else
steps = fabs (dy);

xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y));
for (k = 0; k < steps; k++) {

x += xIncrement;
y += yIncrement;
setPixel (round (x), round (y));

}
}

The DDA algorithm is a faster method for calculating pixel positions than
one that directly implements Eq. 3-1. It eliminates the multiplication in Eq. 3-1 by
making use of raster characteristics, so that appropriate increments are applied in
the x or y directions to step from one pixel position to another along the line path.
The accumulation of round-off error in successive additions of the floating-point
increment, however, can cause the calculated pixel positions to drift away from
the true line path for long line segments. Furthermore, the rounding operations
and floating-point arithmetic in this procedure are still time consuming. We can
improve the performance of the DDA algorithm by separating the increments
m and 1

m into integer and fractional parts so that all calculations are reduced
to integer operations. A method for calculating 1

m increments in integer steps
is discussed in Section 4-10. And in the next section, we consider a more general
scan-line approach that can be applied to both lines and curves.

10 11 12 13

10

11

12

13 Specified
Line Path

FIGURE 3-8 A section
of a display screen where a
straight-line segment is to be
plotted, starting from the
pixel at column 10 on scan
line 11.

50 51 52 53

48

49

50

Specified
Line Path

FIGURE 3-9 A section
of a display screen where a
negative slope line segment is
to be plotted, starting from
the pixel at column 50 on scan
line 50.

Bresenham’s Line Algorithm
In this section, we introduce an accurate and efficient raster line-generating algo-
rithm, developed by Bresenham, that uses only incremental integer calculations.
In addition, Bresenham’s line algorithm can be adapted to display circles and other
curves. Figures 3-8 and 3-9 illustrate sections of a display screen where straight-
line segments are to be drawn. The vertical axes show scan-line positions, and
the horizontal axes identify pixel columns. Sampling at unit x intervals in these
examples, we need to decide which of two possible pixel positions is closer to the
line path at each sample step. Starting from the left endpoint shown in Fig. 3-8, we
need to determine at the next sample position whether to plot the pixel at position
(11, 11) or the one at (11, 12). Similarly, Fig 3-9 shows a negative-slope line path

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

96 CHAPTER 3 Graphics Output Primitives

starting from the left endpoint at pixel position (50, 50). In this one, do we select the
next pixel position as (51, 50) or as (51, 49)? These questions are answered with
Bresenham’s line algorithm by testing the sign of an integer parameter whose
value is proportional to the difference between the vertical separations of the two
pixel positions from the actual line path.

yk

xk xk"1 xk"2 xk"3

yk"1

yk"2

yk"3

y & mx " b

FIGURE 3-10 A section
of the screen showing a pixel
in column xk on scan line yk
that is to be plotted along the
path of a line segment with
slope 0 < m < 1.

yk

dupper

dlower

yk " 1
y

xk " 1

FIGURE 3-11 Vertical
distances between pixel
positions and the line y
coordinate at sampling
position xk + 1.

To illustrate Bresenham’s approach, we first consider the scan-conversion
process for lines with positive slope less than 1.0. Pixel positions along a line
path are then determined by sampling at unit x intervals. Starting from the left
endpoint (x0, y0) of a given line, we step to each successive column (x position)
and plot the pixel whose scan-line y value is closest to the line path. Figure 3-10
demonstrates the kth step in this process. Assuming we have determined that
the pixel at (xk , yk) is to be displayed, we next need to decide which pixel to plot
in column xk+1 = xk + 1. Our choices are the pixels at positions (xk + 1, yk) and
(xk + 1, yk + 1).

At sampling position xk + 1, we label vertical pixel separations from the
mathematical line path as dlower and dupper (Fig. 3-11). The y coordinate on the
mathematical line at pixel column position xk + 1 is calculated as

y = m(xk + 1) + b (3-10)

Then

dlower = y − yk

= m(xk + 1) + b − yk (3-11)

and

dupper = (yk + 1) − y

= yk + 1 − m(xk + 1) − b (3-12)

To determine which of the two pixels is closest to the line path, we can set up an
efficient test that is based on the difference between the two pixel separations:

dlower − dupper = 2m(xk + 1) − 2yk + 2b − 1 (3-13)

A decision parameter pk for the kth step in the line algorithm can be obtained
by rearranging Eq. 3-13 so that it involves only integer calculations. We accomplish
this by substituting m = #y/#x, where #y and #x are the vertical and horizontal
separations of the endpoint positions, and defining the decision parameter as

pk = #x(dlower − dupper)

= 2#y · xk − 2#x · yk + c (3-14)

The sign of pk is the same as the sign of dlower − dupper, since #x > 0 for our example.
Parameter c is constant and has the value 2#y+#x(2b −1), which is independent
of the pixel position and will be eliminated in the recursive calculations for pk .
If the pixel at yk is “closer” to the line path than the pixel at yk + 1 (that is,
dlower < dupper), then decision parameter pk is negative. In that case, we plot the
lower pixel; otherwise we plot the upper pixel.

Coordinate changes along the line occur in unit steps in either the x or y
directions. Therefore, we can obtain the values of successive decision parameters
using incremental integer calculations. At step k + 1, the decision parameter is
evaluated from Eq. 3-14 as

pk+1 = 2#y · xk+1 − 2#x · yk+1 + c

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-5 Line-Drawing Algorithms 97

Subtracting Eq. 3-14 from the preceding equation, we have

pk+1 − pk = 2#y(xk+1 − xk) − 2#x(yk+1 − yk)

But xk+1 = xk + 1, so that

pk+1 = pk + 2#y − 2#x(yk+1 − yk) (3-15)

where the term yk+1 − yk is either 0 or 1, depending on the sign of parameter pk .
This recursive calculation of decision parameters is performed at each integer

x position, starting at the left coordinate endpoint of the line. The first parameter,
p0, is evaluated from Eq. 3-14 at the starting pixel position (x0, y0) and with m
evaluated as #y/#x:

p0 = 2#y − #x (3-16)

We summarize Bresenham line drawing for a line with a positive slope less
than 1 in the following outline of the algorithm. The constants 2#y and 2#y−2#x
are calculated once for each line to be scan converted, so the arithmetic involves
only integer addition and subtraction of these two constants.

Bresenham’s Line-Drawing Algorithm for |m| < 1.0

1. Input the two line endpoints and store the left endpoint in (x0, y0).

2. Set the color for frame-buffer position (x0, y0); i.e., plot the first point.

3. Calculate the constants #x, #y, 2#y, and 2#y − 2#x, and obtain the
starting value for the decision parameter as

p0 = 2#y − #x

4. At each xk along the line, starting at k = 0, perform the following test.
If pk < 0, the next point to plot is (xk + 1, yk) and

pk+1 = pk + 2#y

Otherwise, the next point to plot is (xk + 1, yk + 1) and

pk+1 = pk + 2#y − 2#x

5. Perform step 4 #x − 1 times.

EXAMPLE 3-1 Bresenham Line Drawing

To illustrate the algorithm, we digitize the line with endpoints (20, 10) and
(30, 18). This line has a slope of 0.8, with

#x = 10, #y = 8

The initial decision parameter has the value:
p0 = 2#y − #x

= 6
and the increments for calculating successive decision parameters are

2#y = 16, 2#y − 2#x = −4

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

98 CHAPTER 3 Graphics Output Primitives

We plot the initial point (x0, y0) = (20, 10), and determine successive pixel
positions along the line path from the decision parameter as:

k pk (xk+1, yk+1) k pk (xk+1, yk+1)

0 6 (21, 11) 5 6 (26, 15)
1 2 (22, 12) 6 2 (27, 16)
2 −2 (23, 12) 7 −2 (28, 16)
3 14 (24, 13) 8 14 (29, 17)
4 10 (25, 14) 9 10 (30, 18)

FIGURE 3-12 Pixel
positions along the line path
between endpoints (20, 10) and
(30, 18), plotted with
Bresenham’s line algorithm. 20 21 25 30

18

15

10

22

A plot of the pixels generated along this line path is shown in
Fig. 3-12.

An implementation of Bresenham line drawing for slopes in the range
0 < m < 1.0 is given in the following procedure. Endpoint pixel positions for the
line are passed to this procedure, and pixels are plotted from the left endpoint to
the right endpoint.

#include <stdlib.h>
#include <math.h>

/* Bresenham line-drawing procedure for |m| < 1.0. */
void lineBres (int x0, int y0, int xEnd, int yEnd)
{

int dx = fabs (xEnd - x0), dy = fabs(yEnd - y0);
int p = 2 * dy - dx;
int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);
int x, y;

/* Determine which endpoint to use as start position. */
if (x0 > xEnd) {

x = xEnd;
y = yEnd;
xEnd = x0;

}

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-6 Parallel Line Algorithms 99

else {
x = x0;
y = y0;

}
setPixel (x, y);

while (x < xEnd) {
x++;
if (p < 0)

p += twoDy;
else {

y++;
p += twoDyMinusDx;

}
setPixel (x, y);

}
}

Bresenham’s algorithm is generalized to lines with arbitrary slope by consid-
ering the symmetry between the various octants and quadrants of the xy plane.
For a line with positive slope greater than 1.0, we interchange the roles of the x
and y directions. That is, we step along the y direction in unit steps and calculate
successive x values nearest the line path. Also, we could revise the program to plot
pixels starting from either endpoint. If the initial position for a line with positive
slope is the right endpoint, both x and y decrease as we step from right to left.
To ensure that the same pixels are plotted regardless of the starting endpoint, we
always chose the upper (or the lower) of the two candidate pixels whenever the
two vertical separations from the line path are equal (dlower = dupper). For negative
slopes, the procedures are similar, except that now one coordinate decreases as
the other increases. Finally, special cases can be handled separately: Horizontal
lines (#y = 0), vertical lines (#x = 0), and diagonal lines (|#x| = |#y|) can each
be loaded directly into the frame buffer without processing them through the
line-plotting algorithm.

Displaying Polylines
Implementation of a polyline procedure is accomplished by invoking a line-
drawing routine n − 1 times to display the lines connecting the n endpoints. Each
successive call passes the coordinate pair needed to plot the next line section,
where the first endpoint of each coordinate pair is the last endpoint of the previ-
ous section. Once the color values for pixel positions along the first line segment
have been set in the frame buffer, we process subsequent line segments starting
with the next pixel position following the first endpoint for that segment. In this
way, we can avoid setting the color of some endpoints twice. We discuss methods
for avoiding overlap of displayed objects in more detail in Section 3-13.

3-6 PARALLEL LINE ALGORITHMS

The line-generating algorithms we have discussed so far determine pixel po-
sitions sequentially. Using parallel processing, we can calculate multiple pixel
positions along a line path simultaneously by partitioning the computations

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

100 CHAPTER 3 Graphics Output Primitives

among the various processors available. One approach to the partitioning prob-
lem is to adapt an existing sequential algorithm to take advantage of multiple
processors. Alternatively, we can look for other ways to set up the processing so
that pixel positions can be calculated efficiently in parallel. An important consid-
eration in devising a parallel algorithm is to balance the processing load among
the available processors.

Given np processors, we can set up a parallel Bresenham line algorithm by
subdividing the line path into np partitions and simultaneously generating line
segments in each of the subintervals. For a line with slope 0 < m < 1.0 and left
endpoint coordinate position (x0, y0), we partition the line along the positive x
direction. The distance between beginning x positions of adjacent partitions can
be calculated as

#xp = #x + np − 1
np

(3-17)

where #x is the width of the line, and the value for partition width #xp is com-
puted using integer division. Numbering the partitions, and the processors, as 0,
1, 2, up to np − 1, we calculate the starting x coordinate for the kth partition as

xk = x0 + k#xp (3-18)

As an example, if we have np = 4 processors, with #x = 15, the width of the
partitions is 4 and the starting x values for the partitions are x0, x0 + 4, x0 + 8,
and x0 +12. With this partitioning scheme, the width of the last (rightmost) subin-
terval will be smaller than the others in some cases. In addition, if the line end-
points are not integers, truncation errors can result in variable width partitions
along the length of the line.

To apply Bresenham’s algorithm over the partitions, we need the initial value
for the y coordinate and the initial value for the decision parameter in each parti-
tion. The change #yp in the y direction over each partition is calculated from the
line slope m and partition width #xp:

#yp = m#xp (3-19)

At the kth partition, the starting y coordinate is then

yk = y0 + round(k#yp) (3-20)

The initial decision parameter for Bresenham’s algorithm at the start of the kth
subinterval is obtained from Eq. 3-14:

pk = (k#xp)(2#y) − round(k#yp)(2#x) + 2#y − #x (3-21)

Each processor then calculates pixel positions over its assigned subinterval us-
ing the preceding starting decision parameter value and the starting coordinates
(xk , yk). Floating-point calculations can be reduced to integer arithmetic in the
computations for starting values yk and pk by substituting m = #y/#x and re-
arranging terms. We can extend the parallel Bresenham algorithm to a line with
slope greater than 1.0 by partitioning the line in the y direction and calculating be-
ginning x values for the partitions. For negative slopes, we increment coordinate
values in one direction and decrement in the other.

Another way to set up parallel algorithms on raster systems is to assign each
processor to a particular group of screen pixels. With a sufficient number of pro-
cessors, we can assign each processor to one pixel within some screen region. This

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-7 Setting Frame-Buffer Values 101

approach can be adapted to line display by assigning one processor to each of the
pixels within the limits of the coordinate extents of the line and calculating pixel
distances from the line path. The number of pixels within the bounding box of a
line is #x · #y (Fig. 3-13). Perpendicular distance d from the line in Fig. 3-13 to a
pixel with coordinates (x, y) is obtained with the calculation

d = A x + B y + C (3-22)

where

A = −#y
linelength

B = #x
linelength

C = x0#y − y0#x
linelength

with

linelength =
√

#x2 + #y2

Once the constants A, B, and C have been evaluated for the line, each processor
must perform two multiplications and two additions to compute the pixel dis-
tance d. A pixel is plotted if d is less than a specified line thickness parameter.

yend

y0

x0 xend

Rx

Ry

FIGURE 3-13 Bounding
box for a line with endpoint
separations #x and #y.

Instead of partitioning the screen into single pixels, we can assign to each
processor either a scan line or a column of pixels depending on the line slope. Each
processor then calculates the intersection of the line with the horizontal row or
vertical column of pixels assigned to that processor. For a line with slope |m| < 1.0,
each processor simply solves the line equation for y, given an x column value.
For a line with slope magnitude greater than 1.0, the line equation is solved for x
by each processor, given a scan line y value. Such direct methods, although slow
on sequential machines, can be performed efficiently using multiple processors.

3-7 SETTING FRAME-BUFFER VALUES

A final stage in the implementation procedures for line segments and other objects
is to set the frame-buffer color values. Since scan-conversion algorithms generate
pixel positions at successive unit intervals, incremental operations can also be
used to access the frame buffer efficiently at each step of the scan-conversion
process.

As a specific example, suppose the frame buffer array is addressed in row-
major order and that pixel positions are labeled from (0, 0) at the lower-left screen
corner to (xmax, ymax) at the top-right corner (Fig. 3-14). For a bilevel system (one
bit per pixel), the frame-buffer bit address for pixel position (x, y) is calculated as

addr(x, y) = addr(0, 0) + y(xmax + 1) + x (3-23)

Moving across a scan line, we can calculate the frame-buffer address for the pixel
at (x + 1, y) as the following offset from the address for position (x, y):

addr(x + 1, y) = addr(x, y) + 1 (3-24)

Stepping diagonally up to the next scan line from (x, y), we get to the frame-buffer

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

102 CHAPTER 3 Graphics Output Primitives

0
0

(x, y)

Screen
xmax

(0, 0)

addr (0, 0) addr (x, y)

Frame Buffer

ymax

(1, 0) (2, 0) (xmax, ymax)(xmax, 0) (0, 1)

… …

FIGURE 3-14 Pixel screen positions stored linearly in row-major order within the
frame buffer.

address of (x + 1, y + 1) with the calculation

addr(x + 1, y + 1) = addr(x, y) + xmax + 2 (3-25)

where the constant xmax + 2 is precomputed once for all line segments. Similar
incremental calculations can be obtained from Eq. 3-23 for unit steps in the neg-
ative x and y screen directions. Each of the address calculations involves only a
single integer addition.

Methods for implementing these procedures depend on the capabilities of
a particular system and the design requirements of the software package. With
systems that can display a range of intensity values for each pixel, frame-buffer
address calculations include pixel width (number of bits), as well as the pixel
screen location.

3-8 OpenGL CURVE FUNCTIONS

Routines for generating basic curves, such as circles and ellipses, are not included
as primitive functions in the OpenGL core library. But this library does contain
functions for displaying Bézier splines, which are polynomials that are defined
with a discrete point set. And the OpenGL Utility (GLU) has routines for three-
dimensional quadrics, such as spheres and cylinders, as well as routines for
producing rational B-splines, which are a general class of splines that include
the simpler Bézier curves. Using rational B-splines, we can display circles, el-
lipses, and other two-dimensional quadrics. In addition, there are routines in the
OpenGL Utility Toolkit (GLUT) that we can use to display some three-dimensional
quadrics, such as spheres and cones, and some other shapes. However, all these
routines are more involved than the basic primitives we introduce in this chapter,
so we defer further discussion of this group of functions until Chapter 8.

Another method we can use to generate a display of a simple curve is to
approximate it using a polyline. We just need to locate a set of points along the
curve path and connect the points with straight-line segments. The more line
sections we include in the polyline, the smoother the appearance of the curve. As
an example, Fig. 3-15 illustrates various polyline displays that could be used for
a circle segment.

A third alternative is to write our own curve-generation functions based on the
algorithms presented in the following sections. We first discuss efficient methods
for circle and ellipse generation, then we take a look at procedures for displaying
other conic sections, polynomials, and splines.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-9 Circle-Generating Algorithms 103

(a) (b)

(c)

FIGURE 3-15 A circular
arc approximated with (a)
three straight-line segments,
(b) six line segments, and
(c) twelve line segments.

3-9 CIRCLE-GENERATING ALGORITHMS

Since the circle is a frequently used component in pictures and graphs, a procedure
for generating either full circles or circular arcs is included in many graphics
packages. And sometimes a general function is available in a graphics library for
displaying various kinds of curves, including circles and ellipses.

yc

xc

r
(x, y)

u

FIGURE 3-16 Circle with
center coordinates (xc , yc) and
radius r .

FIGURE 3-17 Upper
half of a circle plotted
with Eq. 3-27 and with
(xc , yc) = (0, 0).

Properties of Circles
A circle (Fig. 3-16) is defined as the set of points that are all at a given distance r
from a center position (xc , yc). For any circle point (x, y), this distance relationship
is expressed by the Pythagorean theorem in Cartesian coordinates as

(x − xc)
2 + (y − yc)

2 = r2 (3-26)

We could use this equation to calculate the position of points on a circle circumfer-
ence by stepping along the x axis in unit steps from xc −r to xc +r and calculating
the corresponding y values at each position as

y = yc ±
√

r2 − (xc − x)2 (3-27)

But this is not the best method for generating a circle. One problem with this
approach is that it involves considerable computation at each step. Moreover,
the spacing between plotted pixel positions is not uniform, as demonstrated in
Fig. 3-17. We could adjust the spacing by interchanging x and y (stepping through
y values and calculating x values) whenever the absolute value of the slope of the
circle is greater than 1. But this simply increases the computation and processing
required by the algorithm.

Another way to eliminate the unequal spacing shown in Fig. 3-17 is to calcu-
late points along the circular boundary using polar coordinates r and θ (Fig. 3-16).
Expressing the circle equation in parametric polar form yields the pair of

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

104 CHAPTER 3 Graphics Output Primitives

equations

x = xc + r cos θ

y = yc + r sin θ
(3-28)

When a display is generated with these equations using a fixed angular step size,
a circle is plotted with equally spaced points along the circumference. To reduce
calculations, we can use a large angular separation between points along the cir-
cumference and connect the points with straight-line segments to approximate
the circular path. For a more continuous boundary on a raster display, we can
set the angular step size at 1

r . This plots pixel positions that are approximately one
unit apart. Although polar coordinates provide equal point spacing, the trigono-
metric calculations are still time consuming.

