
Department of Computer Sciences CS384G { Spring 2004

Projections

� Mapping from d dimensional space to d�1 dimensional subspace

� Range of any projection P : R3 ! R2 called a projection plane

� P maps lines to points

� The image of any point p under P is the intersection of a

projection line through p with the projection plane.

The University of Texas at Austin 1



Department of Computer Sciences CS384G { Spring 2004

Parallel Projections

� All projection lines are parallel.

� An orthographic projection has projection lines orthogonal to

projection plane.

� Otherwise a parallel projection is an oblique projection

� Particularly interesting oblique projections are the cabinet

projection and the cavalier projection.

The University of Texas at Austin 2



Department of Computer Sciences CS384G { Spring 2004

Perspective Projection

� All projection lines pass through the center of projection

(eyepoint).

� Therefore also called central projection

� This is not aÆne, but rather a projective transformation.

Projective Transformation

� Does not preserve angles, distances, ratios of distances or aÆne

combinations.

� Cross ratios are preserved.

� Incidence relationships are generally preserved.

� Straight lines are mapped to straight lines.

The University of Texas at Austin 3



Department of Computer Sciences CS384G { Spring 2004

Perspective Transform in Eye Coordinates

� Given a point p, �nd its projection P(p)

� Convenient to do this in eye coordinates, with center of projection

at origin and z = d projection plane

� Note that eye coordinates are left-handed

(0,0) z

Projection plane, z=d

y

p’=(x’,y’,d)

p=(x,y,z)

y

z

y’

d

� Due to similar triangles P(p) = (dx=z; dy=z; d)

� For any other point q = (kx; ky; kz); k 6= 0 on same

projection line P(q) = (dx=z; dy=z; d)

� If we have surfaces, we need to know which ones occlude others

from the eye position

� This projection loses all z information, so we cannot do occlusion

testing after projection

The University of Texas at Austin 4



Department of Computer Sciences CS384G { Spring 2004

Homogeneous Coordinates

� Homogeneous coordinates represent n-space as a subspace of

n+ 1 space

� For instance, homogeneous 4-space embeds ordinary 3-space as

the w = 1 hyperplane

� Thus, we can obtain the 3-d image of any homogeneous

point (wx;wy;wz;w); w 6= 0 as (x; y; z; 1) =

(wx=w;wy=w;wz=w;w=w), that is, by dividing all

coordinates by w.

� Lines in homogeneous space which intersect the w = 1

hyperplane project to 3-space points.

� Notice that this is just a perspective projection from 4-d

homogeneous space to 3-space, instead of dividing by z, we

are dividing by w.

The University of Texas at Austin 5



Department of Computer Sciences CS384G { Spring 2004

The OpenGL Perspective Matrix

� The visible volume in world space is known as the viewing

pyramid or frustum.

� Specify with the call glFrustum(l; r; b; t; n; f)

� In OpenGL, the window is in the near plane

� l and r are u-coordinates of left and right window boundaries

in the near plane

� b and t are v-coordinates of bottom and top window boundaries

in the near plane

� n and f are positive distances from the eye along the viewing

ray to the near and far planes

� Maps the left and right clipping planes to x = �1 and x = 1

� Maps the bottom and top clipping planes to y = �1 and y = 1

� Maps the near and far clipping planes to z = �1 and z = 1

(1, 1, 1)

(-1, -1, -1)

f

n

The University of Texas at Austin 6



Department of Computer Sciences CS384G { Spring 2004

Shearing the Window to the z axis

� After applying the modelview matrix, we are looking down the

�z axis.

� We need to move the ray from the origin through the window

center onto the �z axis.

� Rotation won't do since the window wouldn't be orthogonal to

the z axis.

� Translation won't do since we need to keep the eye at the origin.

� We need di�erential translation as a function of z, i.e. shear.

� When z = �n, Æx should be �r+l
2n and Æy should be �t+b

2n ,

so we get

x0 = x+
r + l

2n
z

y
0

= y +
t+ b

2n
z

z
0

= z

The University of Texas at Austin 7



Department of Computer Sciences CS384G { Spring 2004

viewing frustum

y

x x

y

z
viewing frustum

[-(r-l)/2,(t-b)/2,-n]

[(r-l)/2,-(t-b)/2,-n]

(t+b)/2

z
(r+l)/2

f
n

b

l r
t

f
n

2
664

x0

y0

z0

1

3
775 =

2
664

1 0 r+l
2n 0

0 1 t+b
2n 0

0 0 1 0

0 0 0 1

3
775

2
664

x

y

z

1

3
775

The University of Texas at Austin 8



Department of Computer Sciences CS384G { Spring 2004

Adjusting the Clipping Boundaries

� For ease of clipping, we want the oblique clipping planes to have

equations x = �z and y = �z.

� This will make the window square, with boundaries l = b = �n

and r = t = n.

� This requires a scale to make the window this size.

