
University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Ray Tracing

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 2

Geometric optics
 Modern theories of light treat it as both a wave and
a particle.
 We will take a combined and somewhat simpler
view of light – the view of geometric optics.
 Here are the rules of geometric optics:

Light is a flow of photons with wavelengths. We'll call
these flows “light rays.”
Light rays travel in straight lines in free space.
Light rays do not interfere with each other as they cross.
Light rays obey the laws of reflection and refraction.
Light rays travel form the light sources to the eye, but
the physics is invariant under path reversal (reciprocity).

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 3

Synthetic pinhole camera
  The most common imaging model in graphics is the synthetic pinhole

camera: light rays are collected through an infinitesimally small hole
and recorded on an image plane.

  For convenience, the image plane is usually placed in front of the
camera, giving a non-inverted 2D projection (image).

  Viewing rays emanate from the center of projection (COP) at the
center of the lens (or pinhole).

  The image of an object point P is at the intersection of the viewing ray
through P and the image plane.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 4

Eye vs. light ray tracing
  Where does light begin?
  At the light: light ray tracing (a.k.a., forward ray tracing or photon

tracing)

  At the eye: eye ray tracing (a.k.a., backward ray tracing)

  We will generally follow rays from the eye into the scene.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 5

Precursors to ray tracing
  Local illumination

Cast one eye ray,
then shade according to light

  Appel (1968)
Cast one eye ray + one ray to light

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 6

Whitted ray-tracing algorithm
  In 1980, Turner Whitted introduced ray tracing to the graphics

community.
Combines eye ray tracing + rays to light
Recursively traces rays

Algorithm:
1.  For each pixel, trace a primary ray in direction V to the first visible

surface.
2.  For each intersection, trace secondary rays:

Shadow rays in directions Li to light sources
Reflected ray in direction R.
Refracted ray or transmitted ray in direction T.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 7

Whitted algorithm (cont'd)
Let's look at this in stages:

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 8

Shading

  A ray is defined by an origin P and a unit direction d and is

parameterized by t:
  P + td

  Let I(P, d) be the intensity seen along that ray. Then:
  I(P, d) = Idirect + Ireflected + Itransmitted
  where

Idirect is computed from the Phong model
Ireflected = kr I (Q, R)
Itransmitted = ktI (Q, T)

  Typically, we set kr = ks and kt = 1 – ks .

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 9

Reflection and transmission

 Law of reflection:
  θi = θr

 Snell's law of refraction:
 ηi sinθI = ηt sin θt

 where ηi , ηt are indices of refraction.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 10

Total Internal Reflection
  The equation for the angle of refraction can be computed
from Snell's law:

  What happens when ηi > ηt?
  When θt is exactly 90°, we say that θI has achieved the
“critical angle” θc .
  For θI > θc , no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal reflection”
or TIR.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 11

Ray-tracing pseudocode
We build a ray traced image by casting rays

through each of the pixels.

function traceImage (scene):

 for each pixel (i,j) in image
 S = pixelToWorld(i,j)
 P = COP
 d = (S - P)/|| S – P||
 I(i,j) = traceRay(scene, P, d)
 end for

end function

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 12

Ray-tracing pseudocode, cont’d
function traceRay(scene, P, d):

 (t, N, mtrl) ← scene.intersect (P, d)
 Q ! ray (P, d) evaluated at t
 I = shade(q, N, mtrl, scene)
 R = reflectDirection(N, -d)
 I ← I + mtrl.kr * traceRay(scene, Q, R)
 if ray is entering object then
 n_i = index_of_air
 n_t = mtrl.index
 else
 n_i = mtrl.index

 n_t = index_of_air
 if (mtrl.k_t > 0 and notTIR (n_i, n_t, N, -d)) then
 T = refractDirection (n_i, n_t, N, -d)
 I ← I + mtrl.kt * traceRay(scene, Q, T)
 end if
 return I

end function

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 13

Terminating recursion
 Q: How do you bottom out of recursive ray
tracing?