For any of the previous circle-generating methods, we can reduce computa-
tions by considering the symmetry of circles. The shape of the circle is similar in
each quadrant. Therefore, if we determine the curve positions in the first quad-
rant, we can generate the circle section in the second quadrant of the xy plane
by noting that the two circle sections are symmetric with respect to the y axis.
And circle sections in the third and fourth quadrants can be obtained from sec-
tions in the first and second quadrants by considering symmetry about the x axis.
We can take this one step further and note that there is also symmetry between
octants. Circle sections in adjacent octants within one quadrant are symmetric
with respect to the 45◦ line dividing the two octants. These symmetry condi-
tions are illustrated in Fig. 3-18, where a point at position (x, y) on a one-eighth
circle sector is mapped into the seven circle points in the other octants of the
xy plane. Taking advantage of the circle symmetry in this way, we can gener-
ate all pixel positions around a circle by calculating only the points within the
sector from x = 0 to x = y. The slope of the curve in this octant has a magnitude
less than or equal to 1.0. At x = 0, the circle slope is 0, and at x = y, the slope is
−1.0.

(#y, x) (y, x)

(x, y)
450

(x, #y)

(y, #x)(#y, #x)

(#x, #y)

(#x, y)

FIGURE 3-18 Symmetry
of a circle. Calculation of a
circle point (x, y) in one octant
yields the circle points shown
for the other seven octants.

Determining pixel positions along a circle circumference using symmetry
and either Eq. 3-26 or Eq. 3-28 still requires a good deal of computation. The
Cartesian equation 3-26 involves multiplications and square root calculations,
while the parametric equations contain multiplications and trigonometric calcu-
lations. More efficient circle algorithms are based on incremental calculation of
decision parameters, as in the Bresenham line algorithm, which involves only
simple integer operations.

Bresenham’s line algorithm for raster displays is adapted to circle generation
by setting up decision parameters for finding the closest pixel to the circumference
at each sampling step. The circle equation 3-26, however, is nonlinear, so that
square root evaluations would be required to compute pixel distances from a
circular path. Bresenham’s circle algorithm avoids these square-root calculations
by comparing the squares of the pixel separation distances.

However, it is possible to perform a direct distance comparison without a
squaring operation. The basic idea in this approach is to test the halfway position
between two pixels to determine if this midpoint is inside or outside the circle
boundary. This method is more easily applied to other conics; and for an integer
circle radius, the midpoint approach generates the same pixel positions as the
Bresenham circle algorithm. For a straight-line segment, the midpoint method is
equivalent to the Bresenham line algorithm. Also, the error involved in locating
pixel positions along any conic section using the midpoint test is limited to one-
half the pixel separation.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-9 Circle-Generating Algorithms 105

Midpoint Circle Algorithm
As in the raster line algorithm, we sample at unit intervals and determine the
closest pixel position to the specified circle path at each step. For a given radius
r and screen center position (xc , yc), we can first set up our algorithm to calculate
pixel positions around a circle path centered at the coordinate origin (0, 0). Then
each calculated position (x, y) is moved to its proper screen position by adding
xc to x and yc to y. Along the circle section from x = 0 to x = y in the first
quadrant, the slope of the curve varies from 0 to −1.0. Therefore, we can take unit
steps in the positive x direction over this octant and use a decision parameter to
determine which of the two possible pixel positions in any column is vertically
closer to the circle path. Positions in the other seven octants are then obtained by
symmetry.

To apply the midpoint method, we define a circle function as

fcirc(x, y) = x2 + y2 − r2 (3-29)

Any point (x, y) on the boundary of the circle with radius r satisfies the equation
fcirc(x, y) = 0. If the point is in the interior of the circle, the circle function is
negative. And if the point is outside the circle, the circle function is positive. To
summarize, the relative position of any point (x, y) can be determined by checking
the sign of the circle function:

fcirc(x, y)

< 0, if (x, y) is inside the circle boundary
= 0, if (x, y) is on the circle boundary
> 0, if (x, y) is outside the circle boundary

(3-30)

The tests in 3-30 are performed for the midpositions between pixels near the circle
path at each sampling step. Thus, the circle function is the decision parameter
in the midpoint algorithm, and we can set up incremental calculations for this
function as we did in the line algorithm.

x2 " y2 # r2 & 0yk

xk xk " 1 xk " 2

yk # 1 Midpoint

FIGURE 3-19 Midpoint
between candidate pixels at
sampling position xk + 1
along a circular path.

Figure 3-19 shows the midpoint between the two candidate pixels at sampling
position xk + 1. Assuming that we have just plotted the pixel at (xk , yk), we next
need to determine whether the pixel at position (xk + 1, yk) or the one at position
(xk + 1, yk − 1) is closer to the circle. Our decision parameter is the circle function
3-29 evaluated at the midpoint between these two pixels:

pk = fcirc

(
xk + 1, yk − 1

2

)

= (xk + 1)2 +
(

yk − 1
2

)2

− r2 (3-31)

If pk < 0, this midpoint is inside the circle and the pixel on scan line yk is closer
to the circle boundary. Otherwise, the midposition is outside or on the circle
boundary, and we select the pixel on scan line yk − 1.

Successive decision parameters are obtained using incremental calculations.
We obtain a recursive expression for the next decision parameter by evaluating
the circle function at sampling position xk+1 + 1 = xk + 2:

pk+1 = fcirc

(
xk+1 + 1, yk+1 − 1

2

)

= [(xk + 1) + 1]2 +
(

yk+1 − 1
2

)2

− r2

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

106 CHAPTER 3 Graphics Output Primitives

or

pk+1 = pk + 2(xk + 1) + (
y2

k+1 − y2
k

) − (yk+1 − yk) + 1 (3-32)

where yk+1 is either yk or yk − 1, depending on the sign of pk .
Increments for obtaining pk+1 are either 2xk+1 +1 (if pk is negative) or 2xk+1 +

1−2yk+1. Evaluation of the terms 2xk+1 and 2yk+1 can also be done incrementally as

2xk+1 = 2xk + 2
2yk+1 = 2yk − 2

At the start position (0, r), these two terms have the values 0 and 2r , respectively.
Each successive value for the 2xk+1 term is obtained by adding 2 to the previous
value, and each successive value for the 2yk+1 term is obtained by subtracting 2
from the previous value.

The initial decision parameter is obtained by evaluating the circle function at
the start position (x0, y0) = (0, r):

p0 = fcirc

(
1, r − 1

2

)
= 1 +

(
r − 1

2

)2

− r2

or

p0 = 5
4

− r (3-33)

If the radius r is specified as an integer, we can simply round p0 to

p0 = 1 − r (for r an integer)

since all increments are integers.
As in Bresenham’s line algorithm, the midpoint method calculates pixel posi-

tions along the circumference of a circle using integer additions and subtractions,
assuming that the circle parameters are specified in integer screen coordinates.
We can summarize the steps in the midpoint circle algorithm as follows.

Midpoint Circle Algorithm

1. Input radius r and circle center (xc , yc), then set the coordinates for the
first point on the circumference of a circle centered on the origin as

(x0, y0) = (0, r)

2. Calculate the initial value of the decision parameter as

p0 = 5
4

− r

3. At each xk position, starting at k = 0, perform the following test. If
pk < 0, the next point along the circle centered on (0, 0) is (xk+1, yk) and

pk+1 = pk + 2xk+1 + 1

Otherwise, the next point along the circle is (xk + 1, yk − 1) and

pk+1 = pk + 2xk+1 + 1 − 2yk+1

where 2xk+1 = 2xk + 2 and 2yk+1 = 2yk − 2.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-9 Circle-Generating Algorithms 107

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x, y) onto the circular path
centered at (xc , yc) and plot the coordinate values:

x = x + xc , y = y + yc

6. Repeat steps 3 through 5 until x ≥ y.

EXAMPLE 3-2 Midpoint Circle Drawing

Given a circle radius r = 10, we demonstrate the midpoint circle algorithm by
determining positions along the circle octant in the first quadrant from x = 0
to x = y. The initial value of the decision parameter is

p0 = 1 − r = −9

For the circle centered on the coordinate origin, the initial point is (x0, y0) =
(0, 10), and initial increment terms for calculating the decision parameters are

2x0 = 0, 2y0 = 20

Successive midpoint decision parameter values and the corresponding coor-
dinate positions along the circle path are listed in the following table.

k pk (xk+1, yk+1) 2xk+1 2yk+1

0 −9 (1, 10) 2 20
1 −6 (2, 10) 4 20
2 −1 (3, 10) 6 20
3 6 (4, 9) 8 18
4 −3 (5, 9) 10 18
5 8 (6, 8) 12 16
6 5 (7, 7) 14 14

y y & x

x0

0

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

FIGURE 3-20 Pixel
positions (solid circles) along a
circle path centered on the
origin and with radius r = 10, as
calculated by the midpoint circle
algorithm. Open (“hollow”)
circles show the symmetry
positions in the first quadrant.

A plot of the generated pixel positions in the first quadrant is shown in
Fig. 3-20.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

108 CHAPTER 3 Graphics Output Primitives

The following code segment illustrates procedures that could be used to im-
plement the midpoint circle algorithm. Values for a circle radius and for the center
coordinates of the circle are passed to procedure circleMidpoint. A pixel po-
sition along the circular path in the first octant is then computed and passed to
procedure circlePlotPoints. This procedure sets the circle color in the frame
buffer for all circle symmetry positions with repeated calls to the setPixel rou-
tine, which is implemented with the OpenGL point-plotting functions.

#include <GL/glut.h>

class screenPt
{

private:
GLint x, y;

public:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt () {

x = y = 0;
}
void setCoords (GLint xCoordValue, GLint yCoordValue) {

x = xCoordValue;
y = yCoordValue;

}

GLint getx () const {
return x;

}

GLint gety () const {
return y;

}
void incrementx () {

x++;
}
void decrementy () {

y--;
}

};

void setPixel (GLint xCoord, GLint yCoord)
{

glBegin (GL_POINTS);
glVertex2i (xCoord, yCoord);

glEnd ();
}

void circleMidpoint (GLint xc, GLint yc, GLint radius)
{

screenPt circPt;

GLint p = 1 - radius; // Initial value for midpoint parameter.

circPt.setCoords (0, radius); // Set coords for top point of circle.

void circlePlotPoints (GLint, GLint, screenPt);

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-10 Ellipse-Generating Algorithms 109

/* Plot the initial point in each circle quadrant. */
circlePlotPoints (xc, yc, circPt);
/* Calculate next point and plot in each octant. */
while (circPt.getx () < circPt.gety ()) {

circPt.incrementx ();
if (p < 0)

p += 2 * circPt.getx () + 1;
else {

circPt.decrementy ();
p += 2 * (circPt.getx () - circPt.gety ()) + 1;

}
circlePlotPoints (xc, yc, circPt);

}
}

void circlePlotPoints (GLint xc, GLint yc, screenPt circPt)
{

setPixel (xc + circPt.getx (), yc + circPt.gety ());
setPixel (xc - circPt.getx (), yc + circPt.gety ());
setPixel (xc + circPt.getx (), yc - circPt.gety ());
setPixel (xc - circPt.getx (), yc - circPt.gety ());
setPixel (xc + circPt.gety (), yc + circPt.getx ());
setPixel (xc - circPt.gety (), yc + circPt.getx ());
setPixel (xc + circPt.gety (), yc - circPt.getx ());
setPixel (xc - circPt.gety (), yc - circPt.getx ());

}

3-10 ELLIPSE-GENERATING ALGORITHMS

Loosely stated, an ellipse is an elongated circle. We can also describe an ellipse
as a modified circle whose radius varies from a maximum value in one direction
to a minimum value in the perpendicular direction. The straight-line segments
through the interior of the ellipse in these two perpendicular directions are re-
ferred to as the major and minor axes of the ellipse.

y

F1

F2

P = (x, y)

x

d2

d1

FIGURE 3-21 Ellipse
generated about foci F1
and F2.

Properties of Ellipses
A precise definition of an ellipse can be given in terms of the distances from any
point on the ellipse to two fixed positions, called the foci of the ellipse. The sum
of these two distances is the same value for all points on the ellipse (Fig. 3-21). If
the distances to the two focus positions from any point P = (x, y) on the ellipse
are labeled d1 and d2, then the general equation of an ellipse can be stated as

d1 + d2 = constant (3-34)

Expressing distances d1 and d2 in terms of the focal coordinates F1 = (x1, y1) and
F2 = (x2, y2), we have√

(x − x1)2 + (y − y1)2 +
√

(x − x2)2 + (y − y2)2 = constant (3-35)

By squaring this equation, isolating the remaining radical, and squaring again,
we can rewrite the general ellipse equation in the form

A x2 + B y2 + C x y + D x + E y + F = 0 (3-36)

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

110 CHAPTER 3 Graphics Output Primitives

where the coefficients A, B, C , D, E , and F are evaluated in terms of the focal
coordinates and the dimensions of the major and minor axes of the ellipse. The
major axis is the straight-line segment extending from one side of the ellipse to the
other through the foci. The minor axis spans the shorter dimension of the ellipse,
perpendicularly bisecting the major axis at the halfway position (ellipse center)
between the two foci.

An interactive method for specifying an ellipse in an arbitrary orientation
is to input the two foci and a point on the ellipse boundary. With these three
coordinate positions, we can evaluate the constant in Eq. 3-35. Then, the values
for the coefficients in Eq. 3-36 can be computed and used to generate pixels along
the elliptical path.

y

yc

ry

rx

xc
x

FIGURE 3-22 Ellipse
centered at (xc , yc) with
semimajor axis rx and
semiminor axis ry.

Ellipse equations are greatly simplified if the major and minor axes are ori-
ented to align with the coordinate axes. In Fig. 3-22, we show an ellipse in “stan-
dard position” with major and minor axes oriented parallel to the x and y axes.
Parameter rx for this example labels the semimajor axis, and parameter ry labels
the semiminor axis. The equation for the ellipse shown in Fig. 3-22 can be written
in terms of the ellipse center coordinates and parameters rx and ry as(

x − xc

rx

)2

+
(

y − yc

ry

)2

= 1 (3-37)

Using polar coordinates r and θ , we can also describe the ellipse in standard
position with the parametric equations

x = xc + rx cos θ

y = yc + ry sin θ
(3-38)

Angle θ , called the eccentric angle of the ellipse, is measured around the perimeter
of a bounding circle. If rx > ry, the radius of the bounding circle is r = rx (Fig. 3-23).
Otherwise, the bounding circle has radius r = ry.

yc

y

xxc

r & rx

u

FIGURE 3-23 The
bounding circle and eccentric
angle θ for an ellipse with
rx > ry.

As with the circle algorithm, symmetry considerations can be used to reduce
computations. An ellipse in standard position is symmetric between quadrants,
but, unlike a circle, it is not symmetric between the two octants of a quadrant.
Thus, we must calculate pixel positions along the elliptical arc throughout one
quadrant, then use symmetry to obtain curve positions in the remaining three
quadrants (Fig. 3-24).

(#x, y)

ry

rx

(x, y)

(x, #y)(#x, #y)

FIGURE 3-24 Symmetry
of an ellipse. Calculation of a
point (x, y) in one quadrant
yields the ellipse points
shown for the other three
quadrants.

Midpoint Ellipse Algorithm
Our approach here is similar to that used in displaying a raster circle. Given
parameters rx, ry, and (xc , yc), we determine curve positions (x, y) for an ellipse in
standard position centered on the origin, then we shift all the points using a fixed
offset so that the ellipse is centered at (xc , yc). If we wish also to display the ellipse
in nonstandard position, we could rotate the ellipse about its center coordinates
to reorient the major and minor axes in the desired directions. For the present,
we consider only the display of ellipses in standard position. We discuss general
methods for transforming object orientations and positions in Chapter 5.

The midpoint ellipse method is applied throughout the first quadrant in two
parts. Figure 3-25 shows the division of the first quadrant according to the slope
of an ellipse with rx < ry. We process this quadrant by taking unit steps in the
x direction where the slope of the curve has a magnitude less than 1.0, and then
we take unit steps in the y direction where the slope has a magnitude greater
than 1.0.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-10 Ellipse-Generating Algorithms 111

Regions 1 and 2 (Fig. 3-25) can be processed in various ways. We can start at
position (0, ry) and step clockwise along the elliptical path in the first quadrant,
shifting from unit steps in x to unit steps in y when the slope becomes less than
−1.0. Alternatively, we could start at (rx, 0) and select points in a counterclockwise
order, shifting from unit steps in y to unit steps in x when the slope becomes
greater than −1.0. With parallel processors, we could calculate pixel positions in
the two regions simultaneously. As an example of a sequential implementation
of the midpoint algorithm, we take the start position at (0, ry) and step along the
ellipse path in clockwise order throughout the first quadrant.

y

ry

rx x

Slope & #1

Region
1

Region
2

FIGURE 3-25 Ellipse
processing regions. Over
region 1, the magnitude of the
ellipse slope is less than 1.0;
over region 2, the magnitude
of the slope is greater than 1.0.

We define an ellipse function from Eq. 3-37 with (xc , yc) = (0, 0) as

fellipse(x, y) = r2
y x2 + r2

x y2 − r2
xr2

y (3-39)

which has the following properties:

fellipse(x, y)

< 0, if (x, y) is inside the ellipse boundary
= 0, if (x, y) is on the ellipse boundary
> 0, if (x, y) is outside the ellipse boundary

(3-40)

Thus, the ellipse function fellipse(x, y) serves as the decision parameter in the
midpoint algorithm. At each sampling position, we select the next pixel along the
ellipse path according to the sign of the ellipse function evaluated at the midpoint
between the two candidate pixels.

Starting at (0, ry), we take unit steps in the x direction until we reach the
boundary between region 1 and region 2 (Fig. 3-25). Then we switch to unit steps
in the y direction over the remainder of the curve in the first quadrant. At each step
we need to test the value of the slope of the curve. The ellipse slope is calculated
from Eq. 3-39 as

dy
dx

= −2r2
y x

2r2
x y

(3-41)

At the boundary between region 1 and region 2, dy/dx = −1.0 and

2r2
y x = 2r2

x y

Therefore, we move out of region 1 whenever

2r2
y x ≥ 2r2

x y (3-42)

ry
2x2 " rx

2y2 # rx
2ry

2 & 0

yk

xk xk " 1

yk # 1 midpoint

FIGURE 3-26 Midpoint
between candidate pixels at
sampling position xk + 1
along an elliptical path.

Figure 3-26 shows the midpoint between the two candidate pixels at sampling
position xk+1 in the first region. Assuming position (xk , yk) has been selected in the
previous step, we determine the next position along the ellipse path by evaluating
the decision parameter (that is, the ellipse function 3-39) at this midpoint:

p1k = fellipse

(
xk + 1, yk − 1

2

)
= r2

y(xk + 1)2 + r2
x

(
yk − 1

2

)2

− r2
xr2

y (3-43)

If p1k < 0, the midpoint is inside the ellipse and the pixel on scan line yk is closer
to the ellipse boundary. Otherwise, the midposition is outside or on the ellipse
boundary, and we select the pixel on scan line yk − 1.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

112 CHAPTER 3 Graphics Output Primitives

At the next sampling position (xk+1 + 1 = xk + 2), the decision parameter for
region 1 is evaluated as

p1k+1 = fellipse

(
xk+1 + 1, yk+1 − 1

2

)
= r2

y[(xk + 1) + 1]2 + r2
x

(
yk+1 − 1

2

)2

− r2
xr2

y

or

p1k+1 = p1k + 2r2
y(xk + 1) + r2

y + r2
x

[(
yk+1 − 1

2

)2

−
(

yk − 1
2

)2
]

(3-44)

where yk+1 is either yk or yk − 1, depending on the sign of p1k .
Decision parameters are incremented by the following amounts:

increment =
2r2

y xk+1 + r2
y , if p1k < 0

2r2
y xk+1 + r2

y − 2r2
x yk+1, if p1k ≥ 0

Increments for the decision parameters can be calculated using only addition and
subtraction, as in the circle algorithm, since values for the terms 2r2

y x and 2r2
x y can

be obtained incrementally. At the initial position (0, ry), these two terms evaluate
to

2r2
y x = 0 (3-45)

2r2
x y = 2r2

xry (3-46)

As x and y are incremented, updated values are obtained by adding 2r2
y to the

current value of the increment term in Eq. 3-45 and subtracting 2r2
x from the

current value of the increment term in Eq. 3-46. The updated increment values
are compared at each step, and we move from region 1 to region 2 when condition
3-42 is satisfied.

In region 1, the initial value of the decision parameter is obtained by evaluating
the ellipse function at the start position (x0, y0) = (0, ry):

p10 = fellipse

(
1, ry − 1

2

)
= r2

y + r2
x

(
ry − 1

2

)2

− r2
xr2

y

or

p10 = r2
y − r2

xry + 1
4

r2
x (3-47)

ry
2x2 " rx

2y2 # rx
2ry

2 & 0

yk

xk xk " 1 xk " 2

yk # 1
midpoint

FIGURE 3-27 Midpoint
between candidate pixels at
sampling position yk − 1
along an elliptical path.

