
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Beyond Meshes
Spring 2012

Today

!   Billboards
!   Mesh Compression

Billboards

!   A billboard is extreme LOD, reducing all the geometry
to one or more textured polygons
! Also considered a form of image-based rendering
! Then again, all image-based rendering is about replacing

geometry
!   Issues in designing billboards

! How are they generated?
! How are they oriented with respect to the viewer?
! How can they be improved?

!   Also called sprites, but a sprite normally stays aligned
parallel to the image plane

Generating Billboards

!   By hand – a skilled artist does the work
! Paints color and alpha
! May generate a sequence of textures for animating

!   Automatically:
! Generate the billboard by rendering a complex model and capturing

the image
! Alpha can be automatically detected by looking for background

pixels in the image (easier than blue-screen matting)
! Can also blend out alpha at the boundary for good anti-aliasing

Billboard Configurations

!   The billboard polygons can be laid out in different ways
! Single rectangle
! Two rectangles at right angles
! Several rectangles about a common axis
! Several rectangles stacked

!   Issues are:
! What sorts of billboards are good for what sorts of objects?
! How is the billboard oriented with respect to the viewer?
! How is the billboard rendered?

Single Polygon Billboards

!   The billboard consists of a single textured polygon
!   It must be pointed at the viewer, otherwise it would disappear

when viewed from the side
! Exception: Billboards that are walls, but then they are textured walls!

!   Two primary ways of aligning the billboard:
! Assign an up direction for the billboard, and always align it to face

the viewer with up up
! Assign an axis for the billboard and rotate it about the axis to face the

viewer
!   What sort of objects is this method good for, and why?

! Consider: What will the viewer see as they move around the object?

Aligning a Billboard

!   Assume the billboard has a known vector that points out
from the face, and an up or axis vector

!   All alignment is done with rotations, but which ones?
!   Rotation about an axis:

! We know what axis to rotate about. Which one?
! How do we compute the angle through which to rotate?

!   Facing the viewer and pointing up:
! Best to break it into two rotations
! Rotate about the world up vector. How much? To align what?
! Then rotate about the apparent horizontal vector. To align what?

Alignment About Axis

!   A is axis for billboard, V is viewer
direction, F is current forward, D is
desired forward

!   How do we compute D?
!   How do we compute the angle, γ,

between F and D?

!   There is a significant shortcut if A is the
z axis, and F points along the x axis.
What is it?

A

V

F D

()AVAD ××=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ •
= −

DF
DF1cosγ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

y

V
V1tanγ

Alignment To Point at Viewer

!   A is axis for billboard, V is viewer
direction, F is current forward, U is desired
up vector

!   Step 1: Align F and V. How?
! Compute F×V
! Direction is axis, magnitude is sin γ

!   Step 2: Align U. How? Hint: previous slide
! Desired U=V×(A×V)
! Compute original U after rotating by Step 1
! Rotate about V by angle computed using method

on previous slide

A

V

F

U

Alignment To Point at Viewer

!   Simpler method if the original forward
direction is the x axis, and the original up
direction is the z axis

!   Form the rotation matrix directly (A and V
unit vectors):

! Each vector forms a column

A

V

F

U

()[]VAVVAVR ×××=

Multi-Polygon Billboards

!   Use two polygons at right angles:
! No alignment with viewer
! What is this good for?
! How does the apparent width change with

viewing angle?

!   Use more polygons is desired for better
appearance
! How does it affect the apparent width?

!   Rendering options: Blended or just depth
buffered

View Dependent Billboards

!   What if the object is not rotationally symmetric?
! Appearance should change from different viewing angles

!   This can still be done with billboards:
! Compute multiple textures each corresponding to a different view
! Keep polygon fixed but vary texture according to viewer direction
! Best: Interpolate, with texture blending, between the two nearest

views
!  Can use 3D textures and hardware texture filtering to achieve good

results

!   Polygons are typically fixed in this approach, which
restricts the viewing angles
! Solution: Use more polygons each with a set of views associated

with it

View Dependent Textures

Screen shots from an Nvidia demo

Impostor Example

!   Another methods uses slices
from the original volume and
blends them

Pipeline Efficiency

!   The rendering pipeline is, as the name suggests, a pipeline
! The slowest operation in the pipeline determines the throughput

(the frame rate)
! For graphics, that might be: memory bandwidth, transformations,

clipping, rasterization, lighting, buffer fill, …
!   Profiling tools exist to tell you which part of your pipeline

is slowing you down
!   Now we focus on reducing the complexity of the geometry

! Impacts every part of the pipeline up to the fragment stage
!  Assumption: You will touch roughly the same pixels, even with

simpler geometry

Reducing Geometry

!   Assume we are living in a polygon mesh world
!   Several strategies exist, with varying degrees of difficulty,

reductions in complexity, and quality trade-offs:
! Reduce the amount of data sent per triangle, but keep the number of

triangles the same
! Reduce the number of triangles by ignoring things that you know

the viewer can’t see – visibility culling
! Reduce the number of triangles in view by reducing the quality

(maybe) of the models – level of detail (LOD)

Compressing Meshes

!   Base case: Three vertices per triangle with full vertex data
(color, texture, normal, …)

!   Much of this data is redundant:
! Triangles share vertices
! Vertices share colors and normals
! Vertex data may be highly correlated

!   Compression strategies seek to avoid sending redundant
data

!   Impact memory bandwidth, but not too much else
! Of prime concern for transmitting models over a network

Compression Overview

!   Use triangle strips to avoid sending vertex data more than
once
! Send a stream of vertices, and the API knows how to turn them

into triangles
!   Use vertex arrays

! Tell the API what vertices will be used
! Specify triangles by indexing into the array
! Reduces cost per vertex, and also allows hardware to cache

vertices and further reduce memory bandwidth
!   Non-shared attributes, such as normal vectors, limit the

effectiveness of some of these techniques

Mesh Compression

!   Pipelined hardware typically accepts data in a stream, and
has small buffers
! Can’t do de-compression that relies on holding the entire mesh, or

any large data structure
!   Network transmission has no such constraints

! Can do decompression in software after downloading entire
compressed mesh

!   Typical strategies
! Treat connectivity (which vertices go with which triangles)

separately from vertex attributes (location, normal, …)
! Build long strips or other implicit connectivity structures
! Apply standard compression techniques to vertex attributes