[-(r-l)/2,(t-b)/2,-n]

[n,-n,-n][(r-l)/2,-(t-b)/2,-n]

z

y

x

y

x

z

[-n,n,-n]

Thus the mapping is

The University of Texas at Austin 9



Department of Computer Sciences CS384G { Spring 2004

x
0

=
2nx

r � l

y0 =
2ny

r � l

z
0

= z

or in matrix form:

2
664

x0

y0

z0

1

3
775 =

2
6664

2n
r�l 0 0 0

0 2n
t�b 0 0

0 0 1 0

0 0 0 1

3
7775

2
664

x

y

z

1

3
775

The University of Texas at Austin 10



Department of Computer Sciences CS384G { Spring 2004

Field of View Frustum Scaling

� After the frustum is centered on the �z axis:
y

zθ

n

(t-b)/2

window
near plane

viewing frustum

� Note that n
t�b = cot

�
�
2

�
� This gives the y mapping y00 = y0 cot

�
�
2

�
� Since the window need not be square, we can de�ne the x

mapping using the aspect ratio aspect = �x
�y = (r�l)

(t�b)

� Then x maps as x00 = x0
cot

�
�
2

�

aspect

The University of Texas at Austin 11



Department of Computer Sciences CS384G { Spring 2004

� This gives us the alternative scaling formulation:

2
664

x0

y0

z0

1

3
775 =

2
66664

cot
�
�
2

�

aspect 0 0 0

0 cot
�
�
2

�
0 0

0 0 1 0

0 0 0 1

3
77775

2
664

x

y

z

1

3
775

� This is used by gluPerspective(�; aspect; n; f)

The University of Texas at Austin 12



Department of Computer Sciences CS384G { Spring 2004

Perspective Mapping

� Recall that we want to map the frustum to a 2x2x2 cube centered

at the origin.

(1, 1, 1)

(-1, -1, -1)

f

n

� OpenGL looks down �z rather than z.

� Note that when you specify n and f , they are given as positive

distances down z = �1.

� First we map the bounding planes x = �z and y = �z to the

planes x = �1 and y = �1.

� This can be done by mapping x to x
�z and y to y

�z .

� If we set z0 = �1, this is equivalent to projecting onto the

z = �1 plane.

� However, we want to derive a map for z that preserves lines and

depth information.

� To map x to x
�z and y to y

�z -

� First use a matrix to map to homogeneous coordinates, then

project back to 3 space by dividing (normalizing).

The University of Texas at Austin 13



Department of Computer Sciences CS384G { Spring 2004

2
664

1 0 0 0

0 1 0 0

0 0 a c

0 0 b d

3
775

2
664

x

y

z

1

3
775 =

2
664

x

y

az + c

bz + d

3
775

�

2
6664

x
bz+d
y

bz+d
az+c
bz+d

1

3
7775

� Now we solve for a; b; c and d such that z 2 [n; f ] maps to

z0 2 [�1; 1].

� To map x to x
�z ,

x

bz + d
=

x

�z
) d = 0 and b = �1

� Thus
az + c

bz + d
becomes

az + c

�z

The University of Texas at Austin 14



Department of Computer Sciences CS384G { Spring 2004

� Since the near plane is at z = �n and the far plane at z = �f ,

our constraints on the near and far clipping planes (e.g., that

they map to -1 and 1) give us

�1 =
�an+ c

n
) c = �n+ an

1 =
�af � n+ an

f
) (f + n) = a(n � f)

) a =
f + n

n� f

) a =
�(f + n)

f � n

) c = �n+
�(f + n)n

f � n

=
�n(f � n)� n(f + n)

f � n

=
�2fn

f � n

This gives us

2
6664

1 0 0 0

0 1 0 0

0 0 �(f+n)
f�n

�2fn
f�n

0 0 �1 0

3
7775

2
664

x

y

z

1

3
775 =

2
6664

x

y
�z(f+n)�2fn

f�n

�z

3
7775

The University of Texas at Austin 15



Department of Computer Sciences CS384G { Spring 2004

� After normalizing we get

�
x
�z

;
y
�z

;
�z(f + n)� 2fn

�z(f � n)
; 1

�T

� If we multiply this matrix in with the geometric transforms, the

only additional work is the divide.

� After normalization we are in left-handed 3-dimensional

Normalized Device Coordinates

The University of Texas at Austin 16



Department of Computer Sciences CS384G { Spring 2004

Complete OpenGL Perspective Matrix

� Combining the three steps given above, the complete OpenGL

perspective matrix is

2
6664

2n
r�l 0 r+l

r�l 0

0 2n
t�b

t+b
t�b 0

0 0
�(f+n)
f�n

�2fn
f�n

0 0 �1 0

3
7775 =

2
6664

1 0 0 0

0 1 0 0

0 0 �(f+n)
f�n

�2fn
f�n

0 0 �1 0

3
7775

2
6664

2n
r�l 0 0 0

0 2n
t�b 0 0

0 0 1 0

0 0 0 1

3
7775

2
664

1 0 r+l
2n 0

0 1 t+b
2n 0

0 0 1 0

0 0 0 1

3
775

� Using gluPerspective the matrix becomes

2
6664

cot(�=2)
aspect 0 0 0

0 cot(�=2) 0 0

0 0 �(f+n)
f�n

�2fn
f�n

0 0 �1 0

3
7775

The University of Texas at Austin 17



Department of Computer Sciences CS384G { Spring 2004

Why Map Z

� 3D 7! 2D projections map all z to same value.

