
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Texture, Bump, Light, Environment Maps
Spring 2012

Texture Mapping

!   The problem: Colors, normals, etc. are only specified at
vertices. How do we add detail between vertices?

!   Solution: Specify the details in an image (the texture) and
specify how to apply the image to the geometry (the map)

!   Works for shading parameters other than color, as we shall
see
! The basic underlying idea is the mapping

University of Texas at Austin CS 378 – Game Technology Don Fussell 2

Basic Mapping

!   The texture lives in a 2D space
! Parameterize points in the texture with 2 coordinates: (s,t)

!   Define the mapping from (x,y,z) in world space to (s,t) in
texture space

!   With polygons:
! Specify (s,t) coordinates at vertices
! Interpolate (s,t) for other points based on given vertices

University of Texas at Austin CS 378 – Game Technology Don Fussell 3

I assume you recall…

!   Texture sampling (aliasing) is a big problem
! Mipmaps and other filtering techniques are the solution

!   The texture value for points that map outside the texture
image can be generated in various ways
! Repeat, Clamp, …

!   Texture coordinates are specified at vertices and
interpolated across triangles

!   Width and height of texture images is constrained (powers
of two, sometimes must be square)

University of Texas at Austin CS 378 – Game Technology Don Fussell 4

Multitexturing

!   Some effects are easier to implement if multiple textures
can be applied
! Future lectures: Light maps, bump maps, shadows, …

!   Multitexturing hardware provides a pipeline of texture
units, each of which applies a standard texture map
operation
! Fragments are passed through the pipeline with each step working

on the result of the previous stage
! Texture parameters are specified independently for each unit,

further improving functionality
! For example, the first stage applies a color map, the next modifies

the illumination to simulate bumps, the third modifies opacity
! Not the same as multi-pass rendering - all applied in one pass

University of Texas at Austin CS 378 – Game Technology Don Fussell 5

Pixel Shaders

!   Current generation hardware provides pixel shaders
!   A pixel shader operates on a fragment

! A single pixel (or sub-pixel) that has already been “lit”

!   It can compute texture coordinates, do general texture
look-ups, modify color/depth/opacity, and some other
functions

!   More general than multi-texturing and very powerful

University of Texas at Austin CS 378 – Game Technology Don Fussell 6

Textures in Games

!   The game engine provides some amount of texture support
!   Artists are supplied with tools to exploit this support

! They design the texture images
! They specify how to apply the image to the object

!   Commonly, textures are supplied at varying resolutions to
support different hardware performance
! Note that the texture mapping code does not need to be changed -

just load different sized maps at run time

!   Textures are, without doubt, the most important part of a
game’s look

University of Texas at Austin CS 378 – Game Technology Don Fussell 7

Example Texture Tool

University of Texas at Austin CS 378 – Game Technology Don Fussell 8

Packing Textures

!   Problem: The limits on texture width/height make it
inefficient to store many textures
! For example: long, thin objects

!   Solution: Artists pack the textures for many objects into
one image
! The texture coordinates for a given object may only index into a

small part of the image
! Care must be taken at the boundary between sub-images to achieve

correct blending
! Mipmapping is restricted
! Best for objects that will be at known resolution (weapons, for

instance)

University of Texas at Austin CS 378 – Game Technology Don Fussell 9

Combining Textures

University of Texas at Austin CS 378 – Game Technology Don Fussell 10

Texture Matrix

!   Normally, the texture coordinates given at vertices are
interpolated and directly used to index the texture

!   The texture matrix applies a homogeneous transform to the
texture coordinates before indexing the texture

!   What use is this?

University of Texas at Austin CS 378 – Game Technology Don Fussell 11

Animating Texture (method 1)

!   Loading a texture onto the graphics card is very expensive
!   But once there, the texture matrix can be used to
“transform” the texture
! For example, changing the translation can select different parts of

the texture

!   If the texture matrix is changed from frame to frame, the
texture will appear to move on the object

!   This is particularly useful for things like flame, or swirling
vortices, or pulsing entrances, …

University of Texas at Austin CS 378 – Game Technology Don Fussell 12

Projective Texturing

!   The texture should appear to be projected onto the scene,
as if from a slide projector

!   Solution:
! Equate texture coordinates with world coordinates
! Think about it from the projector’s point of view: wherever a

world point appears in the projector’s view, it should pick up the
texture

! Use a texture matrix equivalent to the projection matrix for the
projector – maps world points into texture image points

!   Details available in many places
!   Problems? What else could you do with it?

University of Texas at Austin CS 378 – Game Technology Don Fussell 13

What’s in a Texture?

!  The graphics hardware doesn’t know what is in a
texture
! It applies a set of operations using values it finds in the

texture, the existing value of the fragment (pixel), and
maybe another color

! The programmer gets to decide what the operations are,
within some set of choices provided by the hardware

! Examples:
!   the texture may contain scalar “luminance” information, which

simply multiplies the fragment color. What use is this?
!   the texture might contain “alpha” data that multiplies the

fragment’s alpha channel but leaves the fragment color alone.
What use is this?

University of Texas at Austin CS 378 – Game Technology Don Fussell 14

Environment Mapping

!   Environment mapping produces reflections on shiny
objects

!   Texture is transferred in the direction of the reflected ray
from the environment map onto the object

!   Reflected ray: R=2(N·V)N-V
!   What is in the map?

University of Texas at Austin CS 378 – Game Technology Don Fussell 15

Object

Viewer
Reflected ray

Environment Map

Approximations Made

!   The map should contain a view of the world with the point
of interest on the object as the eye
! We can’t store a separate map for each point, so one map is used

with the eye at the center of the object
! Introduces distortions in the reflection, but the eye doesn’t notice
! Distortions are minimized for a small object in a large room

!   The object will not reflect itself
!   The mapping can be computed at each pixel, or only at the

vertices

University of Texas at Austin CS 378 – Game Technology Don Fussell 16

Environment Maps

!   The environment map may take one of several forms:
! Cubic mapping
! Spherical mapping (two variants)
! Parabolic mapping

!   Describes the shape of the surface on which the map
“resides”

!   Determines how the map is generated and how it is
indexed

!   What are some of the issues in choosing the map?

University of Texas at Austin CS 378 – Game Technology Don Fussell 17

Example

University of Texas at Austin CS 378 – Game Technology Don Fussell 18

Cube Mapping

!   The map resides on the surfaces of a cube around the
object
! Typically, align the faces of the cube with the coordinate axes

!   To generate the map:
! For each face of the cube, render the world from the center of the

object with the cube face as the image plane
!  Rendering can be arbitrarily complex (it’s off-line)

! Or, take 6 photos of a real environment with a camera in the
object’s position
!  Actually, take many more photos from different places the object

might be
!  Warp them to approximate map for all intermediate points

!   Remember The Abyss and Terminator 2?

University of Texas at Austin CS 378 – Game Technology Don Fussell 19

Cube Map Example

University of Texas at Austin CS 378 – Game Technology Don Fussell 20

Indexing Cubic Maps

!   Assume you have R and the cube’s faces are aligned with
the coordinate axes, and have texture coordinates in
[0,1]x[0,1]
! How do you decide which face to use?
! How do you decide which texture coordinates to use?

!   What is the problem using cubic maps when texture
coordinates are only computed at vertices?

University of Texas at Austin CS 378 – Game Technology Don Fussell 21

