
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Path Planning, Waypoints, Search
Spring 2012

Path Finding

!   Problem Statement: Given a start point A and a goal point
B, find a path from A to B that is clear
! Generally want to minimize a cost: distance, travel time, …

!   Travel time depends on terrain, for instance
! May be complicated by dynamic changes: paths being blocked or

removed

!   Very common problem in games:
! In FPS: How does the AI get from room to room?
! In RTS: User clicks on units, tells them to go somewhere. How do

they get there? How do they avoid each other?
! Chase games, sports games, …

Search or Optimization?

!   Path planning (also called route-finding) can be phrased as a
search problem:
! Find a path to the goal B that minimizes Cost(path)
! There are a wealth of ways to solve search problems, and we will look

at some of them
!   Path planning is also an optimization problem:

! Minimize Cost(path) subject to the constraint that path joins A and B
!   State space is paths joining A and B, kind of messy

! There are a wealth of ways to solve optimization problems
!   The difference is mainly one of terminology: different

communities (AI vs. Optimization)
! But, search is normally on a discrete state space

Brief Overview of Techniques

!   Discrete algorithms: BFS, Greedy search, A*, …
!   Potential fields:

! Put a “force field” around obstacles, and follow the “potential
valleys”

!   Pre-computed plans with dynamic re-planning
! Plan as search, but pre-compute answer and modify as required

!   Special algorithms for special cases:
! E.g. Given a fixed start point, fast ways to find paths around

polygonal obstacles

Graph-Based Algorithms

!   Ideally, path planning is point to point (any point in the
world to any other, through any unoccupied point)

!   But, the search space is complex (space of arbitrary
curves)

!   The solution is to discretize the search space
! Restrict the start and goal points to a finite set
! Restrict the paths to be on lines (or other simple curves) that join

points

!   Form a graph: Nodes are points, edges join nodes that can
be reached along a single curve segment
! Search for paths on the graph

Waypoints (and Questions)

!   The discrete set of points you choose are called waypoints
!   Where do you put the waypoints?

! There are many possibilities

!   How do you find out if there is a simple path between
them?
! Depends on what paths you are willing to accept - almost always

assume straight lines

!   The answers to these questions depend very much on the
type of game you are developing
! The environment: open fields, enclosed rooms, etc…
! The style of game: covert hunting, open warfare, friendly romp, …

Where Would You Put Waypoints?

Waypoints By Hand

!   Place waypoints by hand as part of level design
! Best control, most time consuming

!   Many heuristics for good places:
! In doorways, because characters have to go through doors and, as

we learned in visibility, straight lines joining rooms always go
through doors

! Along walls, for characters seeking cover
! At other discontinuities in the environments (edges of rivers, for

example)
! At corners, because shortest paths go through corners

!   The choice of waypoints can make the AI seem smarter

Waypoints By Grid

!   Place a grid over the world, and put a waypoint at every
gridpoint that is open
! Automated method, and maybe even implicit in the environment

!   Do an edge/world intersection test to decide which
waypoints should be joined
! Normally only allow moves to immediate (and maybe corner)

neighbors

!   What sorts of environments is this likely to be OK for?
!   What are its advantages?
!   What are its problems?

Grid Example

!   Note that grid points pay no
attention to the geometry

!   Method can be improved:
! Perturb grid to move closer to

obstacles
! Adjust grid resolution
! Use different methods for

inside and outside building
!   Join with waypoints in

doorways

Waypoints From Polygons

!   Choose waypoints based on the
floor polygons in your world

!   Or, explicitly design polygons
to be used for generating
waypoints

!   How do we go from polygons
to waypoints?
! Hint: there are two obvious

options

Waypoints From Polygons

!

Could also add points on walls

Waypoints From Corners

!   Place waypoints at every convex corner of the obstacles
! Actually, place the point away from the corner according to how

wide the moving objects are
! Or, compute corners of offset polygons

!   Connects all the corners that can see each other
!   Paths through these waypoints will be the shortest
!   However, some unnatural paths may result

! Particularly along corridors - characters will stick to walls

Waypoints From Corners

!   NOTE: Not every edge is drawn
!   Produces very dense graphs

Getting On and Off

!   Typically, you do not wish to restrict the character to the
waypoints or the graph edges
! Not a problem, necessarily, with grid methods

!   When the character starts, find the closest waypoint and
move to that first
! Or, find the waypoint most in the direction you think you need to

go
! Or, try all of the potential starting waypoints and see which gives

the shortest path
!   When the character reaches the closest waypoint to its

goal, jump off and go straight to the goal point
!   Best option: Add a new, temporary waypoint at the precise

start and goal point, and join it to nearby waypoints

Getting On and Off

Best-First-Search

!   Start at the start node and search outwards
!   Maintain two sets of nodes:

! Open nodes are those we have reached but don’t know best path
! Closed nodes that we know the best path to

!   Keep the open nodes sorted by cost
!   Repeat: Expand the “best” open node

! If it’s the goal, we’re done
! Move the “best” open node to the closed set
! Add any nodes reachable from the “best” node to the open set

!  Unless already there or closed
! Update the cost for any nodes reachable from the “best” node

!  New cost is min(old-cost, cost-through-best)

Best-First-Search Properties

!   Precise properties depend on how “best” is defined
!   But in general:

! Will always find the goal if it can be reached
! Maintains a frontier of nodes on the open list, surrounding nodes on

the closed list
! Expands the best node on the frontier, hence expanding the frontier
! Eventually, frontier will expand to contain the goal node

!   To store the best path:
! Keep a pointer in each node n to the previous node along the best

path to n
! Update these as nodes are added to the open set and as nodes are

expanded (whenever the cost changes)
! To find path to goal, trace pointers back from goal nodes

Expanding Frontier

Definitions

!   g(n): The current known best cost for getting to a node
from the start point
! Can be computed based on the cost of traversing each edge along

the current shortest path to n

!   h(n): The current estimate for how much more it will cost
to get from a node to the goal
! A heuristic: The exact value is unknown but this is your best guess
! Some algorithms place conditions on this estimate

!   f(n): The current best estimate for the best path through a
node: f(n)=g(n)+h(n)

Using g(n) Only

!   Define “best” according to f(n)=g(n), the shortest known
path from the start to the node

!   Equivalent to breadth first search
!   Is it optimal?

! When the goal node is expanded, is it along the shortest path?

!   Is it efficient?
! How many nodes does it explore? Many, few, …?

!   Behavior is the same as defining a constant heuristic
function: h(n)=const
! Why?

Breadth First Search

Breadth First Search

!   On a grid with uniform cost per edge, the
frontier expands in a circle out from the start
point

!   Makes sense: We’re only using info about
distance from the start

Using h(n) Only (Greedy Search)

!   Define “best” according to f(n)=h(n), the best guess from
the node to the goal state
! Behavior depends on choice of heuristic
! Straight line distance is a good one

!   Have to set the cost for a node with no exit to be infinite
! If we expand such a node, our guess of the cost was wrong
! Do it when you try to expand such a node

!   Is it optimal?
! When the goal node is expanded, is it along the shortest path?

!   Is it efficient?
! How many nodes does it explore? Many, few, …?

Greedy Search (Straight-Line-Distance Heuristic)

A* Search

!   Set f(n)=g(n)+h(n)
! Now we are expanding nodes according to best estimated total

path cost
!   Is it optimal?

! It depends on h(n)
!   Is it efficient?

! It is the most efficient of any optimal algorithm that uses the same
h(n)

!   A* is the ubiquitous algorithm for path planning in games
! Much effort goes into making it fast, and making it produce pretty

looking paths
! More articles on it than you can poke a stick at

A* Search (Straight-Line-Distance Heuristic)

A* Search (Straight-Line-Distance Heuristic)

!   Note that A* expands fewer nodes
than breadth-first, but more than
greedy

!   It’s the price you pay for optimality
!   Keys are:

! Data structure for a node
! Priority queue for sorting open

nodes
! Underlying graph structure for

finding neighbors

Heuristics

!   For A* to be optimal, the heuristic must underestimate the true cost
! Such a heuristic is admissible

!   The f(n) function must monotonically increase along any path out of
the start node
! True for almost any admissible heuristic, related to triangle inequality
! If not true, can fix by making cost through a node max(f(parent) + edge,

f(n))
!   Combining heuristics:

! If you have more than one heuristic, all of which underestimate, but which
give different estimates, can combine with: h(n)=max(h1(n),h2(n),h3(n),
…)

