CS 378: Computer Game Technology

Networking Basics for Games
Spring 2012

o EmmmEmESSSE

University of Texas at Austin CS 378 — Game Technology Don Fussell

Networking for Games

Y ou need networking for multi-player gaming

There are persistent games, like EverQuest, where state remains
regardless whether or not anyone 1s playing

There are transient games that exist only while people are playing, and
reset each time the server-side 1s reset
There are four primary concerns in building networks for games:

m Latency: How long does it take for state to be transmitted

m Reliability: How often 1s data lost or corrupted

m Bandwidth: How much data can be transmitted in a given time

m Security: How is the game-play protected from tampering

All of these considerations interact, and trade-offs must be made

Latency 1n Games

m Recall that latency is the time between when the user acts and when
they see the result
m Latency is arguably the most important aspect of a game network

®m Too much latency makes the game-play harder to understand because the
player cannot associate cause and effect

m [t makes 1t harder to target objects (the lead becomes to large)
m There is significant psychological research on this topic
m Latency 1s not the same as bandwidth

m A freeway has higher bandwidth than a country road, but the speed limit,
and hence the latency, can be the same

m Excess bandwidth can reduce the variance in latency, but cannot reduce
the minimum latency (queuing theory)

Sources of Latency

m Consider a client sending and receiving data from a server

m There are four sources of latency in a game network

m Frame rate latency: Data only goes out on or comes in from the network
layer once per frame, and user interaction 1s only sampled once per frame

m Network protocol latency: It takes time for the operating system to put
data onto the physical network, and time to get it off a physical network

and to an application

m Transmission latency: It takes time for data to be transmitted to the
receiver

m Processing latency: The time taken for the server (or client) to compute a
response to the input

® You cannot make any of these sources go away
® You don’ t even have control over some of them
®m Remember Amdahl’ s law when trying to improve latency

Reducing Latency (1)

® Frame rate latency:

m Increase the frame rate (faster graphics, faster Al, faster physics)

m Network protocol latency:
m Send less stuff (less stuff to copy and shift around)
m Switch to a protocol with lower latency

m But may have impact on reliability and security

® Transmission latency:

m Send less stuff — less time between when the first bit and the last
bit arrive

m Upgrade your physical network

Reducing Latency (2)

® Processing latency:
m Make your server faster

m Have more servers

m The sad fact 1s, networking researchers and practitioners
are almost never concerned with latency
m Most applications can handle higher latency (who else cares about
latency?)

® When did you last hear a DSL/Cable add that promised lower
latency?

Working With Latency

m If you can’ t get rid of latency, you can try to hide it

® Any technique will introduce errors in some form - you
cannot provide immediate, accurate information

m Option 1: Sacrifice accurate information, and show
approximate positions

m Ignore the lag and show a given player “old” information about the
other players

® Try to improve upon this by guessing where the other players are.
But if your guess is wrong, incorrect information is shown

m Option 2: Sacrifice game-play:

m Deliberately introduce lag into the local player’ s experience, so
that you have enough time to deal with the network

Dead Reckoning

m Dead reckoning uses prediction to move objects about
even when their positions are not precisely known,
reducing the appearance of lag

m Each client maintains precise state for some objects (e.g. local
player)

m Each client receives periodic updates of the position of everyone
else, along with velocity information, and maybe acceleration

®m On each frame, the non-local objects are updated by extrapolating
their most recent position using the available information
m With a client-server model, each player runs their own
version of the game, while the server maintains absolute
authority

Fixinog Extrapolation Errors
g

® What do you do when using dead reckoning, and a new
position arrives for another player?

m The position that just came in will not agree with the place you have
the object, due to extrapolation errors

m Two options:
® Jump to the correct position

m Interpolate the two positions over some period
m Path followed will never be exact, but will match reasonably well

Target Path

T it ‘> Extrapolations from new data
Actual New Data R T

Network Reliability

®m Some protocols attempt to ensure that every packet 1s
delivered

m [t costs, in latency and bandwidth, to ensure delivery

m Others try less hard to ensure delivery, and will not tell you
if packets get lost

m Latency and bandwidth requirements are lower for such protocols

m Other aspects of reliability are error checking (do the right
bits arrive?) and order consistency (do things arrive in the
same order they were sent?)

® In a game, does everything need to be completely reliable?
m Are all aspects of reliability equally important?

Reliability Requirements

®m Some information must be communicated:

m Discrete changes in game state - if they go missing, there is no
chance to recapture them

® Information about payments, joining, dropping, ...

®m Some information does not need to be reliably
communicated:

m Information that rapidly becomes out of date, and hence is sent
frequently

m Player position information, weapon firing information, ...

m The data that goes out of date quickly is also sent more
often; big payoffs for reducing the cost of sending it

Internet Protocols

m There are only two internet protocols that are widely
deployed and useful for games: UDP and TCP/IP

m TCP/IP (Transmission Control Protocol/Internet Protocol) 1s most
commonly used

m UDP (User Datagram Protocol) is also widely deployed and used
® Other protocols exist:

m Proprietary standards

® Broadcast and Multicast are standard protocols with some useful
properties, but they are not widely deployed

m If the ISPs don't provide it, you can’t use it

TCP/IP Overview

m Advantages:
® Guaranteed packet delivery
m Ordered packet delivery
m Packet checksum checking (some error checking)
m Transmission flow control
m Disadvantages:
m Point-to-point transport
m Bandwidth and latency overhead
m Packets may be delayed to preserve order
m Uses:

m Data that must be reliably sent, or requires one of the other properties
m Games that can tolerate latency

UDP Overview

m Advantages:
m Packet based - so works with the internet
m Low overhead in bandwidth and latency

m [mmediate delivery - as soon as it arrives it goes to the client
m Disadvantages:

m Point to point connectivity

m No reliability guarantees

m No ordering guarantees

m Packets can be corrupted

m Can cause problems with some firewalls
m Uses:

m Data that is sent frequently and goes out of date quickly

Choosing a Protocol

m The best way to do it 1s decide on the requirements and
find the protocol to match

® You can also design your own “protocol” by designing the
contents of packets
m Add cheat detection or error correction, for instance
® You then wrap you protocol inside TCP/IP or UDP

Reducing Bandwidth Demands

m Bandwidth 1s plentiful on the internet today, so it only
becomes an issue with large environments

® Even “slow” modems have more impact through high latency than
low bandwidth (due to compression, error checking and analogue/
digital conversion)

m Regardless, smaller packets reduce both bandwidth and
latency

m Latency is measured from the time the first bit leaves to the time
the last bit arrives - so fewer bits have lower latency

m There are two primary ways to reduce bandwidth demands:
m Dead reckoning allows you to send state less frequently
m Area of interest management avoids sending irrelevant data

Area of Interest Management

Area of interest management 1s the networking equivalent of visibility
- only send data to the people who need it

There 1s a catch, however: In a network you may not know where
everyone is, so you don’ t know what they can see

m A chicken-and-egg problem

Hence, area-of-interest schemes are typically employed in client-server
environments:
m The server has complete information

m [t decides who needs to receive what information, and only sends
information to those who need it

Two approaches: grid methods and aura methods

m Sound familiar? (replace aura with bounding box)

Grid and Aura Methods

® Grid methods break the world into a grid

m Associate information with cells

m Associate players with cells

® Only send information to players in the same, or neighboring, cells

m This has all the same 1ssues as grid based visibility and collision detection
®m Aura methods associate an aura with each piece of information

®m Only send information to players that intersect the aura

m Just like broad-phase collision detection with bounding volumes

m Players need to find out all the information about a space when they
enter it, regardless how long ago that information last changed

