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Ray Tracing 
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Geometric optics 
 Modern theories of light treat it as both a wave and 
a particle.   
 We will take a combined and somewhat simpler 
view of light –  the view of geometric optics. 
 Here are the rules of geometric optics: 

Light is a flow of photons with wavelengths.  We'll call 
these flows “light rays.” 
Light rays travel in straight lines in free space. 
Light rays do not interfere with each other as they cross. 
Light rays obey the laws of reflection and refraction. 
Light rays travel form the light sources to the eye, but 
the physics is invariant under path reversal (reciprocity). 
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Synthetic pinhole camera 
  The most common imaging model in graphics is the synthetic pinhole 

camera: light rays are collected through an infinitesimally small hole 
and recorded on an image plane. 

 
 
 

  For convenience, the image plane is usually placed in front of the 
camera, giving a non-inverted 2D projection (image). 

  Viewing rays emanate from the center of projection (COP) at the 
center of the lens (or pinhole). 

  The image of an object point P is at the intersection of the viewing ray 
through P and the image plane. 
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Eye vs. light ray tracing 
  Where does light begin? 
  At the light: light ray tracing (a.k.a., forward ray tracing or photon 

tracing) 

  At the eye: eye ray tracing (a.k.a., backward ray tracing) 

 
 

  We will generally follow rays from the eye into the scene. 
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Precursors to ray tracing 
  Local illumination 

Cast one eye ray, 
then shade according to light 

  Appel (1968) 
Cast one eye ray + one ray to light 
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Whitted ray-tracing algorithm 
  In 1980, Turner Whitted introduced ray tracing to the graphics 

community. 
Combines eye ray tracing + rays to light 
Recursively traces rays 

 

 
 

Algorithm:  
1.   For each pixel, trace a primary ray in direction V to the first visible 

surface. 
2.   For each intersection, trace secondary rays: 

Shadow rays in directions Li to light sources 
Reflected ray in direction R. 
Refracted ray or transmitted ray in direction T. 
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Whitted algorithm (cont'd) 
Let's look at this in stages: 
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Shading 

 
  A ray is defined by an origin P and a unit direction d and is 

parameterized by t: 
  P + td 

  Let  I(P, d) be the intensity seen along that ray.  Then: 
   I(P, d) = Idirect + Ireflected + Itransmitted 
  where 

Idirect  is computed from the Phong model  
Ireflected = kr I (Q, R)  
Itransmitted = ktI (Q, T)  

  Typically, we set kr = ks and kt = 1 – ks .   
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Reflection and transmission 
 

 Law of reflection: 
  θi  =  θr 

 Snell's law of refraction: 
 ηi sinθI  = ηt sin θt 

 where ηi , ηt are indices of refraction. 
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Total Internal Reflection 
  The equation for the angle of refraction can be computed 
from Snell's law: 

  What happens when ηi > ηt? 
  When θt is exactly 90°, we say that θI  has achieved the 
“critical angle” θc . 
  For θI > θc , no rays are transmitted, and only reflection 
occurs, a phenomenon known as “total internal reflection” 
or TIR. 
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Ray-tracing pseudocode 
We build a ray traced image by casting rays 

through each of the pixels. 
 
function traceImage (scene): 

 for each pixel (i,j) in image 
   S = pixelToWorld(i,j) 
   P = COP 
   d = (S - P)/|| S – P|| 
   I(i,j) = traceRay(scene, P, d) 
 end for 

end function 
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Ray-tracing pseudocode, cont’d 
function traceRay(scene, P, d): 

 (t, N, mtrl)  ← scene.intersect (P, d) 
 Q ! ray (P, d) evaluated at t 
 I = shade(q, N, mtrl, scene) 
 R = reflectDirection(N, -d) 
 I ← I + mtrl.kr * traceRay(scene, Q, R) 
 if ray is entering object then 
   n_i = index_of_air 
   n_t = mtrl.index 
 else 
   n_i = mtrl.index 

        n_t = index_of_air 
 if (mtrl.k_t > 0 and notTIR (n_i, n_t, N, -d)) then 
   T = refractDirection (n_i, n_t, N, -d) 
   I ← I + mtrl.kt * traceRay(scene, Q, T) 
 end if 
 return I 

end function 
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Terminating recursion 
 Q: How do you bottom out of recursive ray 
tracing? 