Over region 2, we sample at unit intervals in the negative y direction, and the
midpoint is now taken between horizontal pixels at each step (Fig. 3-27). For this
region, the decision parameter is evaluated as

p2k = fellipse

(
xk + 1

2
, yk − 1

)
= r2

y

(
xk + 1

2

)2

+ r2
x(yk − 1)2 − r2

xr2
y (3-48)

If p2k > 0, the midposition is outside the ellipse boundary, and we select the pixel

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-10 Ellipse-Generating Algorithms 113

at xk . If p2k ≤ 0, the midpoint is inside or on the ellipse boundary, and we select
pixel position xk+1.

To determine the relationship between successive decision parameters in re-
gion 2, we evaluate the ellipse function at the next sampling step yk+1 −1 = yk −2:

p2k+1 = fellipse

(
xk+1 + 1

2
, yk+1 − 1

)

= r2
y

(
xk+1 + 1

2

)2

+ r2
x [(yk − 1) − 1]2 − r2

xr2
y (3-49)

or

p2k+1 = p2k − 2r2
x(yk − 1) + r2

x + r2
y

[(
xk+1 + 1

2

)2

−
(

xk + 1
2

)2
]

(3-50)

with xk+1 set either to xk or to xk + 1, depending on the sign of p2k .
When we enter region 2, the initial position (x0, y0) is taken as the last position

selected in region 1 and the initial decision parameter in region 2 is then

p20 = fellipse

(
x0 + 1

2
, y0 − 1

)
= r2

y

(
x0 + 1

2

)2

+ r2
x(y0 − 1)2 − r2

xr2
y (3-51)

To simplify the calculation of p20, we could select pixel positions in counterclock-
wise order starting at (rx, 0). Unit steps would then be taken in the positive y
direction up to the last position selected in region 1.

This midpoint algorithm can be adapted to generate an ellipse in nonstan-
dard position using the ellipse function Eq. 3-36 and calculating pixel positions
over the entire elliptical path. Alternatively, we could reorient the ellipse axes to
standard position, using transformation methods discussed in Chapter 5, apply
the midpoint ellipse algorithm to determine curve positions, and then convert
calculated pixel positions to path positions along the original ellipse orientation.

Assuming rx, ry, and the ellipse center are given in integer screen coordi-
nates, we need only incremental integer calculations to determine values for the
decision parameters in the midpoint ellipse algorithm. The increments r2

x , r2
y ,

2r2
x , and 2r2

y are evaluated once at the beginning of the procedure. In the fol-
lowing summary, we list the steps for displaying an ellipse using the midpoint
algorithm.

Midpoint Ellipse Algorithm

1. Input rx, ry, and ellipse center (xc , yc), and obtain the first point on an
ellipse centered on the origin as

(x0, y0) = (0, ry)

2. Calculate the initial value of the decision parameter in region 1 as

p10 = r2
y − r2

xry + 1
4

r2
x

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

114 CHAPTER 3 Graphics Output Primitives

3. At each xk position in region 1, starting at k = 0, perform the follow-
ing test. If p1k < 0, the next point along the ellipse centered on (0, 0)
is (xk+1, yk) and

p1k+1 = p1k + 2r2
y xk+1 + r2

y

Otherwise, the next point along the ellipse is (xk + 1, yk − 1) and

p1k+1 = p1k + 2r2
y xk+1 − 2r2

x yk+1 + r2
y

with

2r2
y xk+1 = 2r2

y xk + 2r2
y , 2r2

x yk+1 = 2r2
x yk − 2r2

x

and continue until 2r2
y x ≥ 2r2

x y.

4. Calculate the initial value of the decision parameter in region 2 as

p20 = r2
y

(
x0 + 1

2

)2

+ r2
x(y0 − 1)2 − r2

xr2
y

where (x0, y0) is the last position calculated in region 1.

5. At each yk position in region 2, starting at k = 0, perform the following
test. If p2k > 0, the next point along the ellipse centered on (0, 0) is
(xk , yk − 1) and

p2k+1 = p2k − 2r2
x yk+1 + r2

x

Otherwise, the next point along the ellipse is (xk + 1, yk − 1) and

p2k+1 = p2k + 2r2
y xk+1 − 2r2

x yk+1 + r2
x

using the same incremental calculations for x and y as in region 1.
Continue until y = 0.

6. For both regions, determine symmetry points in the other three
quadrants.

7. Move each calculated pixel position (x, y) onto the elliptical path cen-
tered on (xc , yc) and plot the coordinate values:

x = x + xc , y = y + yc

EXAMPLE 3-3 Midpoint Ellipse Drawing

Given input ellipse parameters rx = 8 and ry = 6, we illustrate the steps in
the midpoint ellipse algorithm by determining raster positions along the el-
lipse path in the first quadrant. Initial values and increments for the decision
parameter calculations are

2r2
y x = 0 (with increment 2r2

y = 72)

2r2
x y = 2r2

xry (with increment −2r2
x = −128)

For region 1, the initial point for the ellipse centered on the origin is

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-10 Ellipse-Generating Algorithms 115

(x0, y0) = (0, 6), and the initial decision parameter value is

p10 = r2
y − r2

xry + 1
4

r2
x = −332

Successive midpoint decision-parameter values and the pixel positions along
the ellipse are listed in the following table.

k p1k (xk+1, yk+1) 2r 2
y xk+1 2r 2

x yk+1

0 −332 (1, 6) 72 768
1 −224 (2, 6) 144 768
2 −44 (3, 6) 216 768
3 208 (4, 5) 288 640
4 −108 (5, 5) 360 640
5 288 (6, 4) 432 512
6 244 (7, 3) 504 384

We now move out of region 1, since 2r2
y x > 2r2

x y.
For region 2, the initial point is (x0, y0) = (7, 3) and the initial decision param-
eter is

p20 = fellipse

(
7 + 1

2
, 2

)
= −151

The remaining positions along the ellipse path in the first quadrant are then
calculated as

k p1k (xk+1, yk+1) 2r 2
y xk+1 2r 2

x yk+1

0 −151 (8, 2) 576 256
1 233 (8, 1) 576 128
2 745 (8, 0) — —

0

0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

FIGURE 3-28 Pixel positions along an
elliptical path centered on the origin with
rx = 8 and ry = 6, using the midpoint
algorithm to calculate locations within the
first quadrant.

A plot of the calculated positions for the ellipse within the first quadrant is
shown in Fig. 3-28.

In the following code segment, example procedures are given for implement-
ing the midpoint ellipse algorithm. Values for the ellipse parameters Rx, Ry,
xCenter, and yCenter are input to procedure ellipseMidpoint. Positions
along the curve in the first quadrant are then calculated and passed to procedure
ellipsePlotPoints. Symmetry is used to obtain ellipse positions in the other
three quadrants, and the setPixel routine sets the ellipse color in the frame-
buffer locations corresponding to these positions.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

116 CHAPTER 3 Graphics Output Primitives

inline int round (const float a) { return int (a + 0.5); }

/* The following procedure accepts values for an ellipse
* center position and its semimajor and semiminor axes, then
* calculates ellipse positions using the midpoint algorithm.
*/
void ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry)
{

int Rx2 = Rx * Rx;
int Ry2 = Ry * Ry;
int twoRx2 = 2 * Rx2;
int twoRy2 = 2 * Ry2;
int p;
int x = 0;
int y = Ry;
int px = 0;
int py = twoRx2 * y;
void ellipsePlotPoints (int, int, int, int);

/* Plot the initial point in each quadrant. */
ellipsePlotPoints (xCenter, yCenter, x, y);

/* Region 1 */
p = round (Ry2 - (Rx2 * Ry) + (0.25 * Rx2));
while (px < py) {

x++;
px += twoRy2;
if (p < 0)

p += Ry2 + px;
else {

y--;
py -= twoRx2;
p += Ry2 + px - py;

}
ellipsePlotPoints (xCenter, yCenter, x, y);

}

/* Region 2 */
p = round (Ry2 * (x+0.5) * (x+0.5) + Rx2 * (y-1) * (y-1) - Rx2 * Ry2);
while (y > 0) {

y--;
py -= twoRx2;
if (p > 0)

p += Rx2 - py;
else {

x++;
px += twoRy2;
p += Rx2 - py + px;

}
ellipsePlotPoints (xCenter, yCenter, x, y);

}
}

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-11 Other Curves 117

void ellipsePlotPoints (int xCenter, int yCenter, int x, int y);
{

setPixel (xCenter + x, yCenter + y);
setPixel (xCenter - x, yCenter + y);
setPixel (xCenter + x, yCenter - y);
setPixel (xCenter - x, yCenter - y);

}

3-11 OTHER CURVES

Various curve functions are useful in object modeling, animation path specifica-
tions, data and function graphing, and other graphics applications. Commonly
encountered curves include conics, trigonometric and exponential functions,
probability distributions, general polynomials, and spline functions. Displays of
these curves can be generated with methods similar to those discussed for the
circle and ellipse functions. We can obtain positions along curve paths directly
from explicit representations y = f (x) or from parametric forms. Alternatively,
we could apply the incremental midpoint method to plot curves described with
implicit functions f (x, y) = 0.

A simple method for displaying a curved line is to approximate it with
straight-line segments. Parametric representations are often useful in this case for
obtaining equally spaced positions along the curve path for the line endpoints.
We can also generate equally spaced positions from an explicit representation by
choosing the independent variable according to the slope of the curve. Where the
slope of y = f (x) has a magnitude less than 1, we choose x as the independent
variable and calculate y values at equal x increments. To obtain equal spacing
where the slope has a magnitude greater than 1, we use the inverse function,
x = f −1(y), and calculate values of x at equal y steps.

Straight-line or curve approximations are used to generate a line graph for
a set of discrete data values. We could join the discrete points with straight-
line segments, or we could use linear regression (least squares) to approximate
the data set with a single straight line. A nonlinear least-squares approach is
used to display the data set with some approximating function, usually a poly-
nomial.

As with circles and ellipses, many functions possess symmetries that can be
exploited to reduce the computation of coordinate positions along curve paths.
For example, the normal probability distribution function is symmetric about a
center position (the mean), and all points within one cycle of a sine curve can be
generated from the points in a 90◦ interval.

Conic Sections
In general, we can describe a conic section (or conic) with the second-degree
equation

A x2 + B y2 + C x y + D x + E y + F = 0 (3-52)

where values for parameters A, B, C , D, E , and F determine the kind of curve
we are to display. Given this set of coefficients, we can determine the particular

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

118 CHAPTER 3 Graphics Output Primitives

conic that will be generated by evaluating the discriminant B2 − 4AC :

B2 − 4AC

< 0, generates an ellipse (or circle)
= 0, generates a parabola
> 0, generates a hyperbola

(3-53)

For example, we get the circle equation 3-26 when A = B = 1, C = 0, D = −2xc ,
E = −2yc , and F = x2

c + y2
c − r2. Equation 3-52 also describes the “degenerate”

conics: points and straight lines.
In some applications, circular and elliptical arcs are conveniently specified

with the beginning and ending angular values for the arc, as illustrated in Fig. 3-29.
And such arcs are sometimes defined by their endpoint coordinate positions. For
either case, we could generate the arc with a modified midpoint method, or we
could display a set of approximating straight-line segments.

y

x

r

u2u1

FIGURE 3-29 A circular
arc, centered on the origin,
defined with beginning angle
θ1, ending angle θ2, and
radius r .

y0

v0 g

x0

FIGURE 3-30 Parabolic
path of an object tossed into a
downward gravitational field
at the initial position (x0, y0).

Ellipses, hyperbolas, and parabolas are particularly useful in certain anima-
tion applications. These curves describe orbital and other motions for objects sub-
jected to gravitational, electromagnetic, or nuclear forces. Planetary orbits in the
solar system, for example, are approximated with ellipses; and an object projected
into a uniform gravitational field travels along a parabolic trajectory. Figure 3-30
shows a parabolic path in standard position for a gravitational field acting in the
negative y direction. The explicit equation for the parabolic trajectory of the object
shown can be written as

y = y0 + a(x − x0)
2 + b(x − x0) (3-54)

with constants a and b determined by the initial velocity v0 of the object and the
acceleration g due to the uniform gravitational force. We can also describe such
parabolic motions with parametric equations using a time parameter t, measured
in seconds from the initial projection point:

x = x0 + vx0 t

y = y0 + vy0 t − 1
2

gt2
(3-55)

Here, vx0 and vy0 are the initial velocity components, and the value of g near
the surface of the earth is approximately 980 cm/sec2. Object positions along the
parabolic path are then calculated at selected time steps.

x

Right
Branch

Left
Branch

ry

rx
y & x

rx#rx

#ry

ry

y

FIGURE 3-31 Left and
right branches of a hyperbola
in standard position with the
symmetry axis along the x
axis.

Hyperbolic curves (Fig. 3-31) are useful in various scientific-visualization
applications. Motions of objects along hyperbolic paths occur in connection with
the collision of charged particles and in certain gravitational problems. For ex-
ample, comets or meteorites moving around the sun may travel along hyperbolic
paths and escape to outer space, never to return. The particular branch (left or
right, in Fig. 3-31) describing the motion of an object depends on the forces in-
volved in the problem. We can write the standard equation for the hyperbola
centered on the origin in Fig. 3-31 as(

x
rx

)2

−
(

y
ry

)2

= 1 (3-56)

with x ≤ −rx for the left branch and x ≥ rx for the right branch. Since this equation
differs from the standard ellipse equation 3-39 only in the sign between the x2 and
y2 terms, we can generate points along a hyperbolic path with a slightly modified
ellipse algorithm.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-12 Parallel Curve Algorithms 119

Parabolas and hyperbolas possess a symmetry axis. For example, the parabola
described by Eq. 3-55 is symmetric about the axis

x = x0 + vx0vy0/g

The methods used in the midpoint ellipse algorithm can be directly applied to
obtain points along one side of the symmetry axis of hyperbolic and parabolic
paths in the two regions: (1) where the magnitude of the curve slope is less than
1, and (2) where the magnitude of the slope is greater than 1. To do this, we first
select the appropriate form of Eq. 3-52 and then use the selected function to set
up expressions for the decision parameters in the two regions.

Polynomials and Spline Curves
A polynomial function of nth degree in x is defined as

y =
n∑

k=0

ak xk

= a0 + a1x + · · · + an−1xn−1 + anxn (3-57)

where n is a nonnegative integer and the ak are constants, with an q= 0. We obtain
a quadratic curve when n = 2, a cubic polynomial when n = 3, a quartic curve
when n = 4, and so forth. And we have a straight line when n = 1. Polynomials
are useful in a number of graphics applications, including the design of object
shapes, the specification of animation paths, and the graphing of data trends in a
discrete set of data points.

Designing object shapes or motion paths is typically accomplished by first
specifying a few points to define the general curve contour, then the selected
points are fitted with a polynomial. One way to accomplish the curve fitting is to
construct a cubic polynomial curve section between each pair of specified points.
Each curve section is then described in parametric form as

x = ax0 + ax1u + ax2u2 + ax3u3

y = ay0 + ay1u + ay2u2 + ay3u3
(3-58)

where parameter u varies over the interval from 0 to 1.0. Values for the coefficients
of u in the preceding equations are determined from boundary conditions on the
curve sections. One boundary condition is that two adjacent curve sections have
the same coordinate position at the boundary, and a second condition is to match
the two curve slopes at the boundary so that we obtain one continuous, smooth
curve (Fig. 3-32). Continuous curves that are formed with polynomial pieces are
called spline curves, or simply splines. There are other ways to set up spline
curves, and various spline-generating methods are explored in Chapter 8.

3-12 PARALLEL CURVE ALGORITHMS

Methods for exploiting parallelism in curve generation are similar to those used
in displaying straight-line segments. We can either adapt a sequential algorithm
by allocating processors according to curve partitions, or we could devise other
methods and assign processors to screen partitions.

FIGURE 3-32 A spline
curve formed with individual
cubic polynomial sections
between specified coordinate
positions.

A parallel midpoint method for displaying circles is to divide the circular arc
from 45◦ to 90◦ into equal subarcs and assign a separate processor to each subarc.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

120 CHAPTER 3 Graphics Output Primitives

As in the parallel Bresenham line algorithm, we then need to set up computations
to determine the beginning y value and decision parameter pk value for each pro-
cessor. Pixel positions are calculated throughout each subarc, and positions in the
other circle octants can be obtained by symmetry. Similarly, a parallel ellipse mid-
point method divides the elliptical arc over the first quadrant into equal subarcs
and parcels these out to separate processors. Again, pixel positions in the other
quadrants are determined by symmetry. A screen-partitioning scheme for circles
and ellipses is to assign each scan line that crosses the curve to a separate pro-
cessor. In this case, each processor uses the circle or ellipse equation to calculate
curve intersection coordinates.

For the display of elliptical arcs or other curves, we can simply use the scan-
line partitioning method. Each processor uses the curve equation to locate the
intersection positions along its assigned scan line. With processors assigned to in-
dividual pixels, each processor would calculate the distance (or distance squared)
from the curve to its assigned pixel. If the calculated distance is less than a pre-
defined value, the pixel is plotted.

3-13 PIXEL ADDRESSING AND OBJECT GEOMETRY

In discussing the raster algorithms for displaying graphics primitives, we as-
sumed that frame-buffer coordinates referenced the center of a screen pixel posi-
tion. We now consider the effects of different addressing schemes and an alternate
pixel-addressing method used by some graphics packages, including OpenGL.

An object description that is input to a graphics program is given in terms of
precise world-coordinate positions, which are infinitesimally small mathematical
points. But when the object is scan converted into the frame buffer, the input
description is transformed to pixel coordinates which reference finite screen areas,
and the displayed raster image may not correspond exactly with the relative
dimensions of the input object. If it is important to preserve the specified geometry
of world objects, we can compensate for the mapping of mathematical input points
to finite pixel areas. One way to do this is simply to adjust the pixel dimensions
of displayed objects so as to correspond to the dimensions given in the original
mathematical description of the scene. For example, if a rectangle is specified
as having a width of 40 cm, then we could adjust the screen display so that the
rectangle has a width of 40 pixels, with the width of each pixel representing one
centimeter. Another approach is to map world coordinates onto screen positions
between pixels, so that we align object boundaries with pixel boundaries instead
of pixel centers.

Screen Grid Coordinates
Figure 3-33 shows a screen section with grid lines marking pixel boundaries,
one unit apart. In this scheme, a screen position is given as the pair of integer
values identifying a grid-intersection position between two pixels. The address
for any pixel is now at its lower-left corner, as illustrated in Fig. 3-34. And a
straight-line path is now envisioned as between grid intersections. For example,
the mathematical line path for a polyline with endpoint coordinates (0, 0), (5, 2),
and (1, 4) would then be as shown in Fig. 3-35.

0 1 2 3
0

1

2

3

4 5

4

5

FIGURE 3-33 Lower-left
section of a screen area with
coordinate positions
referenced by grid
intersection lines.

0
0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

FIGURE 3-34
Illuminated pixel at raster
position (4, 5).

Using screen grid coordinates, we now identify the area occupied by a pixel
with screen coordinates (x, y) as the unit square with diagonally opposite corners
at (x, y) and (x + 1, y + 1). This pixel-addressing method has several advantages:

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-13 Pixel Addressing and Object Geometry 121

0 1 2 3
0

1

2

3

4 5

4

5

FIGURE 3-35 Line path
for two connected line
segments between screen
grid-coordinate positions.

20 21 25 30

18

15

10
22 23 24 26 27 28 29

16

11

12

13

14

17

FIGURE 3-36 Line path and
corresponding pixel display for grid
endpoint coordinates (20, 10) and (30, 18).

it avoids half-integer pixel boundaries, it facilitates precise object representations,
and it simplifies the processing involved in many scan-conversion algorithms and
other raster procedures.

The algorithms for line drawing and curve generation discussed in the pre-
ceding sections are still valid when applied to input positions expressed as screen
grid coordinates. Decision parameters in these algorithms would now be a mea-
sure of screen grid separation differences, rather than separation differences from
pixel centers.

Maintaining Geometric Properties of Displayed Objects
When we convert geometric descriptions of objects into pixel representations,
we transform mathematical points and lines into finite screen areas. If we are to
maintain the original geometric measurements specified by the input coordinates
for an object, we need to account for the finite size of pixels when we transform
the object definition to a screen display.

