
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Z-buffer Pipeline and OpenGL

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 2

Reading
 Required:

Watt, Section 5.2.2 – 5.2.4, 6.3, 6.6 (esp. intro and
subsections 1, 4, and 8–10),

 Further reading:
Foley, et al, Chapter 5.6 and Chapter 6
David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2nd Ed., McGraw-
Hill, New York, 1990, Chapter 2.
I. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
A characterization of ten hidden surface algorithms,
ACM Computing Surveys 6(1): 1-55, March 1974.

!  The OpenGL Programming Guide, 7th Edition
!  Interactive Computer Graphics: A Top-down Approach

using OpenGL, 6th Edition
!  The OpenGL Superbible, 5th Edition
!  The OpenGL Shading Language Guide, 3rd Edition
!  OpenGL and the X Window System
!  OpenGL Programming for Mac OS X
!  OpenGL ES 2.0
!  WebGL (to appear)

Resources

!  The OpenGL Website: www.opengl.org
! API specifications
!  Reference pages and developer resources
!  PDF of the OpenGL Reference Card
! Discussion forums

!  The Khronos Website: www.khronos.org
! Overview of all Khronos APIs
! Numerous presentations

Resources

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

3D Geometry Pipeline
  Before being turned into pixels by graphics hardware, a piece of

geometry goes through a number of transformations...

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

  Projections transform points in n-space to m-space, where m<n.
  In 3-D, we map points from 3-space to the projection plane (PP)

along projectors emanating from the center of projection (COP):

  The center of projection is exactly the same as the pinhole in a pinhole
camera.

  There are two basic types of projections:
Perspective – distance from COP to PP finite
Parallel – distance from COP to PP infinite

Projections

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

Parallel projections
  For parallel projections, we specify a direction of
projection (DOP) instead of a COP.
  There are two types of parallel projections:

Orthographic projection – DOP perpendicular to PP
Oblique projection – DOP not perpendicular to PP

  We can write orthographic projection onto the z =0 plane
with a simple matrix.

  But normally, we do not drop the z value right away. Why
not?

€

" x
" y
1

$

%
%
%

&

'

(
(
(

=

1 0 0 0
0 1 0 0
0 0 0 1

$

%
%
%

&

'

(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 8

Properties of parallel projection

 Properties of parallel projection:
Not realistic looking
Good for exact measurements
Are actually a kind of affine transformation
 Parallel lines remain parallel
 Angles not (in general) preserved

Most often used in CAD, architectural
drawings, etc., where taking exact measurement
is important

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

Derivation of perspective projection
  Consider the projection of a point onto the projection plane:

  By similar triangles, we can compute how much the x and y
coordinates are scaled:

  [Note: Watt uses a left-handed coordinate system, and he looks down
the +z axis, so his PP is at +d.]

€

" x = −
d
z

x " y = −
d
z

y
€

" x
x

= −
d
z

" y
y

= −
d
z

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

Homogeneous coordinates revisited
  Remember how we said that affine transformations work
with the last coordinate always set to one.
  What happens if the coordinate is not one?
  We divide all the coordinates by W:

  If W = 1, then nothing changes.
  Sometimes we call this division step the “perspective
divide.”

€

X /W
Y /W
Z /W
W /W

"

$
$
$
$

%

&

'
'
'
'

→

x
y
z
1

"

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

Homogeneous coordinates and perspective projection
  Now we can re-write the perspective projection as a matrix equation:

  After division by W, we get:

  Again, projection implies dropping the z coordinate to give a 2D
image, but we usually keep it around a little while longer.

€

X
Y
W

"

$
$
$

%

&

'
'
'

=

1 0 0 0
0 1 0 0
0 0 −1/d 0

"

$
$
$

%

&

'
'
'

x
y
z
1

"

$
$
$
$

%

&

'
'
'
'

=

x
y

−z /d

"

$
$
$

%

&

'
'
'

€

" x
" y
1

$

%
%
%

&

'

(
(
(

=

−
x
z

d

−
y
z

d

1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

Projective normalization
 After applying the perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D image.
 What does this imply about the shape of things
after the perspective transformation + divide?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

Vanishing points
  What happens to two parallel lines that are not parallel to the projection

plane?
  Think of train tracks receding into the horizon...

  The equation for a line is:

  After perspective transformation we get:

€

 = p+ tv =

px
py
pz
1

"

$
$
$
$

%

&

'
'
'
'

+ t

vx
vy
vz
0

"

$
$
$
$

%

&

'
'
'
'

€

X
Y
W

"

$
$
$

%

&

'
'
'

=

px + tvx
py + tvy

−(pz + tvz) /d

"

$
$
$

%

&

'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

Vanishing points (cont'd)
  Dividing by W:

  Letting t go to infinity:

  We get a point that depends only on v
  What happens to the line ?
  Each set of parallel lines intersect at a vanishing point on
the PP.
  Q: How many vanishing points are there?

