
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

LOD Meshes
Spring 2012

Today

!   Level of Detail Overview
!   Decimation Algorithms
!   LOD Switching

Level of Detail (LOD)

!   When an object is close to the viewer, we want a high
resolution model
! Maybe thousands of polygons, high-res textures

!   When an object is a long way away, it maps to relatively
few screen pixels, so we want a low resolution model
! Maybe only a single polygon, or tens of polygons

!   Level of Detail (LOD) techniques draw models at different
resolutions depending on their relevance to the viewer
! Covers both the generation of the models and how they are

displayed
! Deep topic, this is just an overview

LOD Models (I)

LOD Models (II)

Standard LOD

!   The current standard for LOD in games is to use a finite set
of models
! Typically aim for models with n, n/2, n/4, … polygons
! Models may be hand generated or come from automatic

decimation of the base mesh (highest resolution)

!   Models are switched based on the distance from the object
to the viewer, or projected screen size
! Better metric is visual importance, but it is harder to implement

!   For example, objects that the viewer is likely to be looking at have
higher resolution, objects at periphery have lower resolution

Mesh Decimation

!   Take a high resolution base mesh and approximate it while
retaining its visual appearance

!   Desirable properties:
! Fast (although not real-time)
! Generates “good” approximations in some sense
! Handles a wide variety of input meshes
! Allows for geomorphs - geometric blending from one mesh to

another
!   Two essential questions:

! What operations are used to reduce the mesh complexity?
! How is “good” measured and used to guide the approximation?

Mesh Operations

!   Operations seek to eliminate triangles while maintaining
appearance. Key questions:
! What does the operation do?
! Can it connect previously unconnected parts of the mesh?

!  Does it change the mesh topology?
! How much does it assume about the mesh structure?

!  Must the mesh be manifold (locally isomorphic to a disc)?
!  Can it handle, or does it produce, degenerate meshes?

! Can it be construed as a morph?
!  Can it be animated smoothly?

Vertex Clustering

!   Partition space into cells
! grids [Rossignac-Borrel], spheres [Low-Tan], octrees, ...

!   Merge all vertices within the same cell
! triangles with multiple corners in one cell will degenerate

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

Vertex Decimation

!   Starting with original model, iteratively
! rank vertices according to their importance
! select unimportant vertex, remove it, retriangulate hole

!   A fairly common technique
! Schroeder et al, Soucy et al, Klein et al, Ciampalini et al

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

Iterative Contraction

!   Contraction can operate on any set of vertices
! edges (or vertex pairs) are most common, faces also used

!   Starting with the original model, iteratively
! rank all edges with some cost metric
! contract minimum cost edge
! update edge costs

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

Edge Contraction

!   Single edge contraction (v1,v2) → v’ is performed by
! moving v1 and v2 to position v’
! replacing all occurrences of v2 with v1
! removing v2 and all degenerate triangles

v1

v2 v’

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

Vertex Pair Contraction

!   Can also easily contract any pair of vertices
! fundamental operation is exactly the same
! joins previously unconnected areas
! can be used to achieve topological simplification

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

Operations to Algorithms

!   A single operation doesn’t reduce a mesh!
!   Most common approach is a greedy algorithm built on

edge contractions (iterative edge contractions):
! Rank each possible edge contraction according to how much error

it would introduce
! Contract edge that introduces the least error
! Repeat until done

!   Does NOT produce optimal meshes
! An optimal mesh for a given target number of triangles is the one

with the lowest error with respect to the original mesh
! Finding the optimal mesh is NP-hard (intractable)

Error Metrics

!   The error metric measures the error introduced by
contracting an edge
! Should be low for edges whose removal leaves mesh nearly

unchanged
!  What is an example of an edge that can be removed without

introducing any error?

!   Issues:
! How well does it measure changes in appearance?
! How easy is it to compute?

!   Subtle point: Error should be measured with respect to original mesh,
which can pose problems

! Can it handle color and other non-geometric attributes?

Measuring Error With Planes

!   An edge contraction moves two vertices to a single new
location

!   Measure how far this location is from the planes of the
original faces

!   2D examples (planes are lines):

Low error High error

Which Planes?

!   Each vertex has a (conceptual) set of planes
! Error ≡ sum of squared distances to planes in set
! Each plane given by normal, ni, and distance to origin, di

!   Initialize with planes of incident faces
! Consequently, all initial errors are 0

!   When contracting pair, use plane set union
! planes(v’) = planes(v1) ∪ planes(v2)

()∑ +=
i

id
2)(Error vnv T

i

The Quadric Error Metric

!   Given a plane, we can define a quadric Q

measure squared distance to the plane as

() ()2,,,, ddcQ T nnnbA ==

cQ ++= vbAvvv TT 2)(

[] [] 2

2

2

2

2)(d
z
y
x

cdbdad
z
y
x

cbcac
bcbab
acaba

zyxQ +

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=v

The Quadric Error Metric

!   Sum of quadrics represents set of planes

!   Each vertex has an associated quadric
! Error(vi) = Qi (vi)
! Sum quadrics when contracting (vi, vj) → v’
! Error introduced by contraction is Q(v’)

())()(2 vvvnTi ⎟
⎠

⎞
⎜
⎝

⎛
==+ ∑∑∑

i
i

i
i

i
i QQd

()jijijiji ccQQQ +++=+= ,, bbAA

Where Does v’ Belong?

!   Choose the location for v’ that will minimize the error
introduced

!   Alternative is to use fixed placement:
! Select v1 or v2
! Fixed placement is faster but lower quality
! But it also gives smaller progressive meshes (more later)
! Fallback to fixed placement if A is non-invertible

!  When is A non-invertible (hard!)?

bAvv 1−−=ʹ′⇒=ʹ′∇ 0)(Q

Visualizing Quadrics in 3-D

!   Quadric isosurfaces
! Contain all the vertex

locations that are within
a given distance of the
face planes

! Are ellipsoids
(maybe degenerate)

! Centered around vertices
! Characterize shape
! Stretch in least-curved

directions

Sample Model: Dental Mold

424,376 faces 60,000 faces

50 sec

Sample Model: Dental Mold

424,376 faces 8000 faces

55 sec

Sample Model: Dental Mold

424,376 faces 1000 faces

56 sec

Must Also Consider Attributes

Mesh for solution Radiosity solution

Must Also Consider Attributes

!   Add extra terms to
plane equations for
color information
(or texture coords)

!   Makes matrices and
vectors bigger, but
doesn’t change
overall approach

50,761 faces 10,000 faces

LOD Switching

!   The biggest issue with switching is popping, the sudden
change in visual appearance as the models are swapped
! Particularly poor if the object is right at the switching distance –

may flicker badly
!   There are several options:

! Leave the popping but try to avoid flicker
! Show a blended combination of two models, based on the distance

between the switching points
!   Image blend – render two models at alpha 0.5 each
!  Geometric blend – define a way to geometrically morph from one

model to the next, and blend the models
! Have more models that are so similar that the popping is not

evident

Hysteresis Thresholds

!   The aim is to avoid rapid popping if the object straddles
the threshold for switching

!   Define two thresholds for each switch, distance as the
metric
! One determines when to improve the quality of the model
! The other determines when to reduce it
! The reduction threshold should be at a greater distance than the

increase threshold
! If the object is between the thresholds, use the same LOD as on the

previous frame

Hysteresis Illustration

!   Say there is an object that repeatedly jumps from one
position to a nearer one and then back again
! How far must it jump to exhibit popping?

!   One way to think about it: If you’re on one level, you can
only ride the arrows to the next level

LOD

DistanceTincrease Tdecrease