Figure 3-36 shows the line plotted in the Bresenham line-algorithm exam-
ple of Section 3-5. Interpreting the line endpoints (20, 10) and (30, 18) as precise
grid-crossing positions, we see that the line should not extend past screen-grid
position (30, 18). If we were to plot the pixel with screen coordinates (30, 18), as
in the example given in Section 3-5, we would display a line that spans 11 hor-
izontal units and 9 vertical units. For the mathematical line, however, #x = 10
and #y = 8. If we are addressing pixels by their center positions, we can adjust
the length of the displayed line by omitting one of the endpoint pixels. But if we
think of screen coordinates as addressing pixel boundaries, as shown in Fig. 3-36,
we plot a line using only those pixels that are “interior” to the line path; that is,
only those pixels that are between the line endpoints. For our example, we would
plot the leftmost pixel at (20, 10) and the rightmost pixel at (29, 17). This displays a
line that has the same geometric magnitudes as the mathematical line from (20, 10)
to (30, 18).

0
0

1 2 3 4 5

1

2

3

4

(b)

0
0

1 2 3 4 5

1

2

3

4

(c)

0
0

1 2 3 4 5

1

2

3

4

(a)

FIGURE 3-37
Conversion of rectangle
(a) with vertices at screen
coordinates (0, 0), (4, 0), (4, 3),
and (0, 3) into display (b) that
includes the right and top
boundaries and into display
(c) that maintains geometric
magnitudes.

For an enclosed area, input geometric properties are maintained by display-
ing the area using only those pixels that are interior to the object boundaries.
The rectangle defined with the screen coordinate vertices shown in Fig. 3-37(a),
for example, is larger when we display it filled with pixels up to and including

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

122 CHAPTER 3 Graphics Output Primitives

the border pixel lines joining the specified vertices (Fig. 3-37(b)). As defined,
the area of the rectangle is 12 units, but as displayed in Fig. 3-37(b), it has an area
of 20 units. In Fig. 3-37(c), the original rectangle measurements are maintained by
displaying only the internal pixels. The right boundary of the input rectangle is
at x = 4. To maintain the rectangle width in the display, we set the rightmost pixel
grid coordinate for the rectangle at x = 3, since the pixels in this vertical column
span the interval from x = 3 to x = 4. Similarly, the mathematical top boundary of
the rectangle is at y = 3, so we set the top pixel row for the displayed rectangle at
y = 2.

These compensations for finite pixel size can be applied to other objects, in-
cluding those with curved boundaries, so that the raster display maintains the
input object specifications. A circle with radius 5 and center position (10, 10),
for instance, would be displayed as in Fig 3-38 by the midpoint circle algorithm us-
ing pixel centers as screen-coordinate positions. But the plotted circle has a diame-
ter of 11. To plot the circle with the defined diameter of 10, we can modify the circle
algorithm to shorten each pixel scan line and each pixel column, as in Fig. 3-39.

FIGURE 3-38
A midpoint-algorithm plot of the circle
equation (x − 10)2 + (y − 10)2 = 52

using pixel-center coordinates.

5 15(10, 10)

15

5

FIGURE 3-39
Modification of the circle plot
in Fig. 3-38 to maintain the
specified circle diameter of 10.

(x, #y # 1)

(x, y)

(#y # 1, x)(y, x)

(0, 0)

(#x # 1, #y # 1)

(#x # 1, y)

(y, #x # 1) (#y # 1, #x # 1)

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-14 Fill-Area Primitives 123

(a) (c)(b)

FIGURE 3-40 Solid-color
fill areas specified with
various boundaries. (a) A
circular fill region. (b) A fill
area bounded by a closed
polyline. (c) A filled area
specified with an irregular
curved boundary.

One way to do this is to generate points clockwise along the circular arc in the
third quadrant, starting at screen coordinates (10, 5). For each generated point, the
other seven circle symmetry points are generated by decreasing the x coordinate
values by 1 along scan lines and decreasing the y coordinate values by 1 along
pixel columns. Similar methods are applied in ellipse algorithms to maintain the
specified proportions in the display of an ellipse.

3-14 FILL-AREA PRIMITIVES

Another useful construct, besides points, straight-line segments, and curves, for
describing components of a picture is an area that is filled with some solid color or
pattern. A picture component of this type is typically referred to as a fill area or a
filled area. Most often, fill areas are used to describe surfaces of solid objects, but
they are also useful in a variety of other applications. Also, fill regions are usually
planar surfaces, mainly polygons. But, in general, there are many possible shapes
for a region in a picture that we might wish to fill with some color option. Fig-
ure 3-40 illustrates a few possible fill-area shapes. For the present, we assume that
all fill areas are to be displayed with a specified solid color. Other fill options are
discussed in Chapter 4.

FIGURE 3-41 Wire-frame
representation for a cylinder,
showing only the front
(visible) faces of the polygon
mesh used to approximate the
surfaces.

Although any fill-area shape is possible, graphics libraries generally do not
support specifications for arbitrary fill shapes. Most library routines require that
a fill area be specified as a polygon. Graphics routines can more efficiently pro-
cess polygons than other kinds of fill shapes because polygon boundaries are
described with linear equations. Moreover, most curved surfaces can be approxi-
mated reasonably well with a set of polygon patches, just as a curved line can be
approximated with a set of straight-line segments. And when lighting effects and
surface-shading procedures are applied, an approximated curved surface can be
displayed quite realistically. Approximating a curved surface with polygon facets
is sometimes referred to as surface tessellation, or fitting the surface with a polygon
mesh. Figure 3-41 shows the side and top surfaces of a metal cylinder approx-
imated in an outline form as a polygon mesh. Displays of such figures can be
generated quickly as wire-frame views, showing only the polygon edges to give
a general indication of the surface structure. Then the wire-frame model could
be shaded to generate a display of a natural-looking material surface. Objects de-
scribed with a set of polygon surface patches are usually referred to as standard
graphics objects, or just graphics objects.

In general, we can create fill areas with any boundary specification, such as a
circle or connected set of spline-curve sections. And some of the polygon methods
discussed in the next section can be adapted to display fill areas with a nonlinear

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

124 CHAPTER 3 Graphics Output Primitives

border. Other fill-area methods for objects with curved boundaries are given in
Chapter 4.

3-15 POLYGON FILL AREAS

Mathematically defined, a polygon is a plane figure specified by a set of three
or more coordinate positions, called vertices, that are connected in sequence by
straight-line segments, called the edges or sides of the polygon. Further, in basic
geometry, it is required that the polygon edges have no common point other than
their endpoints. Thus, by definition, a polygon must have all its vertices within
a single plane and there can be no edge crossings. Examples of polygons include
triangles, rectangles, octagons, and decagons. Sometimes, any plane figure with
a closed-polyline boundary is alluded to as a polygon, and one with no crossing
edges is referred to as a standard polygon or a simple polygon. In an effort to avoid
ambiguous object references, we will use the term “polygon” to refer only to those
planar shapes that have a closed-polyline boundary and no edge crossings.

For a computer-graphics application, it is possible that a designated set of
polygon vertices do not all lie exactly in one plane. This can be due to round-
off error in the calculation of numerical values, to errors in selecting coordinate
positions for the vertices, or, more typically, to approximating a curved surface
with a set of polygonal patches. One way to rectify this problem is simply to divide
the specified surface mesh into triangles. But in some cases there may be reasons
to retain the original shape of the mesh patches, so methods have been devised for
approximating a nonplanar polygonal shape with a plane figure. We discuss how
these plane approximations are calculated in the subsection on plane equations.

Polygon Classifications
An interior angle of a polygon is an angle inside the polygon boundary that is
formed by two adjacent edges. If all interior angles of a polygon are less than
or equal to 180◦, the polygon is convex. An equivalent definition of a convex
polygon is that its interior lies completely on one side of the infinite extension
line of any one of its edges. Also, if we select any two points in the interior of a
convex polygon, the line segment joining the two points is also in the interior. A
polygon that is not convex is called a concave polygon. Figure 3-42 gives examples
of convex and concave polygons.

The term degenerate polygon is often used to describe a set of vertices that
are collinear or that have repeated coordinate positions. Collinear vertices gener-
ate a line segment. Repeated vertex positions can generate a polygon shape with
extraneous lines, overlapping edges, or edges that have a length equal to 0. Some-
times the term degenerate polygon is also applied to a vertex list that contains
fewer than three coordinate positions.

FIGURE 3-42 A convex
polygon (a), and a concave
polygon (b).

, 1800

- 1800

(a) (b)

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-15 Polygon Fill Areas 125

To be robust, a graphics package could reject degenerate or nonplanar vertex
sets. But this requires extra processing to identify these problems, so graphics
systems usually leave such considerations to the programmer.

Concave polygons also present problems. Implementations of fill algorithms
and other graphics routines are more complicated for concave polygons, so it is
generally more efficient to split a concave polygon into a set of convex polygons
before processing. As with other polygon preprocessing algorithms, concave poly-
gon splitting is often not included in a graphics library. Some graphics packages,
including OpenGL, require all fill polygons to be convex. And some systems
accept only triangular fill areas, which greatly simplifies many of the display
algorithms.

Identifying Concave Polygons
A concave polygon has at least one interior angle greater than 180◦. Also, the
extension of some edges of a concave polygon will intersect other edges, and some
pair of interior points will produce a line segment that intersects the polygon
boundary. Therefore, we can use any one of these characteristics of a concave
polygon as a basis for constructing an identification algorithm.

If we set up a vector for each polygon edge, then we can use the cross product
of adjacent edges to test for concavity. All such vector products will be of the same
sign (positive or negative) for a convex polygon. Therefore, if some cross products
yield a positive value and some a negative value, we have a concave polygon. Fig-
ure 3-43 illustrates the edge-vector, cross-product method for identifying concave
polygons.

Another way to identify a concave polygon is to take a look at the polygon
vertex positions relative to the extension line of any edge. If some vertices are on
one side of the extension line and some vertices are on the other side, the polygon
is concave.

Splitting Concave Polygons
Once we have identified a concave polygon, we can split it into a set of convex
polygons. This can be accomplished using edge vectors and edge cross products.
Or, we can use vertex positions relative to an edge extension line to determine
which vertices are on one side of this line and which are on the other. For the
following algorithms, we assume that all polygons are in the xy plane. Of course,
the original position of a polygon described in world coordinates may not be in

y

x

V6

V1

E6

E1

E5

(E1 $ E2)z - 0

E4

E3

E2

V2

V3

V4

V5

(E2 $ E3)z - 0

(E3 $ E4)z , 0

(E4 $ E5)z - 0

(E5 $ E6)z - 0

(E6 $ E1)z - 0
FIGURE 3-43 Identifying
a concave polygon by
calculating cross products of
successive pairs of edge
vectors.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

126 CHAPTER 3 Graphics Output Primitives

the xy plane, but we can always move it into that plane using the transformation
methods discussed in Chapter 5.

With the vector method for splitting a concave polygon, we first need to form
the edge vectors. Given two consecutive vertex positions, Vk and Vk+1, we define
the edge vector between them as

Ek = Vk+1 − Vk

Next we calculate the cross products of successive edge vectors in order around
the polygon perimeter. If the z component of some cross products is positive
while other cross products have a negative z component, the polygon is concave.
Otherwise, the polygon is convex. This assumes that no series of three successive
vertices are collinear, in which case the cross product of the two edge vectors for
these vertices would be zero. If all vertices are collinear, we have a degenerate
polygon (a straight line). We can apply the vector method by processing edge vec-
tors in a counterclockwise order. If any cross product has a negative z component
(as in Fig. 3-43), the polygon is concave and we can split it along the line of the
first edge vector in the cross-product pair. The following example illustrates this
method for splitting a concave polygon.

3

2

1

0 1 2 3

E5

E4

E3
E2

E1

E6

FIGURE 3-44 Splitting a
concave polygon using the
vector method.

EXAMPLE 3-4 Vector Method for Splitting Concave Polygons

Figure 3-44 shows a concave polygon with six edges. Edge vectors for this
polygon can be expressed as

E1 = (1, 0, 0) E2 = (1, 1, 0)

E3 = (1, −1, 0) E4 = (0, 2, 0)

E5 = (−3, 0, 0) E6 = (0, −2, 0)

where the z component is 0, since all edges are in the xy plane. The cross
product E j × Ek for two successive edge vectors is a vector perpendicular to
the xy plane with z component equal to E jx Eky − Ekx E jy:

E1 × E2 = (0, 0, 1) E2 × E3 = (0, 0, −2)

E3 × E4 = (0, 0, 2) E4 × E5 = (0, 0, 6)

E5 × E6 = (0, 0, 6) E6 × E1 = (0, 0, 2)

Since the cross product E2 × E3 has a negative z component, we split the
polygon along the line of vector E2. The line equation for this edge has a
slope of 1 and a y intercept of −1. We then determine the intersection of this
line with the other polygon edges to split the polygon into two pieces. No
other edge cross products are negative, so the two new polygons are both
convex.

We can also split a concave polygon using a rotational method. Proceeding
counterclockwise around the polygon edges, we shift the position of the polygon
so that each vertex Vk in turn is at the coordinate origin. Then, we rotate the
polygon about the origin in a clockwise direction so that the next vertex Vk+1 is
on the x axis. If the following vertex, Vk+2, is below the x axis, the polygon is
concave. We then split the polygon along the x axis to form two new polygons,
and we repeat the concave test for each of the two new polygons. The steps above

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-15 Polygon Fill Areas 127

are repeated until we have tested all vertices in the polygon list. Methods for
rotating and shifting the position of an object are discussed in detail in Chapter 5.
Figure 3-45 illustrates the rotational method for splitting a concave polygon.

y

x

V1

V2 V3

V4

FIGURE 3-45 Splitting a
concave polygon using the
rotational method. After
moving V2 to the coordinate
origin and rotating V3 onto
the x axis, we find that V4 is
below the x axis. So we split
the polygon along the line of
V2V3, which is the x axis.

Splitting a Convex Polygon into a Set of Triangles
Once we have a vertex list for a convex polygon, we could transform it into a
set of triangles. This can be accomplished by first defining any sequence of three
consecutive vertices to be a new polygon (a triangle). The middle triangle vertex
is then deleted from the original vertex list. Then the same procedure is applied to
this modified vertex list to strip off another triangle. We continue forming triangles
in this manner until the original polygon is reduced to just three vertices, which
define the last triangle in the set. A concave polygon can also by divided into a
set of triangles using this approach, as long as the three selected vertices at each
step form an interior angle that is less than 180◦ (a “convex” angle).

Inside-Outside Tests
Various graphics processes often need to identify interior regions of objects. Iden-
tifying the interior of a simple object, such as a convex polygon, a circle, or a
sphere, is generally a straightforward process. But sometimes we must deal with
more complex objects. For example, we may want to specify a complex fill region
with intersecting edges, as in Fig. 3-46. For such shapes, it is not always clear
which regions of the xy plane we should call “interior” and which regions we
should designate as “exterior” to the object boundaries. Two commonly used al-
gorithms for identifying interior areas of a plane figure are the odd-even rule and
the nonzero winding-number rule.

We apply the odd-even rule, also called the odd-parity rule or the even-odd
rule, by first conceptually drawing a line from any position P to a distant point
outside the coordinate extents of the closed polyline. Then we count the number of
line-segment crossings along this line. If the number of segments crossed by this
line is odd, then P is considered to be an interior point. Otherwise, P is an exterior
point. To obtain an accurate count of the segment crossings, we must be sure
that the line path we choose does not intersect any line-segment endpoints. Fig-
ure 3-46(a) shows the interior and exterior regions obtained using the odd-even
rule for a self-intersecting closed polyline. We can use this procedure, for example,

Odd-Even Rule

(a)

Nonzero Winding-Number Rule

(b)

A

D

E

B

F

C

exterior

interior

G

A

D

E

B

F

C

exterior

interior

G

FIGURE 3-46 Identifying
interior and exterior regions
of a closed polyline that
contains self-intersecting
segments.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

128 CHAPTER 3 Graphics Output Primitives

to fill the interior region between two concentric circles or two concentric polygons
with a specified color.

Another method for defining interior regions is the nonzero winding-number
rule, which counts the number of times the boundary of an object “winds” around
a particular point in the counterclockwise direction. This count is called the wind-
ing number, and the interior points of a two-dimensional object can be defined to
be those that have a nonzero value for the winding number. We apply the nonzero
winding number rule by initializing the winding number to 0 and again imag-
ining a line drawn from any position P to a distant point beyond the coordinate
extents of the object. The line we choose must not pass through any endpoint
coordinates. As we move along the line from position P to the distant point, we
count the number of object line segments that cross the reference line in each di-
rection. We add 1 to the winding number every time we intersect a segment that
crosses the line in the direction from right to left, and we subtract 1 every time we
intersect a segment that crosses from left to right. The final value of the winding
number, after all boundary crossings have been counted, determines the relative
position of P. If the winding number is nonzero, P is considered to be an inte-
rior point. Otherwise, P is taken to be an exterior point. Figure 3-46(b) shows the
interior and exterior regions defined by the nonzero winding-number rule for a
self-intersecting, closed polyline. For simple objects, such as polygons and circles,
the nonzero winding-number rule and the odd-even rule give the same results.
But for more complex shapes, the two methods may yield different interior and
exterior regions, as in the example of Fig. 3-46.

One way to determine directional boundary crossings is to set up vectors
along the object edges (or boundary lines) and along the reference line. Then
we compute the vector cross product of the vector u, along the line from P to
a distant point, with an object edge vector E for each edge that crosses the line.
Assuming that we have a two-dimensional object in the xy plane, the direction of
each vector cross product will be either in the +z direction or in the −z direction.
If the z component of a cross product u × E for a particular crossing is positive,
that segment crosses from right to left and we add 1 to the winding number.
Otherwise, the segment crosses from left to right and we subtract 1 from the
winding number.

A somewhat simpler way to compute directional boundary crossings is to use
vector dot products instead of cross products. To do this, we set up a vector that
is perpendicular to vector u and that has a right-to-left direction as we look along
the line from P in the direction of u. If the components of u are denoted as (ux, uy),
then the vector that is perpendicular to u has components (−uy, ux) (Appendix A).
Now, if the dot product of this perpendicular vector and a boundary-line vector
is positive, that crossing is from right to left and we add 1 to the winding number.
Otherwise, the boundary crosses our reference line from left to right, and we
subtract 1 from the winding number.

The nonzero winding-number rule tends to classify as interior some areas
that the odd-even rule deems to be exterior, and it can be more versatile in some
applications. In general, plane figures can be defined with multiple, disjoint com-
ponents, and the direction specified for each set of disjoint boundaries can be used
to designate the interior and exterior regions. Examples include characters (such
as letters of the alphabet and punctuation symbols), nested polygons, and concen-
tric circles or ellipses. For curved lines, the odd-even rule is applied by calculating
intersections with the curve paths. Similarly, with the nonzero winding-number
rule, we need to calculate tangent vectors to the curves at the crossover intersec-
tion points with the reference line from position P.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-15 Polygon Fill Areas 129

FIGURE 3-47 A fill area defined
as a region that has a positive value
for the winding number. This fill area
is the union of two regions, each with
a counterclockwise border direction.

FIGURE 3-48 A fill area defined
as a region with a winding number
greater than 1. This fill area is the
intersection of two regions, each with
a counterclockwise border direction.

A # B

Region A
Region B

FIGURE 3-49 A fill area
defined as a region with a positive
value for the winding number. This
fill area is the difference, A − B, of
two regions, where region A has a
positive border direction
(counterclockwise) and region B
has a negative border direction
(clockwise).

Variations of the nonzero winding-number rule can be used to define interior
regions in other ways. For example, we could define a point to be interior if its
winding number is positive or if it is negative. Or we could use any other rule to
generate a variety of fill shapes. Sometimes, Boolean operations are used to specify
a fill area as a combination of two regions. One way to implement Boolean opera-
tions is by using a variation of the basic winding-number rule. With this scheme,
we first define a simple, nonintersecting boundary for each of two regions. Then
if we consider the direction for each boundary to be counterclockwise, the union
of two regions would consist of those points whose winding number is posi-
tive (Fig. 3-47). Similarly, the intersection of two regions with counterclockwise
boundaries would contain those points whose winding number is greater than 1,
as illustrated in Fig. 3-48. To set up a fill area that is the difference of two regions,
say A − B, we can enclose region A with a counterclockwise border and B with
a clockwise border. Then the difference region (Fig. 3-49) is the set of all points
whose winding number is positive.

Polygon Tables
Typically, the objects in a scene are described as sets of polygon surface facets.
In fact, graphics packages often provide functions for defining a surface shape
as a mesh of polygon patches. The description for each object includes coordi-
nate information specifying the geometry for the polygon facets and other sur-
face parameters such as color, transparency, and light-reflection properties. As

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

130 CHAPTER 3 Graphics Output Primitives

FIGURE 3-50 Geometric
data-table representation for
two adjacent polygon surface
facets, formed with six edges
and five vertices.