€

" x
" y
1

$

%
%
%

&

'

(
(
(

=

−
px + tvx

pz + tvz

d

−
py + tvy

pz + tvz

d

−(pz + tvz)/d
−(pz + tvz)/d

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

€

−
vx
vz

−
vy
vz
1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

€

 = q+ tv

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

Properties of perspective projections
  The perspective projection is an example of a projective

transformation.

  Here are some properties of projective transformations:
Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved

  One of the advantages of perspective projection is that size varies
inversely with distance – looks realistic.

  A disadvantage is that we can't judge distances as exactly as we can
with parallel projections.

  Q: Why did nature give us eyes that perform perspective
projections?

  Q: Do our eyes “see in 3D”?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

Z-buffer
  We can use projections for hidden surface elimination.
  The Z-buffer' or depth buffer algorithm [Catmull, 1974] is probably the

simplest and most widely used of these techniques.
  Here is pseudocode for the Z-buffer hidden surface algorithm:

for each pixel (i,j) do
 Z-buffer [i,j] ← FAR
 Framebuffer[i,j] ← <background color>

end for
for each polygon A do

 for each pixel in A do
 Compute depth z and shade s of A at (i,j)
 if z > Z-buffer [i,j] then
 Z-buffer [i,j] ← z
 Framebuffer[i,j] ← s
 end if
 end for

end for

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

Z-buffer, cont'd
  The process of filling in the pixels inside of a polygon is called

rasterization.
  During rasterization, the z value and shade s can be computed

incrementally (fast!).

Curious fact:

"  Described as the “brute-force image space algorithm” by [SSS]
"  Mentioned only in Appendix B of [SSS] as a point of comparison

for huge memories, but written off as totally impractical.

Today, Z-buffers are commonly implemented in hardware.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

Ray tracing vs. Z-Buffer
 Ray tracing:
 for each ray {
 for each object {
 test for intersection
 }
 }

Z-Buffer:

 for each object {
 project_onto_screen;
 for each ray {
 test for intersection

 }
 }

In both cases, optimizations are applied to the inner loop.

Biggest differences:

 - ray order vs. object order
 - Z-buffer does some work in screen space
 - Z-buffer restricted to rays from a single

 center of projection!

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

Gouraud vs. Phong interpolation

 Does Z-buffer graphics hardware do a full shading
calculation at every point? Not in the past, but
this has changed!
 Smooth surfaces are often approximated by
polygonal facets, because:

Graphics hardware generally wants polygons (esp.
triangles).
Sometimes it easier to write ray-surface intersection
algorithms for polygonal models.

 How do we compute the shading for such a
surface?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

Faceted shading
 Assume each face has a constant normal:

 For a distant viewer and a distant light source,
how will the color of each triangle vary?
 Result: faceted, not smooth, appearance.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 21

Gouraud interpolation
  To get a smoother result that is easily performed in hardware, we can

do Gouraud interpolation.
  Here’s how it works:
"  Compute normals at the vertices.
"  Shade only the vertices.
"  Interpolate the resulting vertex colors.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 22

Gouraud interpolation, cont'd
  Gouraud interpolation has significant limitations.

" If the polygonal approximation is too coarse, we can miss specular highlights.

" We will encounter Mach banding (derivative discontinuity enhanced by human eye).

"  Alas, this is usually what graphics hardware supported until very recently.
"  But new graphics hardware supports…

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 23

Phong interpolation
  To get an even smoother result with fewer artifacts, we can perform

Phong interpolation.
  Here’s how it works:

1.  Compute normals at the vertices.
2.  Interpolate normals and normalize.
3.  Shade using the interpolated normals.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 24

Gouraud vs. Phong interpolation

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 25

Texture mapping and the z-buffer
  Texture-mapping can also be handled in z-buffer algorithms.

Method:
Scan conversion is done in screen space, as usual
Each pixel is colored according to the texture
Texture coordinates are found by Gouraud-style interpolation

Note: Mapping is more complicated if you want to do perspective
right!

 - linear in world space != linear in screen space

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 26

Antialiasing textures
  If you render an object with a texture map using point-sampling, you

can get aliasing:

From Crow, SIGGRAPH '84
  Proper antialiasing requires area averaging over pixels:

From Crow, SIGGRAPH '84
  In some cases, you can average directly over the texture pixels to do

the anti-aliasing.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 27

Computing the average color
  The computationally difficult part is summing over the
covered pixels.
  Several methods have been used.
  The simplest is brute force:

Figure out which texels are covered and add up their colors to
compute the average.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 28

Mipmaps
  A faster method is mip maps developed by Lance Williams in 1983:

Stands for “multum in parvo” – many things in a small place
Keep textures prefiltered at multiple resolutions
Has become the graphics hardware standard

magnify

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 29

Mipmap pyramid

  The mip map hierarchy can be thought of as an image pyramid:
Level 0 (T0[i,j]) is the original image.
Level 1 (T1[i,j]) averages over 2x2 neighborhoods of original.
Level 2 (T2[i,j]) averages over 4x4 neighborhoods of original
Level 3 (T3[i,j]) averages over 8x8 neighborhoods of original

  What’s a fast way to pre-compute the texture map for each level?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 30

Mipmap resampling

  What would the mipmap return for an average over a 5 x 5
neighborhood at location (u0,v0)?