� Need z to determine occlusion, so a 3D to 2D projective

transformation doesn't work.

� Further, we want 3D lines to map to 3D lines (this is useful in

hidden surface removal).

� The mapping (x; y; z; 1) 7! (xn=z; yn=z; n; 1) maps lines

to lines, but loses all depth information.

� We could use

(x; y; z; 1) 7! (xn=z; yn=z; z; 1)

Thus, if we map the endpoints of a line segment, these end

points will have the same relative depths after this mapping.

BUT: It fails to map lines to lines

� The map

(x; y; z; 1) 7!

�
xn
z

;
yn
z

;
zf + zn� 2fn

z(f � n)
; 1

�

does map lines to lines, and it preserves depth information.

The University of Texas at Austin 18



Department of Computer Sciences CS384G { Spring 2004

Mapping Z

� It's clear how x and y map. How about z?

z 7!
zf + zn� 2fn

z(f � n)
= P (z)

� We know P (f) = 1 and (P (n) = �1. What maps to 0?

P (z) = 0

)
zf + zn� 2fn

z(f � n)
= 0

) z =
2fn

f + n

Note that f2 + 2f > 2fn=(f + n) > fn+ n2 so

f >
2fn

f + n
> n

The University of Texas at Austin 19



Department of Computer Sciences CS384G { Spring 2004

� What happens as map z to 0 or to in�nity?

lim
z!0+

P (z) =
�2fn

z(f � n)

= �1

lim
z!0�

P (z) =
�2fn

z(f � n)

= +1

lim
z!+1

P (z) =
z(f + n)

z(f � n)

=
f + n

f � n

lim
z!�1

P (z) =
z(f + n)

z(f � n)

=
f + n

f � n

The University of Texas at Austin 20



Department of Computer Sciences CS384G { Spring 2004

8
88

8

0 n
2fn
f+n f

+

f+n
f-n

1-1 0

_

_

+

The University of Texas at Austin 21



Department of Computer Sciences CS384G { Spring 2004

� What happens if we vary f and n?

lim
f!n

P (z) =
z(f + n)� 2fn

z(f � n)

=
(2zn� 2n2)

z � 0

which is not surprising, since we're trying to map a single point

to a line segment.

lim
f!1

P (z) =
zf � 2fn

zf

=
z � 2n

z

� But note that this means we are mapping an in�nite region to

[0,1] and we will e�ectively get a far plane due to oating point

precision,

lim
n!0

P (z) =
zf
zf

= 1

i.e., the entire map becomes constant (again, we are mapping a

point to an interval).

The University of Texas at Austin 22



Department of Computer Sciences CS384G { Spring 2004

� Consider what happens as f and n move away from each other.

{ We are interested in the size of the regions [n; 2fn=(f+n)]

and [2fn=(f + n); f ] .

{ When f is large compared to n, we have

2fn

f + n

:
= 2n

So
2fn

f + n
� n

:
= n

and

f �
2fn

f + n

:
= f � 2n

But both intervals are mapped to a regions of size 1.

{ Thus, as we move the clipping planes away from one another,

the far interval is compressed more than the near one. With

oating point arithmetic, this means we'll lose precision.

{ In the extreme case, think about what happens as we move

f to in�nity: we compress an in�nite region to an �nite one.

{ Therefore, we try to place our clipping planes as close to one

another as we can.

The University of Texas at Austin 23



Department of Computer Sciences CS384G { Spring 2004

Clipping in Homogeneous Space

Projection: linear transformations then normalize

� Linear transformation

2
6664

nr 0 0 0

0 ns 0 0

0 0 f+n
f�n � 2fn

f�n

0 0 1 0

3
7775

2
664

x

y

z

1

3
775 =

2
664

�x

�y

�z

�w

3
775

� Normalization

2
664

�x

�y

�z

�w

3
775 =

2
664

�x= �w

�y= �w

�z= �w

1

3
775 =

2
664

X

Y

Z

1

3
775

The University of Texas at Austin 24



Department of Computer Sciences CS384G { Spring 2004

Region Mapping

8_ 8

-18 8

0 n f

7

2 8

12

1 4 10

115

3 6 9

4 7 10 3

5 8 11 2

6 9 12 1

+1

The University of Texas at Austin 25



Department of Computer Sciences CS384G { Spring 2004

Clipping not good after normalization:

� Ambiguity after normalization

�1 �
�x; �y; �z

�w
� +1

{ Numerator can be positive or negative

{ Denominator can be positive or negative

� Normalization expended on points that are subsequently clipped.

Clipping in homogeneous coordinates:

� Compare unnormalized coordinate against �w

�j �wj � �x; �y; �z � +j �wj

The University of Texas at Austin 26