V1

V5

V4

V2

V3

E1

E2

E4 E5

E3 E6

S1

S2

VERTEX TABLE

V1: x1, y1, z1

V2: x2, y2, z2

V3: x3, y3, z3

V4: x4, y4, z4

V5: x5, y5, z5

E1: V1, V2

E2: V2, V3

E3: V3, V1

E4: V3, V4

E5: V4, V5

E6: V5, V1

S1: E1, E2, E3

S2: E3, E4, E5, E6

EDGE TABLE SURFACE-FACET
TABLE

information for each polygon is input, the data are placed into tables that are to
be used in the subsequent processing, display, and manipulation of the objects in
the scene. These polygon data tables can be organized into two groups: geometric
tables and attribute tables. Geometric data tables contain vertex coordinates and
parameters to identify the spatial orientation of the polygon surfaces. Attribute in-
formation for an object includes parameters specifying the degree of transparency
of the object and its surface reflectivity and texture characteristics.

Geometric data for the objects in a scene are arranged conveniently in three
lists: a vertex table, an edge table, and a surface-facet table. Coordinate values for
each vertex in the object are stored in the vertex table. The edge table contains
pointers back into the vertex table to identify the vertices for each polygon edge.
And the surface-facet table contains pointers back into the edge table to identify
the edges for each polygon. This scheme is illustrated in Fig. 3-50 for two adja-
cent polygon facets on an object surface. In addition, individual objects and their
component polygon faces can be assigned object and facet identifiers for easy
reference.

Listing the geometric data in three tables, as in Fig. 3-50, provides a conve-
nient reference to the individual components (vertices, edges, and surface facets)
for each object. Also, the object can be displayed efficiently by using data from
the edge table to identify polygon boundaries. An alternative arrangement is to
use just two tables: a vertex table and a surface-facet table. But this scheme is
less convenient, and some edges could get drawn twice in a wire-frame display.
Another possibility is to use only a surface-facet table, but this duplicates coor-
dinate information, since explicit coordinate values are listed for each vertex in
each polygon facet. Also the relationship between edges and facets would have
to be reconstructed from the vertex listings in the surface-facet table.

We can add extra information to the data tables of Fig. 3-50 for faster informa-
tion extraction. For instance, we could expand the edge table to include forward
pointers into the surface-facet table so that a common edge between polygons

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-15 Polygon Fill Areas 131

could be identified more rapidly (Fig. 3-51). This is particularly useful for render-
ing procedures that must vary surface shading smoothly across the edges from
one polygon to the next. Similarly, the vertex table could be expanded to reference
corresponding edges, for faster information retrieval.

Additional geometric information that is usually stored in the data tables
includes the slope for each edge and the coordinate extents for polygon edges,
polygon facets, and each object in a scene. As vertices are input, we can calculate
edge slopes, and we can scan the coordinate values to identify the minimum and
maximum x, y, and z values for individual lines and polygons. Edge slopes and
bounding-box information are needed in subsequent processing, such as surface
rendering and visible-surface identification algorithms.

E1: V1, V2, S1
E2: V2, V3, S1
E3: V3, V1, S1, S2
E4: V3, V4, S2
E5: V4, V5, S2
E6: V5, V1, S2

FIGURE 3-51 Edge table
for the surfaces of Fig. 3-50
expanded to include pointers
into the surface-facet table.

Since the geometric data tables may contain extensive listings of vertices and
edges for complex objects and scenes, it is important that the data be checked for
consistency and completeness. When vertex, edge, and polygon definitions are
specified, it is possible, particularly in interactive applications, that certain input
errors could be made that would distort the display of the objects. The more in-
formation included in the data tables, the easier it is to check for errors. Therefore,
error checking is easier when three data tables (vertex, edge, and surface facet)
are used, since this scheme provides the most information. Some of the tests that
could be performed by a graphics package are (1) that every vertex is listed as an
endpoint for at least two edges, (2) that every edge is part of at least one polygon,
(3) that every polygon is closed, (4) that each polygon has at least one shared edge,
and (5) that if the edge table contains pointers to polygons, every edge referenced
by a polygon pointer has a reciprocal pointer back to the polygon.

Plane Equations
To produce a display of a three-dimensional scene, a graphics system processes
the input data through several procedures. These procedures include transfor-
mation of the modeling and world-coordinate descriptions through the viewing
pipeline, identification of visible surfaces, and the application of rendering rou-
tines to the individual surface facets. For some of these processes, information
about the spatial orientation of the surface components of objects is needed. This
information is obtained from the vertex coordinate values and the equations that
describe the polygon surfaces.

Each polygon in a scene is contained within a plane of infinite extent. The
general equation of a plane is

A x + B y + C z + D = 0 (3-59)

where (x, y, z) is any point on the plane, and the coefficients A, B, C , and D (called
plane parameters) are constants describing the spatial properties of the plane. We
can obtain the values of A, B, C , and D by solving a set of three plane equa-
tions using the coordinate values for three noncollinear points in the plane. For
this purpose, we can select three successive convex-polygon vertices, (x1, y1, z1),
(x2, y2, z2), and (x3, y3, z3), in a counterclockwise order and solve the following set
of simultaneous linear plane equations for the ratios A/D, B/D, and C/D:

(A/D)xk + (B/D)yk + (C/D)zk = −1, k = 1, 2, 3 (3-60)

The solution to this set of equations can be obtained in determinant form, using

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

132 CHAPTER 3 Graphics Output Primitives

Cramer’s rule, as

A =
∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y3 z3

∣∣∣∣∣∣ B =
∣∣∣∣∣∣

x1 1 z1
x2 1 z2
x3 1 z3

∣∣∣∣∣∣
C =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ D = −
∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
(3-61)

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)

B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2)

C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

D = −x1(y2z3 − y3z2) − x2(y3z1 − y1z3) − x3(y1z2 − y2z1)

(3-62)

These calculations are valid for any three coordinate positions, including those
for which D = 0. When vertex coordinates and other information are entered into
the polygon data structure, values for A, B, C , and D can be computed for each
polygon facet and stored with the other polygon data.

It is possible that the coordinates defining a polygon facet may not be con-
tained within a single plane. We can solve this problem by dividing the facet into
a set of triangles. Or we could find an approximating plane for the vertex list. One
method for obtaining an approximating plane is to divide the vertex list into sub-
sets, where each subset contains three vertices, and calculate plane parameters A,
B, C , D for each subset. The approximating plane parameters are then obtained as
the average value for each of the calculated plane parameters. Another approach
is to project the vertex list onto the coordinate planes. Then we take parameter A
proportional to the area of the polygon projection on the yz plane, parameter B
proportional to the projection area on the xz plane, and parameter C proportional
to the projection area on the xy plane. The projection method is often used in
ray-tracing applications.

Front and Back Polygon Faces
Since we are usually dealing with polygon surfaces that enclose an object interior,
we need to distinguish between the two sides of each surface. The side of a polygon
that faces into the object interior is called the back face, and the visible, or outward,
side is the front face. Identifying the position of points in space relative to the
front and back faces of a polygon is a basic task in many graphics algorithms, as,
for example, in determining object visibility. Every polygon is contained within
an infinite plane that partitions space into two regions. Any point that is not
on the plane and that is visible to the front face of a polygon surface section is
said to be in front of (or outside) the plane, and, thus, outside the object. And any
point that is visible to the back face of the polygon is behind (or inside) the plane.
A point that is behind (inside) all polygon surface planes is inside the object.
We need to keep in mind that this inside/outside classification is relative to the
plane containing the polygon, whereas our previous inside/outside tests using
the winding-number or odd-even rule were in reference to the interior of some
two-dimensional boundary.

Plane equations can be used to identify the position of spatial points relative
to the polygon facets of an object. For any point (x, y, z) not on a plane with

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-15 Polygon Fill Areas 133

parameters A, B, C , D, we have

A x + B y + C z + D q= 0

Thus we can identify the point as either behind or in front of a polygon surface
contained within that plane according to the sign (negative or positive) of Ax +
By + Cz + D:

if A x + B y + C z + D < 0, the point (x, y, z) is behind the plane
if A x + B y + C z + D > 0, the point (x, y, z) is in front of the plane

These inequality tests are valid in a right-handed Cartesian system, provided
the plane parameters A, B, C , and D were calculated using coordinate positions
selected in a strictly counterclockwise order when viewing the surface along a
front-to-back direction. For example, in Fig. 3-52, any point outside (in front of)
the plane of the shaded polygon satisfies the inequality x −1 > 0, while any point
inside (in back of) the plane has an x-coordinate value less than 1.

x

y

z

1
1

1

FIGURE 3-52 The
shaded polygon surface of the
unit cube has plane equation
x − 1 = 0.

Orientation of a polygon surface in space can be described with the normal
vector for the plane containing that polygon, as shown in Fig. 3-53. This sur-
face normal vector is perpendicular to the plane and has Cartesian components
(A, B, C), where parameters A, B, and C are the plane coefficients calculated in
Eqs. 3-62. The normal vector points in a direction from inside the plane to the
outside; that is, from the back face of the polygon to the front face. x

z

y
N&(A, B, C)

FIGURE 3-53 The
normal vector N for a plane
described with the equation
Ax + By + Cz + D = 0 is
perpendicular to the plane
and has Cartesian
components (A, B, C).

As an example of calculating the components of the normal vector for a poly-
gon, which also gives us the plane parameters, we choose three of the vertices of
the shaded face of the unit cube in Fig. 3-52. These points are selected in a counter-
clockwise ordering as we view the cube from outside looking toward the origin.
Coordinates for these vertices, in the order selected, are then used in Eqs. 3-62 to
obtain the plane coefficients: A = 1, B = 0, C = 0, D = −1. Thus, the normal
vector for this plane is N = (1, 0, 0), which is in the direction of the positive x axis.
That is, the normal vector is pointing from inside the cube to the outside and is
perpendicular to the plane x = 1.

The elements of a normal vector can also be obtained using a vector cross-
product calculation. Assuming we have a convex-polygon surface facet and a
right-handed Cartesian system, we again select any three vertex positions, V1, V2,
and V3, taken in counterclockwise order when viewing from outside the object
toward the inside. Forming two vectors, one from V1 to V2 and the second from
V1 to V3, we calculate N as the vector cross product:

N = (V2 − V1) × (V3 − V1) (3-63)

This generates values for the plane parameters A, B, and C . We can then obtain
the value for parameter D by substituting these values and the coordinates for one
of the polygon vertices into the plane equation 3-59 and solving for D. The plane
equation can be expressed in vector form using the normal N and the position P
of any point in the plane as

N ·P = −D (3-64)

For a convex polygon, we could also obtain the plane parameters using the
cross product of two successive edge vectors. And with a concave polygon, we
can select the three vertices so that the two vectors for the cross product form an
angle less than 180◦. Otherwise, we can take the negative of their cross product
to get the correct normal vector direction for the polygon surface.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

134 CHAPTER 3 Graphics Output Primitives

3-16 OpenGL POLYGON FILL-AREA FUNCTIONS

With one exception, the OpenGL procedures for specifying fill polygons are sim-
ilar to those for describing a point or a polyline. A glVertex function is used to
input the coordinates for a single polygon vertex, and a complete polygon is de-
scribed with a list of vertices placed between a glBegin/glEnd pair. However,
there is one additional function that we can use for displaying a rectangle that
has an entirely different format.

By default, a polygon interior is displayed in a solid color, determined by the
current color settings. As options (which are described in the next chapter), we
can fill a polygon with a pattern and we can display polygon edges as line borders
around the interior fill. There are six different symbolic constants that we can use
as the argument in the glBegin function to describe polygon fill areas. These six
primitive constants allow us to display a single fill polygon, a set of unconnected
fill polygons, or a set of connected fill polygons.

In OpenGL, a fill area must be specified as a convex polygon. Thus, a vertex
list for a fill polygon must contain at least three vertices, there can be no crossing
edges, and all interior angles for the polygon must be less than 180◦. And a single
polygon fill area can be defined with only one vertex list, which precludes any
specifications that contain holes in the polygon interior, such as that shown in
Fig. 3-54. We could describe such a figure using two overlapping convex polygons.

Each polygon that we specify has two faces: a back face and a front face.
In OpenGL, fill color and other attributes can be set for each face separately,
and back/front identification is needed in both two-dimensional and three-
dimensional viewing routines. Therefore, polygon vertices should be specified
in a counterclockwise order as we view the polygon from “outside”. This identi-
fies the front face for that polygon.

Because graphics displays often include rectangular fill areas, OpenGL pro-
vides a special rectangle function that directly accepts vertex specifications in the
xy plane. In some implementations of OpenGL, the following routine can be more
efficient than generating a fill rectangle using glVertex specifications.

glRect* (x1, y1, x2, y2);

One corner of this rectangle is at coordinate position (x1, y1), and the opposite
corner of the rectangle is at position (x2, y2). Suffix codes for glRect specify
the coordinate data type and whether coordinates are to be expressed as array
elements. These codes are i (for integer), s (for short), f (for float), d (for dou-
ble), and v (for vector). The rectangle is displayed with edges parallel to the xy

FIGURE 3-54 A polygon with a complex
interior, which cannot be specified with a single
vertex list.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-16 OpenGL Polygon Fill-Area Functions 135

250

200

150

100

50

50 100 150 200
FIGURE 3-55 Display of a square fill area
using the glRect function.

coordinate axes. As an example, the following statement defines the square shown
in Fig. 3-55.

glRecti (200, 100, 50, 250);

If we put the coordinate values for this rectangle into arrays, we can generate the
same square with the following code.

int vertex1 [] = {200, 100};
int vertex2 [] = {50, 250};

glRectiv (vertex1, vertex2);

When a rectangle is generated with function glRect, the polygon edges are
formed between the vertices in the order (x1, y1), (x2, y1), (x2, y2), (x1, y2), and
then back to the first vertex. Thus, in our example, we produced a vertex list with
a clockwise ordering. In many two-dimensional applications, the determination
of front and back faces is unimportant. But if we do want to assign different
properties to the front and back faces of the rectangle, then we should reverse the
order of the two vertices in this example so that we obtain a counterclockwise
ordering of the vertices. In Chapter 4, we discuss another way that we can reverse
the specification of front and back polygon faces.

Each of the other six OpenGL polygon fill primitives is specified with a sym-
bolic constant in the glBegin function, along with a a list of glVertex com-
mands. With the OpenGL primitive constant GL POLYGON, we can display a
single polygon fill area such as that shown in Fig. 3-56(a). For this example, we
assume that we have a list of six points, labeled p1 through p6, specifying two-
dimensional polygon vertex positions in a counterclockwise ordering. Each of the
points is represented as an array of (x, y) coordinate values.

glBegin (GL_POLYGON);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

A polygon vertex list must contain at least three vertices. Otherwise, nothing is
displayed.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

136 CHAPTER 3 Graphics Output Primitives

p1 p4

p3p2

p5p6

(a)

p1 p4

p3p2

p5p6

(b)

p1 p4

p3p2

p5p6

(c)

p1 p4

p3p2

p5p6

(d)

FIGURE 3-56 Displaying polygon fill areas using a list of six vertex positions. (a) A
single convex polygon fill area generated with the primitive constant GL POLYGON.
(b) Two unconnected triangles generated with GL TRIANGLES. (c) Four connected
triangles generated with GL TRIANGLE STRIP. (d) Four connected triangles generated
with GL TRIANGLE FAN.

If we reorder the vertex list and change the primitive constant in the previous
code example to GL TRIANGLES, we obtain the two separated triangle fill areas
in Fig. 3-56(b).

glBegin (GL_TRIANGLES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

In this case, the first three coordinate points define the vertices for one triangle, the
next three points define the next triangle, and so forth. For each triangle fill area,
we specify the vertex positions in a counterclockwise order. A set of unconnected
triangles is displayed with this primitive constant unless some vertex coordinates
are repeated. Nothing is displayed if we do not list at least three vertices. And if
the number of vertices specified is not a multiple of three, the final one or two
vertex positions are not used.

By reordering the vertex list once more and changing the primitive constant
to GL TRIANGLE STRIP, we can display the set of connected triangles shown
in Fig. 3-56(c).

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-16 OpenGL Polygon Fill-Area Functions 137

glBegin (GL_TRIANGLE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p4);

glEnd ();

Assuming that no coordinate positions are repeated in a list of N vertices, we
obtain N − 2 triangles in the strip. Clearly, we must have N ≥ 3 or nothing is
displayed. In this example, N = 6 and we obtain four triangles. Each successive
triangle shares an edge with the previously defined triangle, so the ordering of
the vertex list must be set up to ensure a consistent display. One triangle is defined
for each vertex position listed after the first two vertices. Thus, the first three ver-
tices should be listed in counterclockwise order, when viewing the front (outside)
surface of the triangle. After that, the set of three vertices for each subsequent
triangle is arranged in a counterclockwise order within the polygon tables. This
is accomplished by processing each position n in the vertex list in the order n = 1,
n = 2, . . . , n = N − 2 and arranging the order of the corresponding set of three
vertices according to whether n is an odd number or an even number. If n is odd,
the polygon table listing for the triangle vertices is in the order n, n + 1, n + 2. If n
is even, the triangle vertices are listed in the order n + 1, n, n + 2. In the preceding
example, our first triangle (n = 1) would be listed as having vertices (p1, p2, p6).
The second triangle (n = 2) would have the vertex ordering (p6, p2, p3). Vertex or-
dering for the third triangle (n = 3) would be (p6, p3, p5). And the fourth triangle
(n = 4) would be listed in the polygon tables with vertex ordering (p5, p3, p4).

Another way to generate a set of connected triangles is to use the “fan”
approach illustrated in Fig. 3-56(d), where all triangles share a common ver-
tex. We obtain this arrangement of triangles using the primitive constant
GL TRIANGLE FAN and the original ordering of our six vertices:

glBegin (GL_TRIANGLE_FAN);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

For N vertices, we again obtain N − 2 triangles, providing no vertex positions
are repeated, and we must list at least three vertices. In addition, the vertices
must be specified in the proper order to correctly define front and back faces for
each triangle. The first coordinate position listed (in this case, p1) is a vertex for
each triangle in the fan. If we again enumerate the triangles and the coordinate
positions listed as n = 1, n = 2, . . . , n = N − 2, then vertices for triangle n are
listed in the polygon tables in the order 1, n + 1, n + 2. Therefore, triangle 1 is
defined with the vertex list (p1, p2, p3); triangle 2 has the vertex ordering (p1, p3,
p4); triangle 3 has its vertices specified in the order (p1, p4, p5); and triangle 4 is
listed with vertices (p1, p5, p6).

Besides the primitive functions for triangles and a general polygon, OpenGL
provides for the specifications of two types of quadrilaterals (four-sided
polygons). With the GL QUADS primitive constant and the following list of eight

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

138 CHAPTER 3 Graphics Output Primitives

FIGURE 3-57 Displaying
quadrilateral fill areas using a
list of eight vertex positions.
(a) Two unconnected
quadrilaterals generated with
GL QUADS. (b) Three
connected quadrilaterals
generated with
GL QUAD STRIP.

p1

p4 p5

p8

p7

p6

p3p2

(a)

p1

p2
p3

p6

p7

p4 p5

p8

(b)

vertices, specified as two-dimensional coordinate arrays, we can generate the
display shown in Fig. 3-57(a).

glBegin (GL_QUADS);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);
glVertex2iv (p8);

glEnd ();

The first four coordinate points define the vertices for one quadrilateral, the next
four points define the next quadrilateral, and so on. For each quadrilateral fill
area, we specify the vertex positions in a counterclockwise order. If no vertex
coordinates are repeated, we display a set of unconnected four-sided fill areas. We
must list at least four vertices with this primitive. Otherwise, nothing is displayed.
And if the number of vertices specified is not a multiple of four, the extra vertex
positions are ignored.

Rearranging the vertex list in the previous quadrilateral code example and
changing the primitive constant to GL QUAD STRIP, we can obtain the set of
connected quadrilaterals shown in Fig. 3-57(b).

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-17 OpenGL Vertex Arrays 139

glBegin (GL_QUAD_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p4);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd ();

A quadrilateral is set up for each pair of vertices specified after the first two ver-
tices in the list, and we need to list the vertices so that we generate a correct
counterclockwise vertex ordering for each polygon. For a list of N vertices, we
obtain N

2 − 1 quadrilaterals, providing that N ≥ 4. If N is not a multiple of 4,
any extra coordinate positions in the list are not used. We can enumerate these
fill polygons and the vertices listed as n = 1, n = 2, . . . , n = N

2 − 1. Then poly-
gon tables will list the vertices for quadrilateral n in the vertex order number
2n − 1, 2n, 2n + 2, 2n + 1. For this example, N = 8 and we have 3 quadrilater-
als in the strip. Thus, our first quadrilateral (n = 1) is listed as having a vertex
ordering of (p1, p2, p3, p4). The second quadrilateral (n = 2) has the vertex order-
ing (p4, p3, p6, p5). And the vertex ordering for the third quadrilateral (n = 3) is
(p5, p6, p7, p8).