  How do we measure the fractional distance between levels?

  What if you need to average over a non-square region?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 31

Summed area tables
  A more accurate method than mipmaps is summed area
tables invented by Frank Crow in 1984.
  Recall from calculus:

  In discrete form:

  Q: If we wanted to do this real fast, what might we pre-
compute?

€

f (x)dx = f (x)dx − f (x)dx
−∞

a

∫
−∞

b

∫
a

b

∫

€

f [i] = f [i]−
i= 0

m

∑
i= k

m

∑ f [i]
i= 0

k

∑

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 32

Summed area tables (cont’d)
  We can extend this idea to 2D by creating a table, S[i,j], that contains

the sum of everything below and to the left.

  Q: How do we compute the average over a region from (l, b) to (r, t)?
  Characteristics:

Requires more memory and precision
Gives less blurry textures

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 33

Comparison of techniques

Point sampled

 MIP-mapped

Summed area table

 From Crow, SIGGRAPH '84

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 34

Cost of Z-buffering
  Z-buffering is the algorithm of choice for hardware
rendering (today), so let’s think about how to make it run
as fast as possible…
  The steps involved in the Z-buffer algorithm are:
1.  Send a triangle to the graphics hardware.
2.  Transform the vertices of the triangle using the modeling matrix.
3.  Transform the vertices using the projection matrix.
4.  Set up for incremental rasterization calculations
5.  Rasterize

(generate “fragments” = potential pixels)
6.  Shade at each fragment
7.  Update the framebuffer according to z.

  What is the overall cost of Z-buffering?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 35

Cost of Z-buffering, cont’d
  We can approximate the cost of this method as:

 where:
kbus = bus cost to send a vertex
vbus = number of vertices sent over the bus
kxform = cost of transforming a vertex
vxform = number of vertices transformed
ksetup = cost of setting up for rasterization
t = number of triangles being rasterized
kshade = cost of shading a fragment
d = depth complexity

 (average times a pixel is covered)
m2 = number of pixels in frame buffer

2()bus bus xform xform setup shadek v k v k t k dm+ + +

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 36

Accelerating Z-buffers
 Given this cost function:

 what can we do to accelerate Z-buffering?

Accel method vbus vxform t d m

2()bus bus xform xform setup shadek v k v k t k dm+ + +

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Introduction to Modern OpenGL
Programming

Adapted from SIGGRAPH 2012 slides by
Ed Angel

University of New Mexico
and

Dave Shreiner
ARM, Inc

!  Evolution of the OpenGL Pipeline
!  A Prototype Application in OpenGL
!  OpenGL Shading Language (GLSL)
!  Vertex Shaders
!  Fragment Shaders
!  Examples

Outline

!  OpenGL is a computer graphics rendering API
! With it, you can generate high-quality color images

by rendering with geometric and image primitives
!  It forms the basis of many interactive applications

that include 3D graphics
!  By using OpenGL, the graphics part of your

application can be
!  operating system independent
!  window system independent

What Is OpenGL?

!  We’ll concentrate on the latest versions of OpenGL
!  They enforce a new way to program with OpenGL

!  Allows more efficient use of GPU resources
!  If you’re familiar with “classic” graphics pipelines,

modern OpenGL doesn’t support
!  Fixed-function graphics operations

!  lighting
!  transformations

!  All applications must use shaders for their graphics
processing

This is the “new” OpenGL

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

The Evolution of the OpenGL
Pipeline

!  OpenGL 1.0 was released on July 1st, 1994
!  Its pipeline was entirely fixed-function

!  the only operations available were fixed by the
implementation

!  The pipeline evolved, but remained fixed-function

through OpenGL versions 1.1 through 2.0 (Sept. 2004)

In the Beginning …

Primitive
Setup and

Rasterization

Fragment
Coloring and

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex
Transform and

Lighting

Texture
Store

!  OpenGL 2.0 (officially) added programmable shaders
!  vertex shading augmented the fixed-function transform and

lighting stage
!  fragment shading augmented the fragment coloring stage

!  However, the fixed-function pipeline was still available

The Start of the Programmable Pipeline

Primitive
Setup and

Rasterization

Fragment
Coloring and

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex
Transform and

Lighting

Texture
Store

!  OpenGL 3.0 introduced the deprecation model
!  the method used to remove features from OpenGL

!  The pipeline remained the same until OpenGL 3.1
(released March 24th, 2009)

