CS 378: Computer Game Technology

Physics for Games Spring 2012

Game Physics – Basic Areas

- Point Masses
 - Particle simulation
 - Collision response
- Rigid-Bodies
 - Extensions to non-points
- Soft Body Dynamic Systems
- Articulated Systems and Constraints
- Collision Detection

Physics Engines

- API for collision detection
- API for kinematics (motion but no forces)
- API for dynamics
- Examples
 - Box2d
 - Bullet
 - ODE (Open Dynamics Engine)
 - PhysX
 - Havok
 - Etc.

Particle dynamics and particle systems

- A particle system is a collection of point masses that obeys some physical laws (e.g, gravity, heat convection, spring behaviors, ...).
- Particle systems can be used to simulate all sorts of physical phenomena:

Particle in a flow field

- We begin with a single particle with:
 - Position, $\vec{\mathbf{x}} = \begin{bmatrix} x \\ y \end{bmatrix}$

Velocity,
$$\vec{\mathbf{v}} = \mathbf{x} = \frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} dx/dt \\ dy/dt \end{bmatrix}$$

Suppose the velocity is actually dictated by some driving function g:

$$\mathbf{x} = \mathbf{g}(\vec{\mathbf{x}}, t)$$

■ At any moment in time, the function **g** defines a vector field over **x**:

■ How does our particle move through the vector field?

Diff eqs and integral curves

The equation

$$\dot{\mathbf{x}} = g(\mathbf{\vec{x}}, t)$$

is actually a first order differential equation.

■ We can solve for x through time by starting at an initial point and stepping along the vector field:

■ This is called an **initial value problem** and the solution is called an **integral curve**.

Eulers method

- One simple approach is to choose a time step, Δt , and take linear steps along the flow: $\vec{\mathbf{x}}(t + \Delta t) = \vec{\mathbf{x}}(t) + \Delta t \cdot \dot{\mathbf{x}}(t) = \vec{\mathbf{x}}(t) + \Delta t \cdot g(\vec{\mathbf{x}}, t)$
- Writing as a time iteration: $\vec{\mathbf{x}}^{i+1} = \vec{x}^i + \Delta t \cdot \vec{\mathbf{v}}^i$
- This approach is called **Euler's method** and looks like:

- Properties:
 - Simplest numerical method
 - Bigger steps, bigger errors. Error ~ $O(\Delta t^2)$.
- Need to take pretty small steps, so not very efficient. Better (more complicated) methods exist, e.g., "Runge-Kutta" and "implicit integration."

Particle in a force field

- Now consider a particle in a force field **f**.
- In this case, the particle has:
 - Mass, m■ Acceleration, $\vec{\mathbf{a}} = \mathbf{\ddot{x}} = \frac{d\vec{\mathbf{v}}}{dt} = \frac{d^2\vec{\mathbf{x}}}{dt^2}$
- The particle obeys Newton's law: $\vec{\mathbf{f}} = m\vec{\mathbf{a}} = m\ddot{\mathbf{x}}$
- The force field **f** can in general depend on the position and velocity of the particle as well as time.
- Thus, with some rearrangement, we end up with:

$$\ddot{\mathbf{x}} = \frac{\vec{\mathbf{f}}(\vec{\mathbf{x}}, \dot{\mathbf{x}}, t)}{m}$$

Second order equations

This equation:

$$\ddot{\mathbf{x}} = \frac{\vec{\mathbf{f}}(\vec{\mathbf{x}}, \dot{\mathbf{x}}, t)}{m}$$

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:

$$\begin{bmatrix} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{f}} (\mathbf{x}, \mathbf{v}, t) \\ m \end{bmatrix}$$

where we have added a new variable **v** to get a pair of coupled first order equations.

Phase space

 $\begin{bmatrix} \vec{\mathbf{X}} \\ \vec{\mathbf{V}} \end{bmatrix}$

■ Concatenate **x** and **v** to make a 6-vector: position in **phase space**.

 $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix}$

■ Taking the time derivative: another 6-vector.

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{v}} \\ \vec{\mathbf{f}}/m \end{bmatrix}$$

A vanilla 1st-order differential equation.

Differential equation solver

Starting with:

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{v}} \\ \vec{\mathbf{f}}/m \end{bmatrix}$$

Applying Euler's method:

$$\vec{\mathbf{x}}(t + \Delta t) = \vec{\mathbf{x}}(t) + \Delta t \cdot \dot{\mathbf{x}}(t)$$

$$\dot{\mathbf{x}}(t + \Delta t) = \dot{\mathbf{x}}(t) + \Delta t \cdot \ddot{\mathbf{x}}(t)$$

And making substitutions:

$$\vec{\mathbf{x}}(t + \Delta t) = \vec{\mathbf{x}}(t) + \Delta t \cdot \vec{\mathbf{v}}(t)$$

$$\dot{\mathbf{x}}(t + \Delta t) = \dot{\mathbf{x}}(t) + \Delta t \cdot \vec{\mathbf{f}}(\vec{\mathbf{x}}, \dot{\mathbf{x}}, t) / m$$

Writing this as an iteration, we have:

$$\vec{\mathbf{x}}^{i+1} = \vec{x}^i + \Delta t \cdot \vec{\mathbf{v}}^i$$

$$\vec{\mathbf{v}}^{i+1} = \vec{\mathbf{v}}^i + \Delta t \cdot \frac{\vec{\mathbf{f}}^i}{m}$$

Again, performs poorly for large Δt .