Inventing Heuristics

!   Bigger estimates are always better than smaller ones
! They are closer to the “true” value
! So straight line distance is better than a small constant

!   Important case: Motion on a grid
! If diagonal steps are not allowed, use Manhattan distance

!   General strategy: Relax the constraints on the problem
! For example: Normal path planning says avoid obstacles
! Relax by assuming you can go through obstacles
! Result is straight line distance

is a bigger estimate than

A* Problems

!   Discrete Search:
! Must have simple paths to connect waypoints

!   Typically use straight segments
!  Have to be able to compute cost
!  Must know that the object will not hit obstacles

! Leads to jagged, unnatural paths
!   Infinitely sharp corners
!   Jagged paths across grids

!   Efficiency is not great
! Finding paths in complex environments can be very expensive

Path Straightening

!   Straight paths typically look more plausible than jagged
paths, particularly through open spaces

!   Option 1: After the path is generated, from each waypoint
look ahead to farthest unobstructed waypoint on the path
! Removes many segments and replaces with one straight one
! Could be achieved with more connections in the waypoint graph,

but that would increase cost
!   Option 2: Bias the search toward straight paths

! Increase the cost for a segment if using it requires turning a corner
! Reduces efficiency, because straight but unsuccessful paths will be

explored preferentially

Smoothing While Following

!   Rather than smooth out the path, smooth out the agent’s
motion along it

!   Typically, the agent’s position linearly interpolates
between the waypoints: p=(1-u)pi+upi+1
! u is a parameter that varies according to time and the agent’s speed

!   Two primary choices to smooth the motion
! Change the interpolation scheme
! “Chase the point” technique

Different Interpolation Schemes

!   View the task as moving a point (the agent) along a curve fitted
through the waypoints

!   We can now apply classic interpolation techniques to smooth the path:
splines

!   Interpolating splines:
! The curve passes through every waypoint, can specify the directions at the

interpolated points
!   Bezier or B-splines:

! May not pass through the points, only approximate them

Interpolation Schemes

Interpolating B-Spline (Bezier)

Chase the Point

!   Instead of tracking along the path, the agent chases a target
point that is moving along the path

!   Start with the target on the path ahead of the agent
!   At each step:

! Move the target along the path using linear interpolation
! Move the agent toward the point location, keeping it a constant

distance away or moving the agent at the same speed

!   Works best for driving or flying games

Chase the Point Demo

Still not great…

!   The techniques we have looked at are path post-processing:
they take the output of A* and process it to improve it

!   What are some of the bad implications of this?
! There are at least two, one much worse than the other
! Why do people still use these smoothing techniques?

!   If post-processing causes these problems, we can move the
solution strategy into A*

A* for Smooth Paths

!   You can argue that smoothing is an attempt to avoid
infinitely sharp turns

!   Incorporating turn radius information can fix this
!   Option 1: Restrict turn radius as a post-process

! But has all the same problems as other post processes
!   Option 2: Incorporate direction and turn radius into A*

itself
! Add information about the direction of travel when passing

through a waypoint
! Do this by duplicating each waypoint 8 times (for eight directions)
! Then do A* on the expanded graph
! Cost of a path comes from computing bi-tangents …

Using Turning Radius

Fixed start direction, any
finish direction: 2 options

Fixed direction at both
ends: 4 options

Curved paths are used to compute cost, and also to determine whether
the path is valid (avoids obstacles)

Improving A* Efficiency

!   Recall, A* is the most efficient optimal algorithm for a
given heuristic

!   Improving efficiency, therefore, means relaxing optimality
!   Basic strategy: Use more information about the

environment
! Inadmissible heuristics use intuitions about which paths are likely

to be better
!   E.g. Bias toward getting close to the goal, ahead of exploring early

unpromising paths
! Hierarchical planners use information about how the path must be

constructed
!   E.g. To move from room to room, just must go through the doors

Inadmissible Heuristics

!   A* will still gives an answer with inadmissible heuristics
! But it won’t be optimal: May not explore a node on the optimal path

because its estimated cost is too high
! Optimal A* will eventually explore any such node before it reaches

the goal

!   However, inadmissible heuristics may be much faster
! Trade-off computational efficiency for path-efficiency
! Start ignoring “unpromising” paths earlier in the search
! But not always faster – initially promising paths may be dead ends

!   Recall additional heuristic restriction: estimates for path
costs must increase along any path from the start node

Inadmissible Example

!   Multiply an admissible heuristic by a constant factor
!   Why does this work?