!  Introduced a change in how OpenGL contexts are used

An Evolutionary Change

Context Type Description

Full Includes all features (including those marked deprecated)
available in the current version of OpenGL

Forward Compatible Includes all non-deprecated features (i.e., creates a context
that would be similar to the next version of OpenGL)

!  OpenGL 3.1 removed the fixed-function pipeline
!  programs were required to use only shaders

!  Additionally, almost all data is GPU-resident
!  all vertex data sent using buffer objects

The Exclusively Programmable Pipeline

Primitive
Setup and

Rasterization

Fragment
Shader Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

!  OpenGL 3.2 (released August 3rd, 2009) added an
additional shading stage – geometry shaders

More Programmability

Primitive
Setup and

Rasterization

Fragment
Shader Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

Geometry
Shader

! OpenGL 3.2 also introduced context profiles
!  profiles control which features are exposed
!  currently two types of profiles: core and compatible

More Evolution – Context Profiles

Context Type Profile Description

Full
core All features of the current release

compatible All features ever in OpenGL

Forward Compatible
core All non-deprecated features

compatible Not supported

!  OpenGL 4.1 (released July 25th, 2010) included
additional shading stages – tessellation-control and
tessellation-evaluation shaders

!  Latest version is 4.3

The Latest Pipelines

Primitive
Setup and

Rasterization

Fragment
Shader Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

Geometry
Shader

Tessellation
Control
Shader

Tessellation
Evaluation

Shader

OpenGL ES and WebGL

!  OpenGL ES 2.0
!  Designed for embedded and hand-held devices such as cell

phones

!  Based on OpenGL 3.1

!  Shader based

!  WebGL
!  JavaScript implementation of ES 2.0

!  Runs on most recent browsers

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

OpenGL Application
Development

A Simplified Pipeline Model

Vertex
Processing Rasterizer Fragment

Processing

Vertex
Shader

Fragment
Shader

GPU Data Flow Application Framebuffer

Vertices Vertices Fragments Pixels

!  Modern OpenGL programs essentially do the
following steps:
1.  Create shader programs
2.  Create buffer objects and load data into them
3.  “Connect” data locations with shader variables
4.  Render

OpenGL Programming in a Nutshell

!  OpenGL applications need a place to render into
!  usually an on-screen window

!  Need to communicate with native windowing
system

!  Each windowing system interface is different
!  We use GLUT (more specifically, freeglut)

!  simple, open-source library that works everywhere
!  handles all windowing operations:

!  opening windows
!  input processing

Application Framework Requirements

!  Operating systems deal with library functions
differently
!  compiler linkage and runtime libraries may expose

different functions
!  Additionally, OpenGL has many versions and

profiles which expose different sets of functions
! managing function access is cumbersome, and

window-system dependent
!  We use another open-source library, GLEW, to

hide those details

Simplifying Working with OpenGL

!  Geometric objects are represented using vertices
!  A vertex is a collection of generic attributes

!  positional coordinates
!  colors
!  texture coordinates
!  any other data associated with that point in space

!  Position stored in 4 dimensional homogeneous
coordinates

!  Vertex data must be stored in vertex buffer objects
(VBOs)

!  VBOs must be stored in vertex array objects
(VAOs)

Representing Geometric Objects

x
y
z
w

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

!  All primitives are specified by vertices

OpenGL’s Geometric Primitives

GL_TRIANGLE_STRIP	
GL_TRIANGLE_FAN	

GL_LINES	 GL_LINE_LOOP	GL_LINE_STRIP	

GL_TRIANGLES	

GL_POINTS	

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

A First Program

! We’ll render a cube with colors at each vertex
! Our example demonstrates:

!  initializing vertex data
!  organizing data for rendering
!  simple object modeling

!  building up 3D objects from geometric primitives
!  building geometric primitives from vertices

Rendering a Cube

!  We’ll build each cube face from individual
triangles

!  Need to determine how much storage is required
!  (6 faces)(2 triangles/face)(3 vertices/triangle)
	const	int	NumVertices	=	36;	

!  To simplify communicating with GLSL, we’ll use a
vec4 class (implemented in C++) similar to GLSL’s
vec4 type
!  we’ll also typedef it to add logical meaning

 typedef		vec4		point4;	
typedef		vec4		color4;	

Initializing the Cube’s Data

!  Before we can initialize our VBO, we need to stage the
data

!  Our cube has two attributes per vertex
!  position
!  color

!  We create two arrays to hold the VBO data
 point4		points[NumVertices];	
color4		colors[NumVertices];	

Initializing the Cube’s Data (cont’d)

//	Vertices	of	a	unit	cube	centered	at	origin,	sides	aligned	
with	axes	

point4	vertex_positions[8]	=	{	
				point4(-0.5,	-0.5,		0.5,	1.0),	
				point4(-0.5,		0.5,		0.5,	1.0),	
				point4(0.5,		0.5,		0.5,	1.0),	
				point4(0.5,	-0.5,		0.5,	1.0),	
				point4(-0.5,	-0.5,	-0.5,	1.0),	
				point4(-0.5,		0.5,	-0.5,	1.0),	
				point4(0.5,		0.5,	-0.5,	1.0),	
				point4(0.5,	-0.5,	-0.5,	1.0)	

