
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Networking Basics for Games
Spring 2012

Networking for Games

!   You need networking for multi-player gaming
!   There are persistent games, like EverQuest, where state remains

regardless whether or not anyone is playing
!   There are transient games that exist only while people are playing, and

reset each time the server-side is reset
!   There are four primary concerns in building networks for games:

! Latency: How long does it take for state to be transmitted
! Reliability: How often is data lost or corrupted
! Bandwidth: How much data can be transmitted in a given time
! Security: How is the game-play protected from tampering

!   All of these considerations interact, and trade-offs must be made

Latency in Games

!   Recall that latency is the time between when the user acts and when
they see the result

!   Latency is arguably the most important aspect of a game network
! Too much latency makes the game-play harder to understand because the

player cannot associate cause and effect
! It makes it harder to target objects (the lead becomes to large)
! There is significant psychological research on this topic

!   Latency is not the same as bandwidth
! A freeway has higher bandwidth than a country road, but the speed limit,

and hence the latency, can be the same
! Excess bandwidth can reduce the variance in latency, but cannot reduce

the minimum latency (queuing theory)

Sources of Latency

!   Consider a client sending and receiving data from a server
!   There are four sources of latency in a game network

! Frame rate latency: Data only goes out on or comes in from the network
layer once per frame, and user interaction is only sampled once per frame

! Network protocol latency: It takes time for the operating system to put
data onto the physical network, and time to get it off a physical network
and to an application

! Transmission latency: It takes time for data to be transmitted to the
receiver

! Processing latency: The time taken for the server (or client) to compute a
response to the input

!   You cannot make any of these sources go away
! You don’t even have control over some of them
! Remember Amdahl’s law when trying to improve latency

Reducing Latency (1)

!   Frame rate latency:
! Increase the frame rate (faster graphics, faster AI, faster physics)

!   Network protocol latency:
! Send less stuff (less stuff to copy and shift around)
! Switch to a protocol with lower latency
! But may have impact on reliability and security

!   Transmission latency:
! Send less stuff – less time between when the first bit and the last

bit arrive
! Upgrade your physical network

Reducing Latency (2)

!   Processing latency:
! Make your server faster
! Have more servers

!   The sad fact is, networking researchers and practitioners
are almost never concerned with latency
! Most applications can handle higher latency (who else cares about

latency?)
! When did you last hear a DSL/Cable add that promised lower

latency?

Working With Latency

!   If you can’t get rid of latency, you can try to hide it
!   Any technique will introduce errors in some form - you
cannot provide immediate, accurate information

!   Option 1: Sacrifice accurate information, and show
approximate positions
! Ignore the lag and show a given player “old” information about the

other players
! Try to improve upon this by guessing where the other players are.

But if your guess is wrong, incorrect information is shown
!   Option 2: Sacrifice game-play:

! Deliberately introduce lag into the local player’s experience, so
that you have enough time to deal with the network

Dead Reckoning

!   Dead reckoning uses prediction to move objects about
even when their positions are not precisely known,
reducing the appearance of lag
! Each client maintains precise state for some objects (e.g. local

player)
! Each client receives periodic updates of the position of everyone

else, along with velocity information, and maybe acceleration
! On each frame, the non-local objects are updated by extrapolating

their most recent position using the available information
!   With a client-server model, each player runs their own

version of the game, while the server maintains absolute
authority

Fixing Extrapolation Errors

!   What do you do when using dead reckoning, and a new
position arrives for another player?
! The position that just came in will not agree with the place you have

the object, due to extrapolation errors
!   Two options:

! Jump to the correct position
! Interpolate the two positions over some period

!   Path followed will never be exact, but will match reasonably well

Your Guess

Actual Extrapolations from new data
New Data

Target Path

Network Reliability

!   Some protocols attempt to ensure that every packet is
delivered
! It costs, in latency and bandwidth, to ensure delivery

!   Others try less hard to ensure delivery, and will not tell you
if packets get lost
! Latency and bandwidth requirements are lower for such protocols

!   Other aspects of reliability are error checking (do the right
bits arrive?) and order consistency (do things arrive in the
same order they were sent?)

!   In a game, does everything need to be completely reliable?
!   Are all aspects of reliability equally important?

Reliability Requirements

!   Some information must be communicated:
! Discrete changes in game state - if they go missing, there is no

chance to recapture them
! Information about payments, joining, dropping, …

!   Some information does not need to be reliably
communicated:
! Information that rapidly becomes out of date, and hence is sent

frequently
! Player position information, weapon firing information, …

!   The data that goes out of date quickly is also sent more
often; big payoffs for reducing the cost of sending it

Internet Protocols

!   There are only two internet protocols that are widely
deployed and useful for games: UDP and TCP/IP
! TCP/IP (Transmission Control Protocol/Internet Protocol) is most

commonly used
! UDP (User Datagram Protocol) is also widely deployed and used

!   Other protocols exist:
! Proprietary standards
! Broadcast and Multicast are standard protocols with some useful

properties, but they are not widely deployed
! If the ISPs don’t provide it, you can’t use it

TCP/IP Overview

!   Advantages:
! Guaranteed packet delivery
! Ordered packet delivery
! Packet checksum checking (some error checking)
! Transmission flow control

!   Disadvantages:
! Point-to-point transport
! Bandwidth and latency overhead
! Packets may be delayed to preserve order

!   Uses:
! Data that must be reliably sent, or requires one of the other properties
! Games that can tolerate latency

UDP Overview

!   Advantages:
! Packet based - so works with the internet
! Low overhead in bandwidth and latency
! Immediate delivery - as soon as it arrives it goes to the client

!   Disadvantages:
! Point to point connectivity
! No reliability guarantees
! No ordering guarantees
! Packets can be corrupted
! Can cause problems with some firewalls

!   Uses:
! Data that is sent frequently and goes out of date quickly

Choosing a Protocol

!   The best way to do it is decide on the requirements and
find the protocol to match

!   You can also design your own “protocol” by designing the
contents of packets
! Add cheat detection or error correction, for instance
! You then wrap you protocol inside TCP/IP or UDP

Reducing Bandwidth Demands

!   Bandwidth is plentiful on the internet today, so it only
becomes an issue with large environments
! Even “slow” modems have more impact through high latency than

low bandwidth (due to compression, error checking and analogue/
digital conversion)

!   Regardless, smaller packets reduce both bandwidth and
latency
! Latency is measured from the time the first bit leaves to the time

the last bit arrives - so fewer bits have lower latency
!   There are two primary ways to reduce bandwidth demands:

! Dead reckoning allows you to send state less frequently
! Area of interest management avoids sending irrelevant data

Area of Interest Management

!   Area of interest management is the networking equivalent of visibility
- only send data to the people who need it

!   There is a catch, however: In a network you may not know where
everyone is, so you don’t know what they can see
! A chicken-and-egg problem

!   Hence, area-of-interest schemes are typically employed in client-server
environments:
! The server has complete information
! It decides who needs to receive what information, and only sends

information to those who need it
!   Two approaches: grid methods and aura methods

! Sound familiar? (replace aura with bounding box)

Grid and Aura Methods

!   Grid methods break the world into a grid
! Associate information with cells
! Associate players with cells
! Only send information to players in the same, or neighboring, cells
! This has all the same issues as grid based visibility and collision detection

!   Aura methods associate an aura with each piece of information
! Only send information to players that intersect the aura
! Just like broad-phase collision detection with bounding volumes

!   Players need to find out all the information about a space when they
enter it, regardless how long ago that information last changed