 Possibilities:

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 14

Shading pseudocode
Next, we need to calculate the color returned by

the shade function.

function shade(mtrl, scene, Q, N, d):

 I ← mtrl.ke + mtrl. ka * scene->Ia
 for each light source � do:
 atten = � -> distanceAttenuation(Q) *
 � -> shadowAttenuation(scene, Q)
 I ← I + atten*(diffuse term + spec term)
 end for
 return I

end function

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 15

Shadow attenuation
  Computing a shadow can be as simple as checking to see if a ray makes it

to the light source.
  For a point light source:

function PointLight::shadowAttenuation(scene, P)
 d = (�.position - P).normalize()
 (t, N, mtrl) ← scene.intersect(P, d)
 Q ← ray(t)
 if Q is before the light source then:
 atten = 0
 else
 atten = 1
 end if
 return atten

end function

  Q: What if there are transparent objects along a path to the light source?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 16

Ray-plane intersection

  We can write the equation of a plane as:

  The coefficients a, b, and c form a vector that is normal to
the plane, n = [a b c]T. Thus, we can re-write the plane
equation as:

  We can solve for the intersection parameter (and thus the
point):

€

ax + by + cz + d = 0

€

n•p(t) + d = 0
n• P + td() + d = 0

€

t = −
n•P + d
n•d

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 17

Ray-triangle intersection

  To intersect with a triangle, we first solve for the equation
of its supporting plane:

  Then, we need to decide if the point is inside or outside of
the triangle.

Solution 1: compute barycentric coordinates from 3D points.
What do you do with the barycentric coordinates?

€

n = (A−C) × (B−C)
d = −(n•A)

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 18

Barycentric coordinates
A set of points can be used to create an affine frame. Consider a
triangle ABC and a point p:

We can form a frame with an origin C and the vectors from C to the
other vertices:

We can then write P in this coordinate frame

The coordinates (α, β, γ) are called the barycentric coordinates of
p relative to A, B, and C.

A

B C

p

€

•

€

p =αu+ βv + t

€

u = A−C v = B−C t = C

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 19

Computing barycentric coordinates
For the triangle example we can compute the barycentric

coordinates of P:

Cramer’s rule gives the solution:

Computing the determinant of the denominator gives:

€

αA + βB + γC =

Ax Bx Cx

Ay By Cy

1 1 1

%

&

'
'
'

(

)

*
*
*

α

β

γ

%

&

'
'
'

(

)

*
*
*

=

px
py
1

%

&

'
'
'

(

)

*
*
*

€

BxCy − ByCx + AyCx − AxCy + AxBy − AyBx
€

α =

px Bx Cx

py By Cy

1 1 1
Ax Bx Cx

Ay By Cy

1 1 1

β =

Ax px Cx

Ay py Cy

1 1 1
Ax Bx Cx

Ay By Cy

1 1 1

γ =

Ax Bx px
Ay By py
1 1 1
Ax Bx Cx

Ay By Cy

1 1 1

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 20

Cross products
Consider the cross-product of two vectors, u and v. What is the geometric

interpretation of this cross-product?
A cross-product can be computed as:

What happens when u and v lie in the x-y plane? What is the area of the triangle
they span?

€

u× v =

i j k
ux uy uz
vx vy vz

= (uyvz − uzvy)i + (uzvx − uxvz)j+ (uxvy − uyvx)k

=

uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

$

%

&
&
&

'

(

)
)
)

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 21

Barycentric coords from area ratios
Now, let’s rearrange the equation from two slides ago:

The determinant is then just the z-component of
(B-A) × (C-A), which is two times the area of triangle ABC!
Thus, we find:

Where SArea(RST) is the signed area of a triangle, which can be computed with

cross-products.

€

BxCy − ByCx + AyCx − AxCy + AxBy − AyBx

= (Bx − Ax)(Cy − Ay) − (By − Ay)(Cx − Ax)

€

α =
SArea(pBC)
SArea(ABC)

β =
SArea(ApC)
SArea(ABC)

γ =
SArea(ABp)
SArea(ABC)

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 22

Ray-triangle intersection
  Solution 2: project down a dimension and compute
barycentric coordinates from 2D points.

  Why is solution 2 possible? Why is it legal? Why is it
desirable? Which axis should you “project away”?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 23

Interpolating vertex properties
 The barycentric coordinates can also be used to
interpolate vertex properties such as:

material properties
texture coordinates
normals

 For example:

  Interpolating normals, known as Phong
interpolation, gives triangle meshes a smooth
shading appearance. (Note: don’t forget to
normalize interpolated normals.)
€

kd (Q) =αkd (A) + βkd (B) + γkd (C)

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 24

Epsilons
 Due to finite precision arithmetic, we do not
always get the exact intersection at a surface.
 Q: What kinds of problems might this cause?

 Q: How might we resolve this?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 25

Intersecting with xformed geometry
 In general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix
M?
 Apply M-1 to the ray first and intersect in
object (local) coordinates!

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 26

Intersecting with xformed geometry
 The intersected normal is in object (local)
coordinates. How do we transform it to
world coordinates?

