
Implementation of Morphing algorithm with Feature-based Image metamorphosis

Srinath Setty Swati Rallapalli
{srinath, swati}@cs.utexas.edu

The University of Texas at Austin

1 Introduction
In this project, we built a tool based on the algorithm
described by Beier and Neely in Feature-Based Image
Metamorphosis [2]. Morphing is an image processing
technique to progressively transition from one graphical
object into another. This visual technique can be used to
create animations where one object gets transformed into
another over a period of time or transform the image of
one person into another person’s image.

The morphing algorithm in feature-based metamor-
phosis applies a combination of Image warping and
Cross-dissolving. While cross-dissolving is simple, im-
age warping is accomplished by giving control to the
user. An user specifies the corresponding features on the
source and destination images. This will be an input to
the morphing algorithm. With such a morphing algo-
rithm, the first image is progressively distorted and dis-
appears, while the second image starts totally distorted
but the distortion reduces gradually and fades in. In sim-
ple words, the result of this morphing algorithm looks
like the first image at the start, at every point in the time
line closer to the source, it has more influence from the
source image, at every point in the time line closer to the
destination image, it has more influence from the desti-
nation image and at the end, it is the destination image.

2 Algorithms
For completeness, we are writing the equations and algo-
rithms given in [2] here.

2.1 Algorithm with one pair of lines

In this setup, one line is given for source image, and an-
other for the destination image that specify the corre-
sponding features in the source and the destination im-
age. For e.g., for facial morphing (i.e., when the source
and destination images are faces), one could specify a
line along the forehead for the source and destination im-
ages.

“

u =
(X − P).(Q− P)
||Q− P||2

v =
(X − P).Perpendicular(Q− P)

||Q− P||2

X′ = P′ + u.(Q′ − P′) +
v.Perpendicular(Q′ − P′)

||Q− P||2

where Perpendicular() returns the vector perpendicu-
lar to, and the same length as, the input vector. The value
u is the position along the line, and v is the distance from
the line. The value u goes from 0 to 1 as the pixel moves
from P to Q, and is less than 0 or greater than 1 outside
that range. The value for v is the perpendicular distance
in pixels from the line.” [2]

Algorithm 1 Transformation with a single line (taken
from [2])

1. for each pixel X in the destination image
2. find the corresponding u and v
3. find the X′ in the source image for that u and v
4. destinationImage(X) = sourceImage(X′)

2.2 Algorithm with multiple lines

If the user specifies multiple lines, then the morphing al-
gorithm can produce more visually appealing artifacts.
We set the parameters given in [2] to the following val-
ues: a = 300, b = 1, and p = 0.

3 Implementation
Our implementation is about 3200 lines of C code, which
used many of the pieces of the Impressionist project [1]
like bitmap handling, fltk application etc.

We implemented a simple user interface to load source
and destination images, allow user to specify control
lines on them. The tool then allows the user to run the
morphing algorithm with that input and it generates inter-
mediate images as bmp files. One could use a command
like convert to create a video out of these image files.
The result would be a video that shows the morphing for
the user specified images and control lines.

We also enhanced the user interface to allow users to
use the grid lines to make better decisions about the con-
trol lines. Figure 1 shows a screen shot of the UI with
grid lines and control lines.

3.1 Source code

The source code we developed for this project can be
accessed from http://www.cs.utexas.edu/users/
srinath/morphing.tar.gz

3.2 Artifact

We used the tool to create an artifact and can be viewed at
http://www.youtube.com/watch?v=PSa5bh_rbKI

1

http://www.cs.utexas.edu/users/srinath/morphing.tar.gz
http://www.cs.utexas.edu/users/srinath/morphing.tar.gz
http://www.youtube.com/watch?v=PSa5bh_rbKI

Algorithm 2 Transformation with multiple lines (taken
from [2])

1. for each pixel X in the destination image
2. DSUM = (0, 0)
3. weightsum = 0
4. for each line PiQi

5. calculate u, v based on PiQi

6. calculate X′
i based on u, v, and P′

iQ
′
i

7. calculate displacement Di = X′
i − Xi for this

line
8. compute distance, d = shortest distance from

X to PiQi

9. compute weight, w = (lengthp

a+d)b

10. DSUM = DSUM + Di × w
11. weightsum = weightSum + w
12. X′ = X + DSUM

weightsum
13. destinationImage(X) = sourceImage(X′)

Figure 1—User Interface showing the grid lines and user de-
fined lines to extract features

3.3 Known bug

The lines disappear from the left side window because
of some unknown bug in the implementation of the user
interface.

4 Acknowledgments
We are grateful to the developers of the Impressionist
code base [1]. It helped us to start from the Impression-
ist code base to quickly build an fltk application. Thanks
to Prof. Don Fussell and Peter Djeu for helping us scope
this project.

References
[1] Impressionist.

http://userweb.cs.utexas.edu/~fussell/courses/

cs384g/projects/impressionist/impressionist.tgz.
[2] T. Beier and S. Neely. Feature-based image metamorphosis.

SIGGRAPH Comput. Graph., 26(2):35–42, 1992.

2

http://userweb.cs.utexas.edu/~fussell/courses/cs384g/projects/impressionist/impressionist.tgz
http://userweb.cs.utexas.edu/~fussell/courses/cs384g/projects/impressionist/impressionist.tgz

	1 Introduction
	2 Algorithms
	2.1 Algorithm with one pair of lines
	2.2 Algorithm with multiple lines

	3 Implementation
	3.1 Source code
	3.2 Artifact
	3.3 Known bug

	4 Acknowledgements