Most graphics packages display curved surfaces as a set of approximating
plane facets. This is because plane equations are linear, and processing the lin-
ear equations is much quicker than processing quadric or other types of curve
equations. So OpenGL and other packages provide polygon primitives to facil-
itate the approximation of a curved surface. Objects are modeled with polygon
meshes, and a database of geometric and attribute information is set up to facili-
tate processing of the polygon facets. In OpenGL, primitives we can use for this
purpose are the triangle strip, the triangle fan, and the quad strip. Fast hardware-
implemented polygon renderers are incorporated into high-quality graphics sys-
tems with the capability for displaying one million or more shaded polygons per
second (usually triangles), including the application of surface texture and special
lighting effects.

Although the OpenGL core library allows only convex polygons, the OpenGL
Utility (GLU) provides functions for dealing with concave polygons and other
nonconvex objects with linear boundaries. A set of GLU polygon tessellation rou-
tines is available for converting such shapes into a set of triangles, triangle meshes,
triangle fans, and straight-line segments. Once such objects have been decom-
posed, they can be processed with basic OpenGL functions.

3-17 OpenGL VERTEX ARRAYS

Although our examples so far have contained relatively few coordinate positions,
describing a scene containing several objects can get much more complicated. To
illustrate, we first consider describing a single, very basic object: the unit cube
shown in Fig. 3-58, with coordinates given in integers to simplify the following
discussion. A straightforward method for defining the vertex coordinates is to

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

140 CHAPTER 3 Graphics Output Primitives

1

1

1

0

z

y

x

FIGURE 3-58 A cube with an edge length of 1.

6

4 5

1

32

0

7

FIGURE 3-59 Subscript values for
array pt corresponding to the vertex
coordinates for the cube shown in
Fig. 3-58.

use a double-subscripted array, such as

GLint points [8][3] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

Or we could first define a data type for a three-dimensional vertex position
and then give the coordinates for each vertex position as an element of a
single-subscripted array as, for example,

typedef GLint vertex3 [3];

vertex3 pt [8] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

Next, we need to define each of the six faces of this object. For this, we could
make six calls either to glBegin (GL POLYGON) or to glBegin (GL QUADS).
In either case, we must be sure to list the vertices for each face in a counterclockwise
order when viewing that surface from the outside of the cube. In the following
code segment, we specify each cube face as a quadrilateral and use a function call
to pass array subscript values to the OpenGL primitive routines. Figure 3-59 shows
the subscript values for array pt corresponding to the cube vertex positions.

void quad (GLint n1, GLint n2, GLint n3, GLint n4)
{

glBegin (GL_QUADS);
glVertex3iv (pt [n1]);
glVertex3iv (pt [n2]);
glVertex3iv (pt [n3]);
glVertex3iv (pt [n4]);

glEnd ();
}

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-17 OpenGL Vertex Arrays 141

void cube ()
{

quad (6, 2, 3, 7);
quad (5, 1, 0, 4);
quad (7, 3, 1, 5);
quad (4, 0, 2, 6);
quad (2, 0, 1, 3);
quad (7, 5, 4, 6);

}

Thus, the specification for each face requires six OpenGL functions, and we
have six faces to specify. When we add color specifications and other parame-
ters, our display program for the cube could easily contain one hundred or more
OpenGL function calls. And scenes with many complex objects can require much
more.

As we can see from the preceding cube example, a complete scene description
could require hundreds or thousands of coordinate specifications. In addition,
there are various attribute and viewing parameters that must be set for individual
objects. Thus, object and scene descriptions could require an enormous number of
function calls, which puts a demand on system resources and can slow execution
of the graphics programs. A further problem with complex displays is that object
surfaces (such as the cube in Fig. 3-58) usually have shared vertex coordinates.
Using the methods we have discussed up to now, these shared positions may
need to be specified multiple times.

To alleviate these problems, OpenGL provides a mechanism for reducing the
number of function calls needed in processing coordinate information. Using a
vertex array, we can arrange the information for describing a scene so that we
need only a very few function calls. The steps involved are

(1) Invoke the function glEnableClientState (GL VERTEX ARRAY) to ac-
tivate the vertex-array feature of OpenGL.

(2) Use the function glVertexPointer to specify the location and data format
for the vertex coordinates.

(3) Display the scene using a routine such as glDrawElements, which can pro-
cess multiple primitives with very few function calls.

Using the pt array previously defined for the cube, we implement these three
steps in the following code example.

glEnableClientState (GL_VERTEX_ARRAY);
glVertexPointer (3, GL_INT, 0, pt);

GLubyte vertIndex [] = (6, 2, 3, 7, 5, 1, 0, 4, 7, 3, 1, 5,
4, 0, 2, 6, 2, 0, 1, 3, 7, 5, 4, 6);

glDrawElements (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);

With the first command, glEnableClientState (GL VERTEX ARRAY),
we activate a capability (in this case, a vertex array) on the client side of a client-
server system. Because the client (the machine that is running the main program)
retains the data for a picture, the vertex array must be there also. As we noted
in Chapter 2, the server (our workstation, for example) generates commands and
displays the picture. Of course, a single machine can be both client and server.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

142 CHAPTER 3 Graphics Output Primitives

The vertex-array feature of OpenGL is deactivated with the command:

glDisableClientState (GL_VERTEX_ARRAY);

We next give the location and format of the coordinates for the object vertices
in the function glVertexPointer. The first parameter in glVertexPointer,
3 in this example, specifies the number of coordinates used in each vertex
description. Data type for the vertex coordinates is designated using an
OpenGL symbolic constant as the second parameter in this function. For our ex-
ample, the data type is GL INT. Other data types are specified with the symbolic
constants GL BYTE, GL SHORT, GL FLOAT, and GL DOUBLE. With the third pa-
rameter we give the byte offset between consecutive vertices. The purpose of
this argument is to allow various kinds of data, such as coordinates and col-
ors, to be packed together in one array. Since we are only giving the coordinate
data, we assign a value of 0 to the offset parameter. The last parameter in the
glVertexPointer function references the vertex array, which contains the co-
ordinate values.

All the indices for the cube vertices are stored in array vertIndex. Each of
these indices is the subscript for array pt corresponding to the coordinate val-
ues for that vertex. This index list is referenced as the last parameter value in
function glDrawElements and is then used by the primitive GL QUADS, which
is the first parameter, to display the set of quadrilateral surfaces for the cube.
The second parameter specifies the number of elements in array vertIndex.
Since a quadrilateral requires just four vertices and we specified 24, the
glDrawElements function continues to display another cube face after each
successive set of four vertices until all 24 have been processed. Thus, we accom-
plish the final display of all faces of the cube with this single function call. The
third parameter in functionglDrawElementsgives the type for the index values.
Since our indices are small integers, we specified a type of GL UNSIGNED BYTE.
The two other index types that can be used are GL UNSIGNED SHORT and
GL UNSIGNED INT.

Additional information can be combined with the coordinate values in the
vertex arrays to facilitate the processing of a scene description. We can specify
color values and other attributes for objects in arrays that can be referenced by the
glDrawElements function. And we can interlace the various arrays for greater
efficiency. We take a look at the methods for implementing these attribute arrays
in the next chapter.

3-18 PIXEL-ARRAY PRIMITIVES

In addition to straight lines, polygons, circles, and other primitives, graphics pack-
ages often supply routines to display shapes that are defined with a rectangular
array of color values. We can obtain the rectangular grid pattern by digitizing
(scanning) a photograph or other picture or by generating a shape with a graph-
ics program. Each color value in the array is then mapped to one or more screen
pixel positions. As we noted in Chapter 2, a pixel array of color values is typically
referred to as a pixmap.

Parameters for a pixel array can include a pointer to the color matrix, the size
of the matrix, and the position and size of the screen area to be affected by the
color values. Figure 3-60 gives an example of mapping a pixel-color array onto a
screen area.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-19 OpenGL Pixel-Array Functions 143

y

x

n & 5 rows

m & 8 columns

ymax

ymin

xmin xmax

FIGURE 3-60 Mapping
an n by m color array onto a
region of the screen
coordinates.

Another method for implementing a pixel array is to assign either the bit
value 0 or the bit value 1 to each element of the matrix. In this case, the array is
simply a bitmap, which is sometimes called a mask, that indicates whether or not
a pixel is to be assigned (or combined with) a preset color.

3-19 OpenGL PIXEL-ARRAY FUNCTIONS

There are two functions in OpenGL that we can use to define a shape or pattern
specified with a rectangular array. One is a bitmap and the other is a pixmap.
Also, OpenGL provides several routines for saving, copying, and manipulating
arrays of pixel values.

OpenGL Bitmap Function
A binary array pattern is defined with the function

glBitmap (width, height, x0, y0, xOffset, yOffset, bitShape);

Parameters width and height in this function give the number of columns and
number of rows, respectively, in the array bitShape. Each element of bitShape
is assigned either a 1 or a 0. A value of 1 indicates that the corresponding pixel
is to be displayed in a previously set color. Otherwise, the pixel is unaffected by
the bitmap. (As an option, we could use a value of 1 to indicate that a specified
color is to be combined with the color value stored in the refresh buffer at that
position.) Parameters x0 and y0 define the position that is to be considered the
“origin” of the rectangular array. This origin position is specified relative to the
lower left corner of bitShape, and values for x0 and y0 can be positive or
negative. In addition, we need to designate a location in the frame buffer where
the pattern is to be applied. This location is called the current raster position,
and the bitmap is displayed by positioning its origin, (x0, y0), at the current
raster position. Values assigned to parameters xOffset and yOffset are used

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

144 CHAPTER 3 Graphics Output Primitives

as coordinate offsets to update the frame-buffer current raster position after the
bitmap is displayed.

Coordinate values for x0, y0, xOffset, and yOffset, as well as the current
raster position, are maintained as floating-point values. Of course, bitmaps will
be applied at integer pixel positions. But floating-point coordinates allow a set of
bitmaps to be spaced at arbitrary intervals, which is useful in some applications
such as forming character strings with bitmap patterns.

We use the following routine to set the coordinates for the current raster
position.

glRasterPos* ()

Parameters and suffix codes are the same as those for the glVertex function.
Thus, a current raster position is given in world coordinates, and it is transformed
to screen coordinates by the viewing transformations. For our two-dimensional
examples, we can specify coordinates for the current raster position directly in
integer screen coordinates. The default value for the current raster position is the
world-coordinate origin (0, 0, 0).

The color for a bitmap is the color that is in effect at the time that the
glRasterPos command is invoked. Any subsequent color changes do not affect
the bitmap.

Each row of a rectangular bit array is stored in multiples of 8 bits, where the
binary data is arranged as a set of 8-bit unsigned characters. But we can describe a
shape using any convenient grid size. As an example, Fig. 3-61 shows a bit pattern
defined on a 10-row by 9-column grid, where the binary data is specified with 16
bits for each row. When this pattern is applied to the pixels in the frame buffer,
all bit values beyond the ninth column are ignored.

We apply the bit pattern of Fig. 3-61 to a frame-buffer location with the
following code section.

GLubyte bitShape [20] = {
0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00,
0xff, 0x80, 0x7f, 0x00, 0x3e, 0x00, 0x1c, 0x00, 0x08, 0x00};

glPixelStorei (GL_UNPACK_ALIGNMENT, 1); // Set pixel storage mode.

glRasterPos2i (30, 40);
glBitmap (9, 10, 0.0, 0.0, 20.0, 15.0, bitShape);

FIGURE 3-61 A bit
pattern, specified in an array
with 10 rows and 9 columns,
is stored in 8-bit blocks of
10 rows with 16 bit values
per row.

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 $ 08

0 $ 1C

0 $ 3E

0 $ 7F

0 $ FF

0 $ 1C

0 $ 1C

0 $ 1C

0 $ 1C

0 $ 1C

0 $ 00

0 $ 00

0 $ 00

0 $ 00

0 $ 80

0 $ 00

0 $ 00

0 $ 00

0 $ 00

0 $ 00

10

12

16

0

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-19 OpenGL Pixel-Array Functions 145

Array values for bitShape are specified row by row, starting at the bottom
of the rectangular-grid pattern. Next we set the storage mode for the bitmap
with the OpenGL routine glPixelStorei. The parameter value of 1 in this
function indicates that the data values are to be aligned on byte boundaries. With
glRasterPos, we set the current raster position to (30, 40). Finally, function
glBitmap specifies that the bit pattern is given in array bitShape, and that this
array has 9 columns and 10 rows. The coordinates for the origin of this pattern are
(0.0, 0.0), which is the lower-left corner of the grid. We illustrate a coordinate offset
with the values (20.0, 15.0), although we make no use of the offset in this example.

OpenGL Pixmap Function
A pattern defined as an array of color values is applied to a block of frame-buffer
pixel positions with the function

glDrawPixels (width, height, dataFormat, dataType, pixMap);

Again, parameters width and height give the column and row dimensions,
respectively, of the arraypixMap. ParameterdataFormat is assigned an OpenGL
constant that indicates how the values are specified for the array. For example,
we could specify a single blue color for all pixels with the constant GL BLUE,
or we could specify three color components in the order blue, green, red with
the constant GL BGR. A number of other color specifications are possible, and
we examine color selections in greater detail in the next chapter. An OpenGL
constant, such as GL BYTE, GL INT, or GL FLOAT, is assigned to parameter
dataType to designate the data type for the color values in the array. The lower-
left corner of this color array is mapped to the current raster position, as set by
the glRasterPos function. As an example, the following statement displays a
pixmap defined in a 128-by-128 array of RGB color values.

glDrawPixels (128, 128, GL_RGB, GL_UNSIGNED_BYTE, colorShape);

Since OpenGL provides several buffers, we can paste an array of values into
a particular buffer by selecting that buffer as the target of the glDrawPixels
routine. Some buffers store color values and some store other kinds of pixel
data. A depth buffer, for instance, is used to store object distances (depths) from
the viewing position, and a stencil buffer is used to store boundary patterns for
a scene. We select one of these two buffers by setting parameter dataFormat
in the glDrawPixels routine to either GL DEPTH COMPONENT or
GL STENCIL INDEX. For these buffers, we would need to set up the pixel array
using either depth values or stencil information. We examine both of these buffers
in more detail in later chapters.

There are four color buffers available in OpenGL that can be used for screen
refreshing. Two of the color buffers constitute a left-right scene pair for display-
ing stereoscopic views. For each of the stereoscopic buffers, there is a front-back
pair for double-buffered animation displays. In a particular implementation of
OpenGL, either stereoscopic viewing or double buffering, or both, might not be
supported. If neither stereoscopic effects nor double buffering is supported, then
there is only a single refresh buffer, which is designated as the front-left color
buffer. This is the default refresh buffer when double buffering is not available or
not in effect. If double buffering is in effect, the default is either the back-left and
back-right buffers or only the back-left buffer, depending on the current state of

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

146 CHAPTER 3 Graphics Output Primitives

stereoscopic viewing. Also, a number of user-defined, auxiliary color buffers are
supported that can be used for any nonrefresh purpose, such as saving a picture
that is to be copied later into a refresh buffer for display.

We select a single color or auxiliary buffer or a combination of color buffers
for storing a pixmap with the following command.

glDrawBuffer (buffer);

A variety of OpenGL symbolic constants can be assigned to parameter buffer
to designate one or more “draw” buffers. For instance, we can pick a single
buffer with either GL FRONT LEFT, GL FRONT RIGHT, GL BACK LEFT, or
GL BACK RIGHT. We can select both front buffers with GL FRONT, and we
can select both back buffers with GL BACK. This is assuming that stereoscopic
viewing is in effect. Otherwise, the previous two symbolic constants designate a
single buffer. Similarly, we can designate either the left or right buffer pairs with
GL LEFT or GL RIGHT. And we can select all the available color buffers with
GL FRONT AND BACK. An auxiliary buffer is chosen with the constantGL AUXk,
where k is an integer value from 0 to 3, although more than four auxiliary buffers
may be available in some implementations of OpenGL.

OpenGL Raster Operations
In addition to storing an array of pixel values in a buffer, we can retrieve a block
of values from a buffer or copy the block into another buffer area. And we can
perform a variety of other operations on a pixel array. In general, the term raster
operation or raster op is used to describe any function that processes a pixel ar-
ray in some way. A raster operation that moves an array of pixel values from one
place to another is also referred to as a block transfer of pixel values. On a bilevel
system, these operations are called bitblt transfers (bit-block transfers), particu-
larly when the functions are hardware implemented. On a multilevel system, the
term pixblt is sometimes used for block transfers.

We use the following function to select a rectangular block of pixel values in
a designated set of buffers.

glReadPixels (xmin, ymin, width, height,
dataFormat, dataType, array};

The lower-left corner of the rectangular block to be retrieved is at screen-
coordinate position (xmin, ymin). Parameters width, height, dataFormat,
and dataType are the same as in the glDrawPixels routine. The type of
data to be saved in parameter array depends on the selected buffer. We can
choose either the depth buffer or the stencil buffer by assigning either the
value GL DEPTH COMPONENT or the value GL STENCIL INDEX to parameter
dataFormat.

A particular combination of color buffers or an auxiliary buffer is selected for
the application of the glReadPixels routine with the function

glReadBuffer (buffer);

Symbolic constants for specifying one or more buffers are the same as in the
glDrawBuffer routine, except that we cannot select all four of the color buffers.
The default buffer selection is the front left-right pair or just the front-left buffer,
depending on the status of stereoscopic viewing.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-20 Character Primitives 147

We can also copy a block of pixel data from one location to another within
the set of OpenGL buffers using the following routine.

glCopyPixels (xmin, ymin, width, height, pixelValues};

The lower-left corner of the block is at screen-coordinate location (xmin, ymin),
and parameters width and height are assigned positive integer values to desig-
nate the number of columns and rows, respectively, that are to be copied. Param-
eter pixelValues is assigned either GL COLOR, GL DEPTH, or GL STENCIL to
indicate the kind of data we want to copy: color values, depth values, or stencil
values. And the block of pixel values is copied from a source buffer to a destination
buffer, with its lower-left corner mapped to the current raster position. We select
the source buffer with the glReadBuffer command, and we select the desti-
nation buffer with the glDrawBuffer command. Both the region to be copied
and the destination area should lie completely within the bounds of the screen
coordinates.

To achieve different effects as a block of pixel values is placed into a buffer with
glDrawPixels or glCopyPixels, we can combine the incoming values with
the old buffer values in various ways. As an example, we could apply logical
operations, such as and, or, and exclusive or, to combine the two blocks of pixel
values. In OpenGL, we select a bitwise, logical operation for combining incoming
and destination pixel color values with the functions

glEnable (GL_COLOR_LOGIC_OP);

glLogicOp (logicOp);

A variety of symbolic constants can be assigned to parameter logicOp, in-
cluding GL AND, GL OR, and GL XOR. In addition, either the incoming bit values
or the destination bit values can be inverted (interchanging 0 and 1 values). We
use the constant GL COPY INVERTED to invert the incoming color bit values and
then replace the destination values with the inverted incoming values. And we
could simply invert the destination bit values without replacing them with the
incoming values using GL INVERT. The various invert operations can also be
combined with the logical and, or, and exclusive or operations. Other options in-
clude clearing all the destination bits to the value 0 (GL CLEAR), or setting all the
destination bits to the value 1 (GL SET). The default value for the glLogicOp
routine is GL COPY, which simply replaces the destination values with the in-
coming values.

Additional OpenGL routines are available for manipulating pixel arrays pro-
cessed by the glDrawPixels, glReadPixels, and glCopyPixels functions.
For example, the glPixelTransfer and glPixelMap routines can be used to
shift or adjust color values, depth values, or stencil values. We return to pixel oper-
ations in later chapters as we explore other facets of computer-graphics packages.

3-20 CHARACTER PRIMITIVES

Graphics displays often include textural information such as labels on graphs
and charts, signs on buildings or vehicles, and general identifying information
for simulation and visualization applications. Routines for generating character

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

148 CHAPTER 3 Graphics Output Primitives

primitives are available in most graphics packages. Some systems provide an ex-
tensive set of character functions, while other systems offer only minimal support
for character generation.