! The frontier in A* consists of nodes that have roughly equal
estimated total cost: f = cost_so_far + estimated_to_go

! Consider two nodes on the frontier: one with f=1+5, another with
f=5+1

! Originally, A* would have expanded these at about the same time
! If we multiply the estimate by 2, we get: f=1+10 and f=5+2
! So now, A* will expand the node that is closer to the goal long

before the one that is further from the goal

Hierarchical Planning

!   Many planning problems can be thought of hierarchically
! To pass this class, I have to pass the exams and do the projects
! To pass the exams, I need to go to class, review the material, and

show up at the exam
! To go to class, I need to go to 1221 at 2:30 TuTh

!   Path planning is no exception:
! To go from my current location to slay the dragon, I first need to

know which rooms I will pass through
! Then I need to know how to pass through each room, around the

furniture, and so on

Doing Hierarchical Planning

!   Define a waypoint graph for the top of the hierarchy
! For instance, a graph with waypoints in doorways (the centers)
! Nodes linked if there exists a clear path between them (not necessarily

straight)

!   For each edge in that graph, define another waypoint graph
! This will tell you how to get between each doorway in a single room
! Nodes from top level should be in this graph

!   First plan on the top level - result is a list of rooms to traverse
!   Then, for each room on the list, plan a path across it

! Can delay low level planning until required - smooths out frame time

Hierarchical Planning Example

Plan this first Then plan each room
(second room shown)

Hierarchical Planning Advantages

!   The search is typically cheaper
! The initial search restricts the number of nodes considered in the

latter searches

!   It is well suited to partial planning
! Only plan each piece of path when it is actually required
! Averages out cost of path over time, helping to avoid long lag

when the movement command is issued
! Makes the path more adaptable to dynamic changes in the

environment

Hierarchical Planning Issues

!   Result is not optimal
! No information about actual cost of low level is used at top level

!   Top level plan locks in nodes that may be poor choices
! Have to restrict the number of nodes at the top level for efficiency
! So cannot include all the options that would be available to a full

planner

!   Solution is to allow lower levels to override higher level
! Textbook example: Plan 2 lower level stages at a time

!   E.g. Plan from current doorway, through next doorway, to one after
!  When reach the next doorway, drop the second half of the path and start

again

Pre-Planning

!   If the set of waypoints is fixed, and the obstacles don’t
move, then the shortest path between any two never
changes

!   If it doesn’t change, compute it ahead of time
!   This can be done with all-pairs shortest paths algorithms

! Dijkstra’s algorithm run for each start point, or special purpose all-
pairs algorithms

!   The question is, how do we store the paths?

Storing All-Pairs Paths

!   Trivial solution is to store the shortest path to every other node
in every node: O(n3) memory

!   A better way:
! Say I have the shortest path from A to B: A-B
! Every shortest path that goes through A on the way to B must use A-B
! So, if I have reached A, and want to go to B, I always take the same next

step
! This holds for any source node: the next step from any node on the way

to B does not depend on how you got to that node
! But a path is just a sequence of steps - if I keep following the “next step”

I will eventually get to B
! Only store the next step out of each node, for each possible destination

Example

A B

C D
E

F G

-

B-A

C-A

D-B

E-C

F-C

G-E

A

B

C

D

E

F

G

A-B

-

C-A

D-B

E-D

F-E

G-D

A-C

B-A

-

D-E

E-C

F-C

G-E

A-B

B-D

C-E

-

E-D

F-E

G-D

A-C

B-D

C-E

D-E

-

F-E

G-E

A-C

B-D

C-F

D-E

E-F

-

G-F

A-C

B-D

C-E

D-G

E-G

F-G

-

A B C D E F G

If I’m at:

And I want to go to: To get from
A to G:
+ A-C
+ C-E
+ E-G

Big Remaining Problem

!   So far, we have treated finding a path as planning
! We know the start point, the goal, and everything in between
! Once we have a plan, we follow it

!   What’s missing from this picture?
! Hint: What if there is more than one agent?

!   What might we do about it?