};	

Cube Data

//	RGBA	colors	
color4	vertex_colors[8]	=	{	
				color4(0.0,	0.0,	0.0,	1.0),		//	black	
				color4(1.0,	0.0,	0.0,	1.0),		//	red	
				color4(1.0,	1.0,	0.0,	1.0),		//	yellow	
				color4(0.0,	1.0,	0.0,	1.0),		//	green	
				color4(0.0,	0.0,	1.0,	1.0),		//	blue	
				color4(1.0,	0.0,	1.0,	1.0),		//	magenta	
				color4(1.0,	1.0,	1.0,	1.0),		//	white	
				color4(0.0,	1.0,	1.0,	1.0)			//	cyan	
};	
	

Cube Data

// quad() generates two triangles for each face and assigns
colors to the vertices

int Index = 0; // global variable indexing into VBO arrays

void quad(int a, int b, int c, int d) {
 colors[Index] = vertex_colors[a]; points[Index] =

vertex_positions[a]; Index++;
 colors[Index] = vertex_colors[b]; points[Index] =

vertex_positions[b]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] =

vertex_positions[c]; Index++;
 colors[Index] = vertex_colors[a]; points[Index] =

vertex_positions[a]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] =

vertex_positions[c]; Index++;
 colors[Index] = vertex_colors[d]; points[Index] =

vertex_positions[d]; Index++;
}

Generating a Cube Face from Vertices

//	generate	12	triangles:	36	vertices	and	36	
colors	

void	
colorcube()	{	
				quad(1,	0,	3,	2);	
				quad(2,	3,	7,	6);	
				quad(3,	0,	4,	7);	
				quad(6,	5,	1,	2);	
				quad(4,	5,	6,	7);	
				quad(5,	4,	0,	1);	
}	

	
	

Generating the Cube from Faces

!  VAOs store the data of a geometric object
!  Steps in using a VAO

!  generate VAO names by calling
glGenVertexArrays()	

!  bind a specific VAO for initialization by calling
glBindVertexArray()	

!  update VBOs associated with this VAO
!  bind VAO for use in rendering

!  This approach allows a single function call to
specify all the data for an objects
!  previously, you might have needed to make many calls

to make all the data current

Vertex Array Objects (VAOs)

//	Create	a	vertex	array	object	
GLuint	vao;	
glGenVertexArrays(1,	&vao);	
glBindVertexArray(vao);	

	
					

VAOs in Code

!  Vertex data must be stored in a VBO, and
associated with a VAO

!  The code-flow is similar to configuring a VAO
!  generate VBO names by calling glGenBuffers()	
!  bind a specific VBO for initialization by calling

glBindBuffer(GL_ARRAY_BUFFER,	…)	
!  load data into VBO using

glBufferData(GL_ARRAY_BUFFER,	…)	
!  bind VAO for use in rendering

glBindVertexArray()	

Storing Vertex Attributes

//	Create	and	initialize	a	buffer	object	
GLuint	buffer;	
glGenBuffers(1,	&buffer);	
glBindBuffer(GL_ARRAY_BUFFER,	buffer);	
glBufferData(GL_ARRAY_BUFFER,	sizeof(points)	+	
											sizeof(colors),	NULL,	
GL_STATIC_DRAW);	

glBufferSubData(GL_ARRAY_BUFFER,	0,		
															sizeof(points),	points);	

glBufferSubData(GL_ARRAY_BUFFER,	sizeof(points),	
sizeof(colors),	colors);	

VBOs in Code

! Application vertex data enters the OpenGL
pipeline through the vertex shader

! Need to connect vertex data to shader
variables
!  requires knowing the attribute location

! Attribute location can either be queried by
calling glGetVertexAttribLocation()	

Connecting Vertex Shaders with Geometry

//	set	up	vertex	arrays	(after	shaders	are	loaded)	
GLuint	vPosition	=	glGetAttribLocation(program,	

"vPosition”);	
glEnableVertexAttribArray(vPosition);	
glVertexAttribPointer(vPosition,	4,	GL_FLOAT,	

GL_FALSE,	0,	BUFFER_OFFSET(0));	
GLuint	vColor	=	glGetAttribLocation(program,	

"vColor”);	
glEnableVertexAttribArray(vColor);	
glVertexAttribPointer(vColor,	4,	GL_FLOAT,	

GL_FALSE,	0,	BUFFER_OFFSET(sizeof(points)));	