 Possibilities: 
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Shading pseudocode 
Next, we need to calculate the color returned by 

the shade function. 
 
function shade(mtrl, scene, Q, N, d): 

 I ← mtrl.ke + mtrl. ka * scene->Ia 
 for each light source � do: 
    atten = � -> distanceAttenuation( Q ) * 
    � -> shadowAttenuation( scene, Q  ) 
    I ← I + atten*(diffuse term + spec term) 
 end for  
 return I 

end function 
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Shadow attenuation 
  Computing a shadow can be as simple as checking to see if a ray makes it 

to the light source.   
  For a point light source: 

function PointLight::shadowAttenuation(scene, P) 
 d = (�.position  - P).normalize() 
 (t, N, mtrl) ← scene.intersect(P, d) 
 Q ← ray(t) 
 if Q is before the light source then: 
   atten = 0 
 else 
   atten = 1 
 end if 
 return atten 

end function 

  Q: What if there are transparent objects along a path to the light source? 
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Ray-plane intersection 

 
  We can write the equation of a plane as: 

  The coefficients a, b, and c form a vector that is normal to 
the plane, n = [a b c]T.  Thus, we can re-write the plane 
equation as: 

  We can solve for the intersection parameter (and thus the 
point): 

€ 

ax + by + cz + d = 0

€ 

n•p(t) + d = 0
n• P + td( ) + d = 0

€ 

t = −
n•P + d
n•d
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Ray-triangle intersection 

 
  To intersect with a triangle, we first solve for the equation 
of its supporting plane: 

  Then, we need to decide if the point is inside or outside of 
the triangle. 

Solution 1: compute barycentric coordinates from 3D points.  
What do you do with the barycentric coordinates?  

€ 

n = (A−C) × (B−C)
d = −(n•A)
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Barycentric coordinates 
A set of points can be used to create an affine frame.  Consider a 
triangle ABC and a point p: 

 
 

We can form a frame with an origin C and the vectors from C to the 
other vertices: 
 

We can then write P in this coordinate frame 

 

The coordinates (α, β, γ) are called the barycentric coordinates of 
p relative to A, B, and C. 

A 

B C

p 

€ 

•

€ 

p =αu+ βv + t

€ 

u = A−C v = B−C t = C
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Computing barycentric coordinates 
For the triangle example we can compute the barycentric 

coordinates of P: 

Cramer’s rule gives the solution: 

 
 
Computing the determinant of the denominator gives: 
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Cross products 
Consider the cross-product of two vectors, u and v.  What is the geometric 

interpretation of this cross-product? 
A cross-product can be computed as: 

 
 
 

 

What happens when u and v lie in the x-y plane?  What is the area of the triangle 
they span? 

€ 

u× v =

i j k
ux uy uz
vx vy vz

= (uyvz − uzvy )i + (uzvx − uxvz)j+ (uxvy − uyvx )k

=

uyvz − uzvy
uzvx − uxvz
uxvy − uyvx
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Barycentric coords from area ratios 
Now, let’s rearrange the equation from two slides ago: 

 
 
 
The determinant is then just the z-component of 
(B-A) × (C-A), which is two times the area of triangle ABC! 
Thus, we find: 
 
 

 
Where SArea(RST) is the signed area of a triangle, which can be computed with 

cross-products. 

€ 

BxCy − ByCx + AyCx − AxCy + AxBy − AyBx

= (Bx − Ax )(Cy − Ay ) − (By − Ay )(Cx − Ax )

€ 

α =
SArea(pBC)
SArea(ABC)

β =
SArea(ApC)
SArea(ABC)

γ =
SArea(ABp)
SArea(ABC)
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Ray-triangle intersection 
  Solution 2: project down a dimension and compute 
barycentric coordinates from 2D points. 

 

  Why is solution 2 possible?  Why is it legal?  Why is it 
desirable?  Which axis should you “project away”? 
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Interpolating vertex properties 
 The barycentric coordinates can also be used to 
interpolate vertex properties such as: 

material properties 
texture coordinates 
normals 

 For example: 

  Interpolating normals, known as Phong 
interpolation, gives triangle meshes a smooth 
shading appearance.  (Note: don’t forget to 
normalize interpolated normals.) 
€ 

kd (Q) =αkd (A) + βkd (B) + γkd (C)
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Epsilons 
 Due to finite precision arithmetic, we do not 
always get the exact intersection at a surface. 
 Q: What kinds of problems might this cause? 

 Q: How might we resolve this? 
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Intersecting with xformed geometry 
 In general, objects will be placed using 
transformations.   What if the object being 
intersected were transformed by a matrix 
M? 
 Apply M-1 to the ray first and intersect in 
object (local) coordinates! 
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Intersecting with xformed geometry 
 The intersected normal is in object (local) 
coordinates.  How do we transform it to 
world coordinates?  


