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Game Physics — Basic Areas

m Point Masses
m Particle simulation
m Collision response
m Rigid-Bodies
m Extensions to non-points
m Soft Body Dynamic Systems
m Articulated Systems and Constraints

m Collision Detection



Engines

m API for collision detection
m API for kinematics (motion but no forces)

m API for dynamics

m Examples
m Box2d
m Bullet
m ODE (Open Dynamics Engine)
® PhysX
m Havok
m Etc.
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Particle dynamics and particle systems

m A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity, heat convection,
spring behaviors, ...).

m Particle systems can be used to simulate all sorts of
physical phenomena:
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Particle in a flow field

m We begin with a single particle with:

R
m Position, X =[ } \

’ 11
. dx |dx/dt
m Velocity, Vv=X=——=
dt |dy/dt X
m Suppose the velocity 1s actually dictated by some driving
function g:
X = g(X,1)
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Vector fields

® At any moment 1n time, the function g defines a
vector field over x:

/\

-~/

m How does our particle move through the vector
field?
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Dift eqs and integral curves

m The equation et (%)
is actually a first order differential equation.

m We can solve for x through time by starting at an initial
point and stepping along the vector field:

Start Here

m This 1s called an initial value problem and the solution is
called an integral curve.
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Eulers method

One simple approach is to choose a time step, A¢, and take linear steps

1 he flow: - _ . > 5
along the How: 2/ L Ar) = %(1) + At X(1) = X(1) + At - g(X.1)
Writing as a time iteration: %t = L AV

This approach is called Euler’ s method and looks like:

B

Properties:

m Simplest numerical method

m Bigger steps, bigger errors. Error ~ O(A#).
Need to take pretty small steps, so not very efficient. Better (more

complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”




Particle in a force field

= Now consider a particle in a force field f.
® In this case, the particle has:

m Mass, m " h,

% oo dv d°x

m Acceleration, =X = =
dt  dt’

—

m The particle obeys Newton’ s law: f =ma =mXx

m The force field f can in general depend on the position and
velocity of the particle as well as time.

® Thus, with some rearrangement, we end up with:

 _ f(x,x,1)

m
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Second order equations

This equation:

f(X,%,1)

X =

m

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair of coupled first order

equations.
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space

University of Texas at Austin

m Concatenate x and v to make a 6-
vector: position in phase space.

m Taking the time derivative: another
6-vector.

m A vanilla 15%-order differential
equation.
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Ditterential equation solver

Starting with: x| [V
v| f/m
Applying Euler’ s method:
X(t+At)=Xx(1)+At-X(¢)
X(t+At)=Xx(t)+ At-X(1)

And making substitutions:
X(t+At)=x(1) + At-v(¢)

X(1+At) = X(¢) + At £(X,%,0)/m

Writing this as an iteration, we have: ..., _; ~
X =X +At-v
i+ | fi
v =V 4+ AL —

m
Again, performs poorly for large At.
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position
S : !
T VEIOGH Y -
—
force accumulator

' Mass

______
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Single particle solver interface

'3 -~ < X

getDim — [6]
getState X
=D
setState v
derivEval — v
f/m
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Particle systems

In general, we have a particle system consisting of n particles to
be managed over time:

particles n time
L\
X ] [%] [X.]
Vil V2| |Va
LG [T,
_ml_ _mz_ _mn_
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Particle system solver interface

For n particles, the solver interface now looks like:

particles n time
get/setState getDim
derivEval

6n

Xl Vl X2 V2 Xn Vn
f f f

vV, — V, — vV, —
m, m, m,
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Particle system diff. eq. solver

We can solve the evolution of a particle system again using the

Euler method:

+ At
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Forces

m Each particle can experience a force which sends
it on 1ts merry way.
® Where do these forces come from? Some
examples:
m Constant (gravity)
m Position/time dependent (force fields)
m Velocity-dependent (drag)
m Combinations (Damped springs)

®m How do we compute the net force on a particle?
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Particle systems with forces

m Force objects are black boxes that point to the particles they influence
and add in their contributions.

m We can now visualize the particle system with force objects:

particles n time forces nf
«

\\
F LFZ

[ ] [ ] [ ]
an
X1 X2 Xn
R R N 3
1 2 Vn
f || L f,
_ml_ _m2_ _mn J
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Gravity and viscous drag

The force due to gravity is simply:

— —

=mG

grav

p->f += p->m * F->G

Often, we want to slow things down with viscous drag:

—

f,_. =-kv

drag

p->f -= F->k * p->v
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Damped spring

Recall the equation for the force due to a spring: f =-k_ ... (AX| - r)

(A%]-r) + kdamp\v\]

We can augment this with damping: f = [ spring

The resulting force equations for a spring between two particles

become:

AveAx || Ax
AX| )| |AX]

f1 7 sprmg (‘AX‘ - ) damp

—

-

-l

r = rest length
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Hval

Clear forces A - s

Loop over particles, X || X2 X,
zero force = v v
accumulators Clear force e L

Calculate forces accumulators t f, f,

Sum all forces into

accumulators ] ] L
Return derivatives
Loop over particles,
return v and f/m Apply forces . E e TE | F
to particles L ;3 i
Bkl
Vl V2 Vn {’1 {’2 i;n
fl/ml fz/mz f, /mn . f|]L ‘ f
Return derivatives m|(m,| |m,
to solver
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Bouncing off the walls

®m Add-on for a particle simulator

m For now, just simple point-plane
collisions

A plane is fully specified by any point P on the plane and its normal N.
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Collision Detection

How do you decide when you’ ve crossed a plane?
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To compute the collision response, we need to consider the
normal and tangential components of a particle’ s velocity.
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Collision Response

before after

=, L _
vV = VT p krestitutionVN

Without backtracking, the response may not be enough to bring a
particle to the other side of a wall.

In that case, detection should include a velocity check:
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