Vertex Array Code

!  For contiguous groups of vertices

!  Usually invoked in display callback
!  Initiates vertex shader

Drawing Geometric Primitives

glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Shaders and GLSL

Scalar types: float, int, bool

Vector types: vec2, vec3, vec4
 ivec2, ivec3, ivec4
 bvec2, bvec3, bvec4

Matrix types: mat2, mat3, mat4

Texture sampling: sampler1D, sampler2D, sampler3D,

samplerCube

C++ style constructors: vec3 a = vec3(1.0, 2.0, 3.0);

GLSL Data Types

!  Standard C/C++ arithmetic and logic operators
!  Operators overloaded for matrix and vector operations

Operators

mat4	m;	
vec4	a,	b,	c;	
	
b	=	a*m;	
c	=	m*a;	

For vectors can use [], xyzw, rgba or stpq
Example:
vec3	v;	
v[1],	v.y,	v.g,	v.t	all refer to the same element
Swizzling:
vec3	a,	b;	
a.xy	=	b.yx;	

Components and Swizzling

!  in, out
!  Copy vertex attributes and other variables to/from

shaders
!  in	vec2	tex_coord;	
!  out	vec4	color;	

! Uniform: variable from application
!  uniform	float	time;	
!  uniform	vec4	rotation;	

Qualifiers

!  if
!  if else
!  expression ? true-expression : false-

expression
! while, do while
!  for

Flow Control

!  Built in
! Arithmetic: sqrt, power, abs
!  Trigonometric: sin, asin
! Graphical: length, reflect

!  User defined

Functions

!  gl_Position: output position from vertex
shader

!  gl_FragColor: output color from fragment
shader
! Only for ES, WebGL and older versions of GLSL
!  Present version use an out variable

Built-in Variables

Simple Vertex Shader for Cube

in	vec4	vPosition;	
in	vec4	vColor;	
out	vec4	color;	
	
void	main()	{	
				color	=	vColor;	
				gl_Position	=	vPosition;	
}	
	

The Simplest Fragment Shader

in	vec4	color;	
out	vec4	FragColor;	
	
void	main()	{	
				FragColor	=	color;	
}	

!  Shaders need to be compiled
and linked to form an
executable shader program

!  OpenGL provides the compiler
and linker

!  A program must contain
!  vertex and fragment

shaders
!  other shaders are optional

Getting Shaders into OpenGL

Create
Shader

Load Shader
Source

Compile
Shader

Create
Program

Attach Shader
to Program

Link
Program

glCreateProgram()

glShaderSource()

glCompileShader()

glCreateShader()

glAttachShader()

glLinkProgram()

Use Program glUseProgram()

These
steps need
to be
repeated
for each
type of
shader in
the shader
program

!  We’ve created a routine for this course to make it
easier to load your shaders
!  available at course website

GLuint	InitShaders(const	char*	vFile,	const	char*	
fFile);

!  InitShaders	takes two filenames
!  vFile for the vertex shader
!  fFile for the fragment shader

!  Fails if shaders don’t compile, or program doesn’t
link

A Simpler Way

!  Need to associate a shader variable with an OpenGL data
source
!  vertex shader attributes → app vertex attributes
!  shader uniforms → app provided uniform values

!  OpenGL relates shader variables to indices for the app to
set

!  Two methods for determining variable/index association
!  specify association before program linkage
!  query association after program linkage

Associating Shader Variables and Data

Assumes you already know the variables’ name

GLint idx =
glGetAttribLocation(program, “name”);

GLint idx =
glGetUniformLocation(program, “name”);

Determining Locations After Linking

Uniform Variables
glUniform4f(index,	x,	y,	z,	w);	
	
Glboolean	transpose	=	GL_TRUE;			
				//	Since	we’re	C	programmers	
Glfloat	mat[3][4][4]	=	{	…	};	

glUniformMatrix4fv(index,	3,	transpose,	mat);		

Initializing Uniform Variable Values

int	main(int	argc,	char	**argv)	{	
	glutInit(&argc,	argv);	
	glutInitDisplayMode(GLUT_RGBA	|	GLUT_DOUBLE	|	

GLUT_DEPTH);	
		glutInitWindowSize(512,	512);	
		glutCreateWindow("Color	Cube”);	
		glewInit();	
		init();	
		glutDisplayFunc(display);	
		glutKeyboardFunc(keyboard);	
		glutMainLoop();	
		return	0;	
}	

Finishing the Cube Program

void	display(void)	{	
			glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);	

				glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	

				glutSwapBuffers();	

}	

	
void	keyboard(unsigned	char	key,	int	x,	int	y)	{	
				switch(key)	{	
								case	033:	case	'q':	case	'Q':	
												exit(EXIT_SUCCESS);	
												break;	
				}	
}	

	

Cube Program GLUT Callbacks

!  A vertex shader is initiated by each vertex output by
glDrawArrays()	

!  A vertex shader must output a position in clip
coordinates to the rasterizer

!  Basic uses of vertex shaders
!  Transformations
!  Lighting
!  Moving vertex positions

Vertex Shader Examples

Transformations

3D is just like taking a photograph (lots of
photographs!)