Particle structure

How do we represent a particle?

Single particle solver interface

Particle systems

In general, we have a particle system consisting of *n* particles to be managed over time:

Particle system solver interface

For *n* particles, the solver interface now looks like:

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the Euler method:

$$\begin{bmatrix} \vec{\mathbf{X}}_{1}^{i+1} \\ \vec{\mathbf{V}}_{1}^{i+1} \\ \vdots \\ \vec{\mathbf{X}}_{n}^{i+1} \\ \vec{\mathbf{V}}_{n}^{i+1} \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{X}}_{1}^{i} \\ \vec{\mathbf{V}}_{1}^{i} \\ \vdots \\ \vec{\mathbf{X}}_{n}^{i} \\ \vec{\mathbf{V}}_{n}^{i} \end{bmatrix} + \Delta t \begin{bmatrix} \vec{\mathbf{V}}_{1}^{i} \\ \vec{\mathbf{f}}_{1}^{i}/m_{1} \\ \vdots \\ \vec{\mathbf{V}}_{n}^{i} \\ \vec{\mathbf{f}}_{n}^{i}/m_{n} \end{bmatrix}$$

- Each particle can experience a force which sends it on its merry way.
- Where do these forces come from? Some examples:
 - Constant (gravity)
 - Position/time dependent (force fields)
 - Velocity-dependent (drag)
 - Combinations (Damped springs)
- How do we compute the net force on a particle?

Particle systems with forces

- Force objects are black boxes that point to the particles they influence and add in their contributions.
- We can now visualize the particle system with force objects:

Gravity and viscous drag

The force due to **gravity** is simply:

$$\vec{\mathbf{f}}_{grav} = m\vec{\mathbf{G}}$$

Often, we want to slow things down with viscous drag:

$$\vec{\mathbf{f}}_{drag} = -k\vec{\mathbf{v}}$$

Damped spring

Recall the equation for the force due to a spring: $f = -k_{spring}(|\Delta \vec{\mathbf{x}}| - r)$

We can augment this with damping: $f = -\left[k_{spring}(|\Delta \vec{\mathbf{x}}| - r) + k_{damp}|\vec{\mathbf{v}}|\right]$

The resulting force equations for a spring between two particles become:

$$\vec{\mathbf{f}}_{1} = -\begin{bmatrix} k_{spring} (|\Delta \vec{\mathbf{x}}| - r) + k_{damp} (\Delta \vec{\mathbf{v}} \cdot \Delta \vec{\mathbf{x}} \\ |\Delta \vec{\mathbf{x}}| \end{bmatrix} \frac{\Delta \vec{\mathbf{x}}}{|\Delta \vec{\mathbf{x}}|}$$

$$\vec{\mathbf{f}}_{2} = -\vec{\mathbf{f}}_{1}$$

$$\mathbf{p}_{1} = \begin{bmatrix} \vec{\mathbf{x}}_{1} \\ \vec{\mathbf{v}}_{1} \end{bmatrix}$$

$$\Delta \vec{\mathbf{x}} = \vec{\mathbf{x}}_{1} - \vec{\mathbf{x}}_{2}$$

$$\mathbf{p}_{2} = \begin{bmatrix} \vec{\mathbf{x}}_{2} \\ \vec{\mathbf{v}}_{2} \end{bmatrix}$$

Clear forces

Loop over particles, zero force accumulators

Calculate forces

Sum all forces into accumulators

Return derivatives

Loop over particles, return v and f/m

$\vec{\mathbf{x}}_1$	$\vec{\mathbf{x}}_2$		$\vec{\mathbf{X}}_n$	
$\vec{\mathbf{v}}_1$	$\vec{\mathbf{v}}_2$		$\vec{\mathbf{v}}_n$	
$ec{\mathbf{f}}_1$	$\vec{\mathbf{f}}_2$	• • •	$\vec{\mathbf{f}}_n$	
$[m_1]$	$\lfloor m_2 \rfloor$		$\lfloor m_n \rfloor$	

F2

$$\begin{bmatrix} \vec{\mathbf{v}}_1 \\ \vec{\mathbf{f}}_1/m_1 \end{bmatrix} \begin{bmatrix} \vec{\mathbf{v}}_2 \\ \vec{\mathbf{f}}_2/m_2 \end{bmatrix} \cdots \begin{bmatrix} \vec{\mathbf{v}}_n \\ \vec{\mathbf{f}}_n/m_n \end{bmatrix}$$

Return derivatives to solver

Bouncing off the walls

- Add-on for a particle simulator
- For now, just simple point-plane collisions

A plane is fully specified by any point P on the plane and its normal N.

How do you decide when you've crossed a plane?

Normal and tangential velocity

To compute the collision response, we need to consider the normal and tangential components of a particle's velocity.

$$\vec{\mathbf{v}}_{N} = (\vec{\mathbf{N}} \cdot \vec{\mathbf{v}}) \vec{\mathbf{N}}$$
$$\vec{\mathbf{v}}_{T} = \vec{\mathbf{v}} - \vec{\mathbf{v}}_{N}$$

Collision Response

$$\vec{\mathbf{v}}' = \vec{\mathbf{v}}_{\mathrm{T}} - k_{restitution} \vec{\mathbf{v}}_{\mathrm{N}}$$

Without backtracking, the response may not be enough to bring a particle to the other side of a wall.

In that case, detection should include a velocity check: