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Subdivision surfaces
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Reading

Recommended:
Stollnitz, DeRose, and Salesin.  Wavelets for
Computer Graphics:  Theory and Applications,
1996, section 10.2.
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Building complex models
We can extend the idea of subdivision from curves to surfaces…
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Subdivision surfaces

Chaikin’s use of subdivision for curves inspired
similar techniques for subdivision surfaces.
Iteratively refine a control polyhedron (or
control mesh) to produce the limit surface

using splitting and averaging steps.
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Triangular subdivision

There are a variety of ways to subdivide a poylgon
mesh.
A common choice for triangle meshes is 4:1
subdivision – each triangular face is split into four
subfaces:
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Loop averaging step
Once again we can use masks for the averaging step:

where

These values, due to Charles Loop, are carefully chosen to ensure
smoothness – namely, tangent plane or normal continuity.
Note: tangent plane continuity is also known as G1 continuity for surfaces.
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Loop evaluation and tangent masks
As with subdivision curves, we can split and average a
number of times and then push the points to their limit
positions.

where

How do we compute the normal?

  

! 

Q
"

=
#(n)Q +Q

1
+L+Q

n

#(n) + n

T
1

"
= $

1
(n)Q

1
+ $

2
(n)Q

2
+L+ $

n
(n)Q

n

T
2

"
= $

n
(n)Q

1
+ $

1
(n)Q

2
+L+ $

n%1(n)Qn

! 

"(n) =
3n

#(n)
$
i
(n) = cos(2% i /n)



University of Texas at Austin    CS384G  -   Computer Graphics     Spring 2010   Don Fussell                 8

Recipe for subdivision surfaces

As with subdivision curves, we can now describe
a recipe for creating and rendering subdivision
surfaces:

Subdivide (split+average) the control polyhedron a few
times.  Use the averaging mask.
Compute two tangent vectors using the tangent masks.
Compute the normal from the tangent vectors.
Push the resulting points to the limit positions.  Use the
evaluation mask.
Render!
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Adding creases without trim curves
In some cases, we want a particular feature such as a crease to be
preserved.  With NURBS surfaces, this required the use of trim curves.
For subdivision surfaces, we can
just modify the subdivision mask:

This gives rise to G0 continuous surfaces (i.e., having positional but
not tangent plane continuity)



University of Texas at Austin    CS384G  -   Computer Graphics     Spring 2010   Don Fussell                 10

Creases without trim curves, cont.

Here’s an example using Catmull-Clark
surfaces (based on subdividing quadrilateral
meshes):
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Face schemes
4:1 subdivision of triangles is sometimes called a face scheme for subdivision,
as each face begets more faces.
An alternative face scheme starts with arbitrary polygon meshes and inserts
vertices along edges and at face centroids:

Catmull-Clark subdivision:

Note: after the first subdivision, all polygons are quadilaterals in this scheme.
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Subdivision = tensor-product patches!

For a regular quadrilateral mesh, Catmull-Clark
subdivision produces the same surface as tensor-
product cubic B-splines!
But – it handles irregular meshes as well.

There are similar correspondences between other
subdivision schemes and other tensor-product patch
schemes.

These correspondences can be proven (but we won’t do
it…)
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Vertex schemes
In a vertex scheme, each vertex begets more vertices.  In particular, a vertex surrounded
by n faces is split into n sub-vertices, one for each face:

Doo-Sabin subdivision:

The number edges (faces) incident to a vertex is called its valence.  Edges with only once
incident face are on the boundary.  After splitting in this subdivision scheme, all non-
boundary vertices are of valence 4.



University of Texas at Austin    CS384G  -   Computer Graphics     Spring 2010   Don Fussell                 14

Interpolating subdivision surfaces
Interpolating schemes are defined by

splitting
averaging only new vertices

The following averaging mask is used in butterfly subdivision:

Setting t=0 gives the original polyhedron, and increasing small values of t makes
the surface smoother, until t=1/8 when the surface is provably G1.

There are several variants of Butterfly subdivision.
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Next class: Projections & Z-Buffers
Topics:
     - How do projections from 3D world to
       2D image plane work?
     - How does the Z-buffer visibility algorithm
        (used in today’s graphics hardware) work?

Read:
• Watt, Section 5.2.2 – 5.2.4, 6.3, 6.6 (esp. intro
   and subsections 1, 4, and 8–10)

Optional:
• Foley, et al, Chapter 5.6 and Chapter 6
• David F. Rogers and J. Alan Adams,
  Mathematical Elements for Computer Graphics,
  2nd Ed., McGraw-Hill, New York, 1990,
  Chapter 2.
• I. E. Sutherland, R. F. Sproull, and R. A.
  Schumacker, A characterization of ten hidden
  surface algorithms, ACM Computing Surveys
  6(1): 1-55, March 1974.