Camera Analogy

camera

tripod model

viewing
volume

 Transformations take us from one “space” to
another

All of our transforms are 4×4 matrices

Transformations

Model-View 
Transform

Projection 
Transform

Perspective  
Division
(w)

Viewport 
Transform

Modeling 
Transform

Modeling 
Transform

Object Coords.

World Coords. Eye Coords. Clip Coords.
Normalized

Device
Coords.

Vertex
Data

2D Window
Coordinates

!  Modeling transformations
!  assemble the world and move the objects

!  Viewing transformations
!  define position and orientation of the viewing

volume in the world
!  Projection transformations

!  adjust the lens of the camera
!  Viewport transformations

!  enlarge or reduce the physical photograph

Camera Analogy Transform Sequence

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

M

!  matrices are always
post-multiplied

!  product of matrix and
vector is

!  A vertex is
transformed by 4×4
matrices
!  all affine operations

are matrix
multiplications

!  all matrices are stored
column-major in
OpenGL
!  this is opposite of

what “C”
programmers expect

3D Homogeneous Transformations

vM

!  Set up a viewing frustum to specify how much
of the world we can see

! Done in two steps
!  specify the size of the frustum (projection transform)
!  specify its location in space (model-view transform)

! Anything outside of the viewing frustum is
clipped
!  primitive is either modified or discarded (if entirely

outside frustum)

View Specification

!  OpenGL projection model uses eye coordinates
!  the “eye” is located at the origin
!  looking down the -z axis

!  Projection matrices use a six-plane model:
!  near (image) plane and far (infinite) plane

! both are distances from the eye (positive values)
!  enclosing planes

! top & bottom, left & right

View Specification (cont’d)

!  Position the camera/eye in the scene
!  To “fly through” a scene

!  change viewing transformation and
redraw scene

!  LookAt(eyex,	eyey,	eyez,	
						lookx,	looky,	lookz,	
						upx,	upy,	upz)	
!  up vector determines unique orientation
!  careful of degenerate positions

Viewing Transformations

Move object or change
frame origin

Translation

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

1000

100

010

001

),,(
z

y

x

zyx
t

t

t

tttT

Stretch, mirror or decimate a
coordinate direction

Scale

Note, there’s a translation applied here to
make things easier to see

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

1000

000

000

000

),,(
z

y

x

zyx
s

s

s

sssS

Rotate coordinate system about an axis in space

Rotation

Note, there’s a translation applied
here to make things easier to see

Vertex Shader for Cube Rotation

in	vec4	vPosition;	
in	vec4	vColor;	
out	vec4	color;	
uniform	vec3	theta;	
	
void	main()	{	
				//	Compute	the	sines	and	cosines	of	theta	for	
				//	each	of	the	three	axes	in	one	computation.	
				vec3	angles	=	radians(theta);	
				vec3	c	=	cos(angles);	
				vec3	s	=	sin(angles);	

				//	Remember:	these	matrices	are	column-major	
	
				mat4	rx	=	mat4(1.0,		0.0,		0.0,	0.0,	
																				0.0,		c.x,		s.x,	0.0,	
																				0.0,	-s.x,		c.x,	0.0,	
																				0.0,		0.0,		0.0,	1.0);	
	
				mat4	ry	=	mat4(c.y,	0.0,	-s.y,	0.0,	
																				0.0,	1.0,		0.0,	0.0,	
																				s.y,	0.0,		c.y,	0.0,	
																				0.0,	0.0,		0.0,	1.0);	
	

Vertex Shader for Cube Rotation

	
				mat4	rz	=	mat4(c.z,	-s.z,	0.0,	0.0,	
																				s.z,		c.z,	0.0,	0.0,	
																				0.0,		0.0,	1.0,	0.0,	
																				0.0,		0.0,	0.0,	1.0);	
	
				color	=	vColor;	
				gl_Position	=	rz	*	ry	*	rx	*	vPosition;	
}		

Vertex Shader for Cube Rotation

//	compute	angles	using	mouse	and	idle	callbacks		
GLuint	theta;		//	theta	uniform	location	
vec3		Theta;			//	Axis	angles	
	
void	display(void)	{	
			glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);	
	
			glUniform3fv(theta,	1,	Theta);	
			glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	
	
			glutSwapBuffers();	
}	

Sending Angles from Application

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Vertex Lighting

!  Lighting simulates how objects reflect light
!  material composition of object
!  light’s color and position
!  global lighting parameters

!  Lighting functions deprecated in 3.1
!  Can implement in

!  Application (per vertex)
!  Vertex or fragment shaders

Lighting Principles

!  Computes a color or shade for each vertex using a
lighting model (the modified Phong model) that takes
into account
! Diffuse reflections
!  Specular reflections
! Ambient light
!  Emission