Letters, numbers, and other characters can be displayed in a variety of sizes
and styles. The overall design style for a set (or family) of characters is called a
typeface. Today, there are thousands of typefaces available for computer appli-
cations. Examples of a few common typefaces are Courier, Helvetica, New York,
Palatino, and Zapf Chancery. Originally, the term font referred to a set of cast
metal character forms in a particular size and format, such as 10-point Courier
Italic or 12-point Palatino Bold. A 14-point font has a total character height of
about 0.5 centimeter. In other words, 72 points is about the equivalent of 2.54 cen-
timeters (1 inch). The terms font and typeface are now often used interchangeably,
since most printing is no longer done with cast metal forms.

Typefaces (or fonts) can be divided into two broad groups: serif and sans serif.
Serif type has small lines or accents at the ends of the main character strokes,
while sans-serif type does not have accents. For example, the text in this book is
set in a serif font (Palatino). But this sentence is printed in a sans-serif
font (Univers). Serif type is generally more readable; that is, it is easier to read
in longer blocks of text. On the other hand, the individual characters in sans-serif
type are easier to recognize. For this reason, sans-serif type is said to be more
legible. Since sans-serif characters can be quickly recognized, this typeface is good
for labeling and short headings.

Fonts are also classified according to whether they are monospace or propor-
tional. Characters in a monospace font all have the same width. In a proportional
font, character width varies.

Two different representations are used for storing computer fonts. A simple
method for representing the character shapes in a particular typeface is to set
up a pattern of binary values on a rectangular grid. The set of characters is then
referred to as a bitmap font (or bitmapped font). A bitmapped character set is
also sometimes referred to as a raster font. Another, more flexible, scheme is to
describe character shapes using straight-line and curve sections, as in PostScript,
for example. In this case, the set of characters is called an outline font or a stroke
font. Figure 3-62 illustrates the two methods for character representation. When
the pattern in Fig. 3-62(a) is applied to an area of the frame buffer, the 1 bits
designate which pixel positions are to be displayed in a specified color. To display
the character shape in Fig. 3-62(b), the interior of the character outline is treated
as a fill area.

Bitmap fonts are the simplest to define and display: we just need to map
the character grids to a frame-buffer position. In general, however, bitmap fonts

FIGURE 3-62 The letter “B”
represented with an 8-by-8 bitmap
pattern (a) and with an outline
shape defined with straight-line
and curve segments (b).

1 1 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

0 1 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0

(a) (b)

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-21 OpenGL Character Functions 149

y
y

9441

x

x

0

50

100

50 100 150

*

*

*

*
*

* 4359
7485
59110
89121
122149

FIGURE 3-63 A polymarker
graph of a set of data values.

require more storage space, since each variation (size and format) must be saved
in a font cache. It is possible to generate different sizes and other variations, such
as bold and italic, from one bitmap font set, but this often does not produce good
results. We can increase or decrease the size of a character bitmap only in integer
multiples of the pixel size. To double the size of a character, we need to double
the number of pixels in the bitmap. And this just increases the ragged appearance
of its edges.

In contrast to bitmap fonts, outline fonts can be increased in size without
distorting the character shapes. And outline fonts require less storage because
each variation does not require a distinct font cache. We can produce boldface,
italic, or different sizes by manipulating the curve definitions for the character
outlines. But it does take more time to process the outline fonts, since they must
be scan converted into the frame buffer.

There are a variety of possible functions for implementing character displays.
Some graphics packages provide a function that accepts any character string and
a frame-buffer starting position for the string. Another type of function is one that
displays a single character at one or more selected positions. Since this character
routine is useful for showing markers in a network layout or in displaying a point
plot of a discrete data set, the character displayed by this routine is sometimes re-
ferred to as a marker symbol or polymarker, in analogy with a polyline primitive.
In addition to standard characters, special shapes such as dots, circles, and crosses
are often available as marker symbols. Figure 3-63 shows a plot of a discrete data
set using an asterisk as a marker symbol.

Geometric descriptions for characters are given in world coordinates, just as
they are for other primitives, and this information is mapped to screen coordinates
by the viewing transformations. A bitmap character is described with a rectan-
gular grid of binary values and a grid reference position. This reference position
is then mapped to a specified location in the frame buffer. An outline character is
defined by a set of coordinate positions that are to be connected with a series of
curves and straight-line segments and a reference position that is to be mapped
to a given frame-buffer location. The reference position can be specified either for
a single outline character or for a string of characters. In general, character rou-
tines can allow the construction of both two-dimensional and three-dimensional
character displays.

3-21 OpenGL CHARACTER FUNCTIONS

Only low-level support is provided by the basic OpenGL library for displaying
individual characters and text strings. We can explicitly define any character as
a bitmap, as in the example shape shown in Fig. 3-61, and we can store a set

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

150 CHAPTER 3 Graphics Output Primitives

of bitmap characters as a font list. A text string is then displayed by mapping a
selected sequence of bitmaps from the font list into adjacent positions in the frame
buffer.

However, some predefined character sets are available in the OpenGL Utility
Toolkit (GLUT). So we do not need to create our own fonts as bitmap shapes,
unless we want to display a font that is not available in GLUT. The GLUT library
contains routines for displaying both bitmapped and outline fonts. Bitmapped
GLUT fonts are rendered using the OpenGL glBitmap function, and the outline
fonts are generated with polyline (GL LINE STRIP) boundaries.

We can display a bitmap GLUT character with

glutBitmapCharacter (font, character);

where parameter font is assigned a symbolic GLUT constant identifying a par-
ticular set of type faces, and parameter character is assigned either the ASCII
code or the specific character we wish to display. Thus, to display the upper-case
letter “A”, we can either use the ASCII value 65 or the designation 'A'. Similarly,
a code value of 66 is equivalent to 'B', code 97 corresponds to the lower-case
letter 'a', code 98 corresponds to 'b', and so forth. Both fixed-width fonts and
proportionally spaced fonts are available. We can select a fixed-width font by
assigning either GLUT BITMAP 8 BY 13 or GLUT BITMAP 9 BY 15 to pa-
rameter font. And we can select a 10-point, proportionally spaced font with
either GLUT BITMAP TIMES ROMAN 10 or GLUT BITMAP HELVETICA 10.
A 12-point Times-Roman font is also available, as well as 12-point and 18-point
Helvetica fonts.

Each character generated by glutBitmapCharacter is displayed so that
the origin (lower-left corner) of the bitmap is at the current raster position. After
the character bitmap is loaded into the refresh buffer, an offset equal to the width
of the character is added to the x coordinate for the current raster position. As an
example, we could display a text string containing 36 bitmap characters with the
following code.

glRasterPosition2i (x, y);
for (k = 0; k < 36; k++)

glutBitmapCharacter (GLUT_BITMAP_9_BY_15, text [k]);

Characters are displayed in the color that was specified before the execution of
the glutBitmapCharacter function.

An outline character is displayed with the following function call.

glutStrokeCharacter (font, character);

For this function, we can assign parameter font either the value
GLUT STROKE ROMAN, which displays a proportionally spaced font, or the value
GLUT STROKE MONO ROMAN, which displays a font with constant spacing. We
control the size and position of these characters by specifying transformation op-
erations (Chapter 5) before executing the glutStrokeCharacter routine. After
each character is displayed, a coordinate offset is automatically applied so that the
position for displaying the next character is to the right of the current character.
Text strings generated with outline fonts are part of the geometric description
for a two-dimensional or three-dimensional scene because they are constructed

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-23 OpenGL Display Lists 151

with line segments. Thus, they can be viewed from various directions, and we
can shrink or expand them without distortion, or transform them in other ways.
But they are slower to render, compared to bitmapped fonts.

3-22 PICTURE PARTITIONING

Some graphics libraries include routines for describing a picture as a collection of
named sections and for manipulating the individual sections of a picture. Using
these functions we can create, edit, delete, or move a part of a picture indepen-
dently of the other picture components. And we can also use this feature of a
graphics package for hierarchical modeling (Chapter 14), in which an object de-
scription is given as a tree structure composed of a number of levels specifying
the object subparts.

Various names are used for the subsections of a picture. Some graphics pack-
ages refer to them as structures, while other packages call them segments
or objects. Also, the allowable subsection operations vary greatly from one
package to another. Modeling packages, for example, provide a wide range of
operations that can be used to describe and manipulate picture elements. On
the other hand, for any graphics library, we can always structure and manage
the components of a picture using procedural elements available in a high-level
language such as C++.

3-23 OpenGL DISPLAY LISTS

Often it can be convenient or more efficient to store an object description (or any
other set of OpenGL commands) as a named sequence of statements. We can
do this in OpenGL using a structure called a display list. Once a display list
has been created, we can reference the list multiple times with different display
operations. On a network, a display list describing a scene is stored on the server
machine, which eliminates the need to transmit the commands in the list each time
the scene is to be displayed. We can also set up a display list so that it is saved
for later execution, or we can specify that the commands in the list be executed
immediately. And display lists are particularly useful for hierarchical modeling,
where a complex object can be described with a set of simpler subparts.

Creating and Naming an OpenGL Display List
A set of OpenGL commands is formed into a display list by enclosing the com-
mands within the glNewList/glEndList pair of functions. For example,

glNewList (listID, listMode};
.
.
.

glEndList ();

This structure forms a display list with a positive integer value assigned
to parameter listID as the name for the list. Parameter listMode is as-
signed an OpenGL symbolic constant that can be either GL COMPILE or

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

152 CHAPTER 3 Graphics Output Primitives

GL COMPILE AND EXECUTE. If we want to save the list for later execution, we
use GL COMPILE. Otherwise, the commands are executed as they are placed into
the list, in addition to allowing us to execute the list again at a later time.

As a display list is created, expressions involving parameters such as coor-
dinate positions and color components are evaluated so that only the param-
eter values are stored in the list. Any subsequent changes to these parameters
have no effect on the list. Because display-list values cannot be changed, we
cannot include certain OpenGL commands, such as vertex-list pointers, in a
display list.

We can create any number of display lists, and we execute a particular list of
commands with a call to its identifier. Further, one display list can be embedded
within another display list. But if a list is assigned an identifier that has already
been used, the new list replaces the previous list that had been assigned that
identifier. Therefore, to avoid losing a list by accidentally reusing its identifier, we
can let OpenGL generate an identifier for us:

listID = glGenLists (1);

This statement returns one (1) unused positive integer identifier to the variable
listID. A range of unused integer list identifiers is obtained if we change the
argument of glGenLists from the value 1 to some other positive integer. For in-
stance, if we invokeglGenLists (6), then a sequence of six contiguous positive
integer values is reserved and the first value in this list of identifiers is returned
to the variable listID. A value of 0 is returned by the glGenLists function if
an error occurs or if the system cannot generate the range of contiguous integers
requested. Therefore, before using an identifier obtained from the glGenLists
routine, we could check to be sure that it is not 0.

Although unused list identifiers can be generated with the glGenList
function, we can independently query the system to determine whether a
specific integer value has been used as a list name. The function to accomplish
this is

glIsList (listID};

A value of GL TRUE is returned if the value of listID is an integer that has
already been used as a display-list name. If the integer value has not been used
as a list name, the glIsList function returns the value GL FALSE.

Executing OpenGL Display Lists
We execute a single display list with the statement

glCallList (listID);

The following code segment illustrates the creation and execution of a display list.
We first set up a display list that contains the description for a regular hexagon,
defined in the xy plane using a set of six equally spaced vertices around the
circumference of a circle, whose center coordinates are (200, 200) and whose
radius is 150. Then we issue a call to function glCallList, which displays the
hexagon.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-23 OpenGL Display Lists 153

const double TWO_PI = 6.2831853;

GLuint regHex;

GLdouble theta;
GLint x, y, k;

/* Set up a display list for a regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1); // Get an identifier for the display list.
glNewList (regHex, GL_COMPILE);

glBegin (GL_POLYGON);
for (k = 0; k < 6; k++) {

theta = TWO_PI * k / 6.0;
x = 200 + 150 * cos (theta);
y = 200 + 150 * sin (theta);
glVertex2i (x, y);

}
glEnd ();

glEndList ();

glCallList (regHex);

Several display lists can be executed using the following two statements.

glListBase (offsetValue);

glCallLists (nLists, arrayDataType, listIDArray);

The integer number of lists that we want to execute is assigned to parameter
nLists, and parameter listIDArray is an array of display-list identifiers. In
general, listIDArray can contain any number of elements, and invalid display-
list identifiers are ignored. Also, the elements in listIDArray can be speci-
fied in a variety of data formats, and parameter arrayDataType is used to
indicate a data type, such as GL BYTE, GL INT, GL FLOAT, GL 3 BYTES, or
GL 4 BYTES. A display-list identifier is calculated by adding the value in an
element of listIDArray to the integer value of offsetValue that is given in
the glListBase function. The default value for offsetValue is 0.

This mechanism for specifying a sequence of display lists that are to be ex-
ecuted allows us to set up groups of related display lists, whose identifiers are
formed from symbolic names or codes. A typical example is a font set where each
display-list identifier is the ASCII value of a character. When several font sets are
defined, we use parameter offsetValue in the glListBase function to obtain
a particular font described within the array listIDArray.

Deleting OpenGL Display Lists
We eliminate a contiguous set of display lists with the function call

glDeleteLists (startID, nLists);

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

154 CHAPTER 3 Graphics Output Primitives

ParameterstartIDgives the initial display-list identifier, and parameternLists
specifies the number of lists that are to be deleted. For example, the statement

glDeleteLists (5, 4);

eliminates the four display lists with identifiers 5, 6, 7, and 8. An identifier value
that references a nonexistent display list is ignored.

3-24 OpenGL DISPLAY-WINDOW RESHAPE FUNCTION

In our introductory OpenGL program (Section 2-9), we discussed the functions
for setting up an initial display window. But after the generation of our picture,
we often want to use the mouse pointer to drag the display window to another
screen location or to change its size. Changing the size of a display window could
change its aspect ratio and cause objects to be distorted from their original shapes.

To allow us to compensate for a change in display-window dimensions, the
GLUT library provides the following routine

glutReshapeFunc (winReshapeFcn);

We can include this function in themainprocedure in our program, along with the
other GLUT routines, and it will be activated whenever the display-window size
is altered. The argument for this GLUT function is the name of a procedure that
is to receive the new display-window width and height. We can then use the new
dimensions to reset the projection parameters and perform any other operations,
such as changing the display-window color. In addition, we could save the new
width and height values so that they could be used by other procedures in our
program.

As an example, the following program illustrates how we might structure the
winReshapeFcnprocedure. TheglLoadIdentity command is included in the

FIGURE 3-64 Display
window generated by the
example program illustrating
the use of the reshape
function.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-24 OpenGL Display-Window Reshape Function 155

reshape function so that any previous values for the projection parameters will
not affect the new projection settings. This program displays the regular hexagon
discussed in Section 3-23. Although the hexagon center (at the position of the circle
center) in this example is specified in terms of the display-window parameters,
the position of the hexagon is unaffected by any changes in the size of the display
window. This is because the hexagon is defined within a display list, and only
the original center coordinates are stored in the list. If we want the position of the
hexagon to change when the display window is resized, we need to define the
hexagon in another way or alter the coordinate reference for the display window.
The output from this program is shown in Fig. 3-64.

#include <GL/glut.h>
#include <math.h>
#include <stdlib.h>

const double TWO_PI = 6.2831853;

/* Initial display-window size. */
GLsizei winWidth = 400, winHeight = 400;
GLuint regHex;

class screenPt
{

private:
GLint x, y;

public:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt () {

x = y = 0;
}

void setCoords (GLint xCoord, GLint yCoord) {
x = xCoord;
y = yCoord;

}

GLint getx () const {
return x;

}

GLint gety () const {
return y;

}
};

static void init (void)
{

screenPt hexVertex, circCtr;
GLdouble theta;
GLint k;

/* Set circle center coordinates. */
circCtr.setCoords (winWidth / 2, winHeight / 2);

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

156 CHAPTER 3 Graphics Output Primitives

glClearColor (1.0, 1.0, 1.0, 0.0); // Display-window color = white.

/* Set up a display list for a red regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1); // Get an identifier for the display list.
glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0); // Set fill color for hexagon to red.
glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {
theta = TWO_PI * k / 6.0;

hexVertex.setCoords (circCtr.getx () + 150 * cos (theta),
circCtr.gety () + 150 * sin (theta));

glVertex2i (hexVertex.getx (), hexVertex.gety ());
}

glEnd ();
glEndList ();

}

void regHexagon (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glCallList (regHex);

glFlush ();
}

void winReshapeFcn (int newWidth, int newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, (GLdouble) newWidth, 0.0, (GLdouble) newHeight);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Reshape-Function & Display-List Example");

init ();
glutDisplayFunc (regHexagon);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

hearn-50265; ISBN: 0-13-015390-7 book August 12, 2003 9:46

3-25 Summary 157

3-25 SUMMARY

The output primitives discussed in this chapter provide the basic tools for con-
structing pictures with individual points, straight lines, curves, filled color areas,
array patterns, and text. We specify primitives by giving their geometric descrip-
tions in a Cartesian, world-coordinate reference system. Examples of displays
generated with output primitives are illustrated in Figs. 3-65 and 3-66.

FIGURE 3-66 An
electrical diagram drawn with
straight-line sections, circles,
filled rectangles, and text.
(Courtesy of Wolfram Research,
Inc., The Maker of
Mathematica.)

Three methods that can be used to locate pixel positions along a straight-line
path are the DDA algorithm, Bresenham’s algorithm, and the midpoint method.
Bresenham’s line algorithm and the midpoint line method are equivalent, and
they are the most efficient. Color values for the pixel positions along the line path
are efficiently stored in the frame buffer by incrementally calculating the memory
addresses. Any of the line-generating algorithms can be adapted to a parallel
implementation by partitioning the line segments and distributing the partitions
among the available processors.

Circles and ellipses can be efficiently and accurately scan converted using
midpoint methods and taking curve symmetry into account. Other conic sections
(parabolas and hyperbolas) can be plotted with similar methods. Spline curves,
which are piecewise continuous polynomials, are widely used in animation and in
computer-aided design. Parallel implementations for generating curve displays
can be accomplished with methods similar to those for parallel line processing.

To account for the fact that displayed lines and curves have finite widths, we
can adjust the pixel dimensions of objects to coincide to the specified geometric
dimensions. This can be done with an addressing scheme that references pixel
positions at their lower left corner, or by adjusting line lengths.

A fill area is a planar region that is to be displayed in a solid color or color
pattern. Fill-area primitives in most graphics packages are polygons. But, in gen-
eral, we could specify a fill region with any boundary. Often, graphics systems
allow only convex polygon fill areas. In that case, a concave-polygon fill area can
be displayed by dividing it into a set of convex polygons. Triangles are the easi-
est polygons to fill, since each scan line crossing a triangle intersects exactly two
polygon edges (assuming the scan line does not pass through any vertices).

The odd-even rule can be used to locate the interior points of a planar region.
Other methods for defining object interiors are also useful, particularly with irreg-
ular, self-intersecting objects. A common example is the nonzero winding-number
rule. This rule is more flexible than the odd-even rule for handling objects defined
with multiple boundaries. We can also use variations of the winding-number rule
to combine plane areas using Boolean operations.

FIGURE 3-65 A data plot
generated with straight-line
segments, curves, character
marker symbols, and text.
(Courtesy of Wolfram Research,
Inc., The Maker of Mathematica.)

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

158 CHAPTER 3 Graphics Output Primitives

TABLE 3-1

SUMMARY OF OpenGL OUTPUT PRIMITIVE FUNCTIONS AND RELATED ROUTINES
Function Description

gluOrtho2D Specify a 2D world-coordinate reference.

glVertex* Select a coordinate position. This function
must be placed within a glBegin/glEnd
pair.

glBegin (GL POINTS); Plot one or more point positions, each
specified in a glVertex function. The list
of positions is then closed with a glEnd
statement.

glBegin (GL LINES); Display a set of straight-line segments,
whose endpoint coordinates are specified
in glVertex functions. The list of
endpoints is then closed with a glEnd
statement.

glBegin (GL LINE STRIP); Display a polyline, specified using the
same structure as GL LINES.

glBegin (GL LINE LOOP); Display a closed polyline, specified using
the same structure as GL LINES.

glRect* Display a fill rectangle in the xy plane.

glBegin (GL POLYGON); Display a fill polygon, whose vertices are
given in glVertex functions and
terminated with a glEnd statement.

glBegin (GL TRIANGLES); Display a set of fill triangles using the
same structure as GL POLYGON.

glBegin (GL TRIANGLE STRIP); Display a fill-triangle mesh, specified
using the same structure as GL POLYGON.

glBegin (GL TRIANGLE FAN); Display a fill-triangle mesh in a fan shape
with all triangles connected to the first
vertex, specified with same structure as
GL POLYGON.

glBegin (GL QUADS); Display a set of fill quadrilaterals, specified
with same structure as GL POLYGON.

glBegin (GL QUAD STRIP); Display a fill-quadrilateral mesh, specified
with same structure as GL POLYGON.

glEnableClientState Activate vertex-array features of
(GL VERTEX ARRAY); OpenGL.

glVertexPointer (size, type, Specify an array of coordinate values.
stride, array);

glDrawElements (prim, num, Display a specified primitive type from
type, array); array data.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

3-25 Summary 159

Function Description

glNewList (listID, listMode) Define a set of commands as a display
list, terminate with a glEndList
statement.

glGenLists Generate one or more display-list
identifiers.

glIsList Query function to determine whether a
display-list identifier is in use.

glCallList Execute a single display list.

glListBase Specify an offset value for an array of
display-list identifiers.

glCallLists Execute multiple display lists.

glDeleteLists Eliminate a specified sequence of display
lists.

glRasterPos* Specify a two-dimensional or three-
dimensional current position for the
frame buffer. This position is used as a
reference for bitmap and pixmap
patterns.

glBitmap (w, h, x0, y0, Specify a binary pattern that is to be
xShift, yShift, pattern); mapped to pixel positions relative to the

current position.

glDrawPixels (w, h, type, Specify a color pattern that is to be
format, pattern); mapped to pixel positions relative to the

current position.

glDrawBuffer Select one or more buffers for storing a
pixmap.

glReadPixels Save a block of pixels in a selected array.

glCopyPixels Copy a block of pixels from one buffer
position to another.

glLogicOp Select a logical operation for combining
two pixel arrays, after enabling with the
constant GL COLOR LOGIC OP.

glutBitmapCharacter Specify a font and a bitmap character for
(font, char); display.

glutStrokeCharacter Specify a font and an outline character for
(font, char); display.

glutReshapeFunc Specify actions to be taken when
display-window dimensions are
changed.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

160 CHAPTER 3 Graphics Output Primitives

Each polygon has a front face and a back face, which determines the spatial
orientation of the polygon plane. This spatial orientation can be determined from
the normal vector, which is perpendicular to the polygon plane and points in the
direction from the back face to the front face. We can determine the components
of the normal vector from the polygon plane equation or by forming a vector
cross product using three points in the plane, where the three points are taken in
a counterclockwise order and the angle formed by the three points is less than
180◦. All coordinate values, spatial orientations, and other geometric data for a
scene are entered into three tables: vertex, edge, and surface-facet tables.

Additional primitives available in graphics packages include pattern arrays
and character strings. Pattern arrays can be used to specify two-dimensional
shapes, including a character set, using either a rectangular set of binary val-
ues or a set of color values. Character strings are used to provide picture and
graph labeling.

Using the primitive functions available in the basic OpenGL library, we can
generate points, straight-line segments, convex polygon fill areas, and either
bitmap or pixmap pattern arrays. Routines for displaying character strings are
available in GLUT. Other types of primitives, such as circles, ellipses, and concave-
polygon fill areas, can be constructed or approximated with these functions, or
they can be generated using routines in GLU and GLUT. All coordinate values
are expressed in absolute coordinates within a right-handed Cartesian-coordinate
reference system. Coordinate positions describing a scene can be given in either
a two-dimensional or a three-dimensional reference frame. We can use integer or
floating-point values to give a coordinate position, and we can also reference a po-
sition with a pointer to an array of coordinate values. A scene description is then
transformed by viewing functions into a two-dimensional display on an output
device, such as a video monitor. Except for the glRect function, each coordinate
position for a set of points, lines, or polygons is specfied in a glVertex function.
And the set of glVertex functions defining each primitive is included between
a glBegin/glEnd pair of statements, where the primitive type is identified
with a symbolic constant as the argument for the glBegin function. When de-
scribing a scene containing many polygon fill surfaces, we can efficiently generate
the display using OpenGL vertex arrays to specify geometric and other data.

In Table 3-1, we list the basic functions for generating output primitives in
OpenGL. Some related routines are also listed in this table.

EXAMPLE PROGRAMS

Here, we present a few example OpenGL programs illustrating the use of output
primitives. Each program uses one or more of the functions listed in Table 3-1.
A display window is set up for the output from each program using the GLUT
routines discussed in Chapter 2.

The first program illustrates the use of a polyline, a set of polymarkers, and
bit-mapped character labels to generate a line graph for monthly data over a
period of one year. A proportionally spaced font is demonstrated, although a
fixed-width font is usually easier to align with graph positions. Since the bit maps
are referenced at the lower-left corner by the raster-position function, we must
shift the reference position to align the center of a text string with a plotted data
position. Figure 3-67 shows the output of the line-graph program.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

Example Programs 161

FIGURE 3-67 A polyline
and polymarker plot of data
points output by the
lineGraph routine.

#include <GL/glut.h>

GLsizei winWidth = 600, winHeight = 500; // Initial display window size.
GLint xRaster = 25, yRaster = 150; // Initialize raster position.

GLubyte label [36] = {'J', 'a', 'n', 'F', 'e', 'b', 'M', 'a', 'r',
'A', 'p', 'r', 'M', 'a', 'y', 'J', 'u', 'n',
'J', 'u', 'l', 'A', 'u', 'g', 'S', 'e', 'p',
'O', 'c', 't', 'N', 'o', 'v', 'D', 'e', 'c'};

GLint dataValue [12] = {420, 342, 324, 310, 262, 185,
190, 196, 217, 240, 312, 438};

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0); // White display window.
glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 600.0, 0.0, 500.0);

}

void lineGraph (void)
{

GLint month, k;
GLint x = 30; // Initialize x position for chart.

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

162 CHAPTER 3 Graphics Output Primitives

glColor3f (0.0, 0.0, 1.0); // Set line color to blue.
glBegin (GL_LINE_STRIP); // Plot data as a polyline.

for (k = 0; k < 12; k++)
glVertex2i (x + k*50, dataValue [k]);

glEnd ();

glColor3f (1.0, 0.0, 0.0); // Set marker color to red.
for (k = 0; k < 12; k++) { // Plot data as asterisk polymarkers.

glRasterPos2i (xRaster + k*50, dataValue [k] - 4);
glutBitmapCharacter (GLUT_BITMAP_9_BY_15, '*');

}

glColor3f (0.0, 0.0, 0.0); // Set text color to black.
xRaster = 20; // Display chart labels.
for (month = 0; month < 12; month++) {

glRasterPos2i (xRaster, yRaster);
for (k = 3*month; k < 3*month + 3; k++)
glutBitmapCharacter (GLUT_BITMAP_HELVETICA_12, label [k]);

xRaster += 50;
}
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Line Chart Data Plot");

init ();
glutDisplayFunc (lineGraph);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

We use the same data set in the second program to produce the bar chart in
Fig. 3-68. This program illustrates an application of rectangular fill areas, as well
as bit-mapped character labels.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

Example Programs 163

FIGURE 3-68 A bar chart
generated by the barChart
procedure.

void barChart (void)
{

GLint month, k;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set bar color to red.
for (k = 0; k < 12; k++)

glRecti (20 + k*50, 165, 40 + k*50, dataValue [k]);

glColor3f (0.0, 0.0, 0.0); // Set text color to black.
xRaster = 20; // Display chart labels.
for (month = 0; month < 12; month++) {

glRasterPos2i (xRaster, yRaster);
for (k = 3*month; k < 3*month + 3; k++)

glutBitmapCharacter (GLUT_BITMAP_HELVETICA_12,
label [h]);

xRaster += 50;
}
glFlush ();

}

FIGURE 3-69 Output
produced with the pieChart
procedure.

Pie charts are used to show the percentage contribution of individual parts to the
whole. The next program constructs a pie chart, using the midpoint routine for
generating a circle. Example values are used for the number and relative sizes of
the slices, and the output from this program appears in Fig. 3-69.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

164 CHAPTER 3 Graphics Output Primitives

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

const GLdouble twoPi = 6.283185;

class scrPt {
public:

GLint x, y;
};

GLsizei winWidth = 400, winHeight = 300; // Initial display window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

. // Midpoint routines for displaying a circle.

.

.

void pieChart (void)
{

scrPt circCtr, piePt;
GLint radius = winWidth / 4; // Circle radius.

GLdouble sliceAngle, previousSliceAngle = 0.0;

GLint k, nSlices = 12; // Number of slices.
GLfloat dataValues[12] = {10.0, 7.0, 13.0, 5.0, 13.0, 14.0,

3.0, 16.0, 5.0, 3.0, 17.0, 8.0};
GLfloat dataSum = 0.0;

circCtr.x = winWidth / 2; // Circle center position.
circCtr.y = winHeight / 2;
circleMidpoint (circCtr, radius); // Call a midpoint circle-plot routine.

for (k = 0; k < nSlices; k++)
dataSum += dataValues[k];

for (k = 0; k < nSlices; k++) {
sliceAngle = twoPi * dataValues[k] / dataSum + previousSliceAngle;
piePt.x = circCtr.x + radius * cos (sliceAngle);
piePt.y = circCtr.y + radius * sin (sliceAngle);
glBegin (GL_LINES);

glVertex2i (circCtr.x, circCtr.y);
glVertex2i (piePt.x, piePt.y);

glEnd ();
previousSliceAngle = sliceAngle;

}
}

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

Example Programs 165

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set circle color to blue.

pieChart ();
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

glClear (GL_COLOR_BUFFER_BIT);

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Pie Chart");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

Some variations on the circle equations are displayed by our last example pro-
gram, which uses the parametric polar equations (3-28) to compute points along
the curve paths. These points are then used as the endpoint positions for straight-
line sections, displaying the curves as approximating polylines. The curves shown
in Fig. 3-70 are generated by varying the radius r of a circle. Depending on how
we vary r , we can produce a limaçon, cardioid, spiral, or other similar figure.

(a) (b) (c) (d) (e)

FIGURE 3-70 Curved figures displayed by the drawCurve procedure: (a) limaçon,
(b) cardiod, (c) three-leaf curve, (d) four-leaf curve, and (e) spiral.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

166 CHAPTER 3 Graphics Output Primitives

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

#include <iostream.h>

struct screenPt
{

GLint x;
GLint y;

};

typedef enum { limacon = 1, cardioid, threeLeaf, fourLeaf, spiral } curveName;

GLsizei winWidth = 600, winHeight = 500; // Initial display window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void lineSegment (screenPt pt1, screenPt pt2)
{

glBegin (GL_LINES);
glVertex2i (pt1.x, pt1.y);
glVertex2i (pt2.x, pt2.y);

glEnd ();
}

void drawCurve (GLint curveNum)
{

/* The limacon of Pascal is a modification of the circle equation
* with the radius varying as r = a * cos (theta) + b, where a
* and b are constants. A cardiod is a limacon with a = b.
* Three-leaf and four-leaf curves are generated when
* r = a * cos (n * theta), with n = 3 and n = 2, respectively.
* A spiral is displayed when r is a multiple of theta.
*/

const GLdouble twoPi = 6.283185;
const GLint a = 175, b = 60;

GLfloat r, theta, dtheta = 1.0 / float (a);
GLint x0 = 200, y0 = 250; // Set an initial screen position.
screenPt curvePt[2];

glColor3f (0.0, 0.0, 0.0); // Set curve color to black.

curvePt[0].x = x0; // Initialize curve position.
curvePt[0].y = y0;

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

Example Programs 167

switch (curveNum) {
case limacon: curvePt[0].x += a + b; break;
case cardioid: curvePt[0].x += a + a; break;
case threeLeaf: curvePt[0].x += a; break;
case fourLeaf: curvePt[0].x += a; break;
case spiral: break;
default: break;

}

theta = dtheta;
while (theta < two_Pi) {

switch (curveNum) {
case limacon:

r = a * cos (theta) + b; break;
case cardioid:

r = a * (1 + cos (theta)); break;
case threeLeaf:

r = a * cos (3 * theta); break;
case fourLeaf:

r = a * cos (2 * theta); break;
case spiral:

r = (a / 4.0) * theta; break;
default: break;

}

curvePt[1].x = x0 + r * cos (theta);
curvePt[1].y = y0 + r * sin (theta);
lineSegment (curvePt[0], curvePt[1]);

curvePt[0].x = curvePt[1].x;
curvePt[0].y = curvePt[1].y;
theta += dtheta;

}
}

void displayFcn (void)
{

GLint curveNum;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

cout << "\nEnter the integer value corresponding to\n";
cout << "one of the following curve names.\n";
cout << "Press any other key to exit.\n";
cout << "\n1-limacon, 2-cardioid, 3-threeLeaf, 4-fourLeaf, 5-spiral: ";
cin >> curveNum;

if (curveNum == 1 || curveNum == 2 || curveNum == 3 || curveNum == 4
|| curveNum == 5)
drawCurve (curveNum);

else
exit (0);

glFlush ();
}

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

168 CHAPTER 3 Graphics Output Primitives

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, (GLdouble) newWidth, 0.0, (GLdouble) newHeight);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Draw Curves");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

REFERENCES

Basic information on Bresenham’s algorithms can be found in Bresenham (1965 and 1977).
For midpoint methods, see Kappel (1985). Parallel methods for generating lines and circles
are discussed in Pang (1990) and in Wright (1990). Many other methods for generating and
processing graphics primitives are discussed in Glassner (1990), Arvo (1991), Kirk (1992),
Heckbert (1994), and Paeth (1995).

Additional programming examples using OpenGL primitive functions are given
in Woo, Neider, Davis, and Shreiner (1999). A listing of all OpenGL primitive func-
tions is available in Shreiner (2000). For a complete reference to GLUT, see Kilgard
(1996).

EXERCISES

3-1 Implement a polyline function using the DDA algorithm, given any number (n) of
input points. A single point is to be plotted when n = 1.

3-2 Extend Bresenham’s line algorithm to generate lines with any slope, taking sym-
metry between quadrants into account.

3-3 Implement a polyline function, using the algorithm from the previous exercise, to
display the set of straight lines connecting a list of n input points. For n = 1, the
routine displays a single point.

3-4 Use the midpoint method to derive decision parameters for generating points along
a straight-line path with slope in the range 0 < m < 1. Show that the midpoint
decision parameters are the same as those in the Bresenham line algorithm.

3-5 Use the midpoint method to derive decision parameters that can be used to generate
straight-line segments with any slope.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

Exercises 169

3-6 Set up a parallel version of Bresenham’s line algorithm for slopes in the range
0 < m < 1.

3-7 Set up a parallel version of Bresenham’s algorithm for straight lines with any slope.

3-8 Suppose you have a system with an 8 inch by 10 inch video monitor that can display
100 pixels per inch. If memory is organized in one-byte words, the starting frame
buffer address is 0, and each pixel is assigned one byte of storage, what is the frame
buffer address of the pixel with screen coordinates (x, y)?

3-9 Suppose you have a system with an 8 inch by 10 inch video monitor that can display
100 pixels per inch. If memory is organized in one-byte words, the starting frame
buffer address is 0, and each pixel is assigned 6 bits of storage, what is the frame
buffer address (or addresses) of the pixel with screen coordinates (x, y)?

3-10 Incorporate the iterative techniques for calculating frame-buffer addresses (Sec-
tion 3-7) into the Bresenham line algorithm.

3-11 Revise the midpoint circle algorithm to display circles with input geometric mag-
nitudes preserved (Section 3-13).

3-12 Set up a procedure for a parallel implementation of the midpoint circle algorithm.

3-13 Derive decision parameters for the midpoint ellipse algorithm assuming the start
position is (rx , 0) and points are to be generated along the curve path in counter-
clockwise order.

3-14 Set up a procedure for a parallel implementation of the midpoint ellipse algorithm.

3-15 Devise an efficient algorithm that takes advantage of symmetry properties to dis-
play a sine function over one cycle.

3-16 Modify the algorithm in the preceding exercise to display a sine curve over any
specified angular interval.

3-17 Devise an efficient algorithm, taking function symmetry into account, to display a
plot of damped harmonic motion:

y = Ae−kx sin(ωx + θ)

where ω is the angular frequency and θ is the phase of the sine function. Plot y as a
function of x for several cycles of the sine function or until the maximum amplitude
is reduced to A

10 .

3-18 Using the midpoint method, and taking symmetry into account, develop an efficient
algorithm for scan conversion of the following curve over the interval −10 ≤ x ≤ 10.

y = 1
12

x3

3-19 Use the midpoint method and symmetry considerations to scan convert the
parabola

y = 100 − x2

over the interval −10 ≤ x ≤ 10.

3-20 Use the midpoint method and symmetry considerations to scan convert the
parabola

x = y2

for the interval −10 ≤ y ≤ 10.

3-21 Set up a midpoint algorithm, taking symmetry considerations into account to scan
convert any parabola of the form

y = ax2 + b

with input values for parameters a , b, and the range for x.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

170 CHAPTER 3 Graphics Output Primitives

3-22 Set up geometric data tables as in Fig. 3-50 for a unit cube.

3-23 Set up geometric data tables for a unit cube using just a vertex table and a
surface-facet table, then store the same information using just the surface-facet
table. Compare the two methods for representing the unit cube with a representa-
tion using the three tables in Exercise 3-22. Estimate the storage requirements for
each.

3-24 Define an efficient polygon-mesh representation for a cylinder and justify your
choice of representation.

3-25 Set up a procedure for establishing the geometric data tables for any input set of
points defining the polygon facets for the surface of a three-dimensional object.

3-26 Devise routines for checking the three geometric data tables in Fig. 3-50 to ensure
consistency and completeness.

3-27 Write a program for calculating parameters A, B, C , and D for an input mesh of
polygon-surface facets.

3-28 Write a procedure to determine whether an input coordinate position is in front of
a polygon surface or behind it, given the plane parameters A, B, C , and D for the
polygon.

3-29 If the coordinate reference for a scene is changed from a right-handed system to
a left-handed system, what changes could we make in the values of surface plane
parameters A, B, C , and D to ensure that the orientation of the plane is correctly
described?

3-30 Develop a procedure for identifying a nonplanar vertex list for a quadrilateral.

3-31 Extend the algorithm of the previous exercise to identify a nonplanar vertex list
that contains more than four coordinate positions.

3-32 Write a procedure to split a set of four polygon vertex positions into a set of triangles.

3-33 Devise an algorithm for splitting a set of n polygon vertex positions, with n > 4,
into a set of triangles.

3-34 Set up an algorithm for identifying a degenerate polygon vertex list that may contain
repeated vertices or collinear vertices.

3-35 Devise an algorithm for identifying a polygon vertex list that contains intersecting
edges.

3-36 Write a routine to identify concave polygons by calculating cross products of pairs
of edge vectors.

3-37 Write a routine to split a concave polygon, using the vector method.

3-38 Write a routine to split a concave polygon, using the rotational method.

3-39 Devise an algorithm for determining interior regions for any input set of vertices
using the nonzero winding-number rule and cross-product calculations to identify
the direction for edge crossings.

3-40 Devise an algorithm for determining interior regions for any input set of vertices
using the nonzero winding-number rule and dot-product calculations to identify
the direction for edge crossings.

3-41 What regions of the self-intersecting polyline shown in Fig. 3-46 have a positive
winding number? What are the regions that have a negative winding number?
What regions have a winding number greater than 1?

3-42 Write a routine to implement a text-string function that has two parameters: one
parameter specifies a world-coordinate position and the other parameter specifies
a text string.

3-43 Write a routine to implement a polymarker function that has two parameters: one
parameter is the character that is to be displayed and the other parameter is a list
of world-coordinate positions.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:46

Exercises 171

3-44 Modify the example program in Section 3-24 so that the displayed hexagon is always
at the center of the display window, regardless of how the display window may be
resized.

3-45 Write a complete program for displaying a bar chart. Input to the program is to
include the data points and the labeling required for the x and y axes. The data
points are to be scaled by the program so that the graph is displayed across the full
area of a display window.

3-46 Write a program to display a bar chart in any selected area of a display window.

3-47 Write a procedure to display a line graph for any input set of data points in any
selected area of the screen, with the input data set scaled to fit the selected screen
area. Data points are to be displayed as asterisks joined with straight-line segments,
and the x and y axes are to be labeled according to input specifications. (Instead of
asterisks, small circles or some other symbols could be used to plot the data points.)

3-48 Using a circle function, write a routine to display a pie chart with appropriate
labeling. Input to the routine is to include a data set giving the distribution of the
data over some set of intervals, the name of the pie chart, and the names of the
intervals. Each section label is to be displayed outside the boundary of the pie chart
near the corresponding pie section.