!  Vertex shades are interpolated across polygons by the
rasterizer

Modified Phong Model

!  The model is a balance between simple computation
and physical realism

!  The model uses
!  Light positions and intensities
!  Surface orientation (normals)
!  Material properties (reflectivity)
!  Viewer location

!  Computed for each source and each color component

Modified Phong Model

!  Modified Phong lighting model
!  Computed at vertices

!  Lighting contributors
!  Surface material properties
!  Light properties
!  Lighting model properties

OpenGL Lighting

!  Normals define how a surface reflects light
!  Application usually provides normals as a vertex atttribute
!  Current normal is used to compute vertex’s color
!  Use unit normals for proper lighting

!  scaling affects a normal’s length

Surface Normals

!  Define the surface properties of a primitive

!  you can have separate materials for front and back

Material Properties

Property Description
Diffuse Base object color
Specular Highlight color
Ambient Low-light color
Emission Glow color

Shininess Surface
smoothness

//	vertex	shader		
	
in	vec4	vPosition;	
in	vec3	vNormal;	
out	vec4	color;	
	
uniform	vec4	AmbientProduct,	DiffuseProduct,	

SpecularProduct;	
uniform	mat4	ModelView;	
uniform	mat4	Projection;	
uniform	vec4	LightPosition;	
uniform	float	Shininess;	

Adding Lighting to Cube

void	main()	{	
			//	Transform	vertex		position	into	eye	coordinates	
			vec3	pos	=	(ModelView	*	vPosition).xyz;	
									
			vec3	L	=	normalize(LightPosition.xyz	-	pos);	
			vec3	E	=	normalize(-pos);	
			vec3	H	=	normalize(L	+	E);	
	
			//	Transform	vertex	normal	into	eye	coordinates	
			vec3	N	=	normalize(ModelView	*	vec4(vNormal,	0.0)).xyz;	

Adding Lighting to Cube

//	Compute	terms	in	the	illumination	equation	
				vec4	ambient	=	AmbientProduct;	
				float	Kd	=	max(dot(L,	N),	0.0);	
				vec4		diffuse	=	Kd*DiffuseProduct;	
				float	Ks	=	pow(max(dot(N,	H),	0.0),	Shininess);	
				vec4		specular	=	Ks	*	SpecularProduct;	
				if(dot(L,	N)	<	0.0)		
								specular	=	vec4(0.0,	0.0,	0.0,	1.0)		
	
				gl_Position	=	Projection	*	ModelView	*	vPosition;	
	
				color	=	ambient	+	diffuse	+	specular;	
				color.a	=	1.0;	
}	

Adding Lighting to Cube

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Shader Examples

!  A shader that’s executed for each “potential” pixel
!  fragments still need to pass several tests before making it to

the framebuffer
!  There are lots of effects we can do in fragment shaders

!  Per-fragment lighting
!  Bump Mapping
!  Environment (Reflection) Maps

Fragment Shaders

!  Compute lighting using same model as for per
vertex lighting but for each fragment

!  Normals and other attributes are sent to vertex
shader and output to rasterizer

!  Rasterizer interpolates and provides inputs for
fragment shader

Per Fragment Lighting

!  Vertex Shaders
! Moving vertices: height fields
!  Per vertex lighting: height fields
!  Per vertex lighting: cartoon shading

!  Fragment Shaders
!  Per vertex vs. per fragment lighting: cartoon shader
!  Samplers: reflection Map
!  Bump mapping

Shader Examples

!  A height field is a function y = f(x, z) where the
y value represents a quantity such as the height
above a point in the x-z plane.

!  Heights fields are usually rendered by sampling
the function to form a rectangular mesh of
triangles or rectangles from the samples yij =
f(xi, zj)

Height Fields

!  Form a quadrilateral mesh

!  Display each quad using

Displaying a Height Field

for(i=0;i<N;i++)	for(j=0;j<N;j++)	data[i][j]=f(i,	j,	time);	
	
vertex[Index++]	=	vec3((float)i/N,	data[i][j],	(float)j/N);	
vertex[Index++]	=	vec3((float)i/N,	data[i][j],	(float)(j+1)/N);	
vertex[Index++]	=	vec3((float)(i+1)/N,	data[i][j],	(float)(j+1)/N);	
vertex[Index++]	=	vec3((float)(i+1)/N,	data[i][j],	(float)(j)/N);		

	for(i=0;i<NumVertices	;i+=4)	glDrawArrays(GL_LINE_LOOP,	4*i,	4);	

Time Varying Vertex Shader
in	vec4	vPosition;	
in	vec4	vColor;	
	
uniform	float	time;	/*	in	milliseconds	*/	
uniform	mat4	ModelView,	ProjectionMatrix;	
	
void	main()		{	
				vec4		v	=	vPosition;	
				vec4		t	=	sin(0.001*time	+	5.0*v);					
				v.y	=	0.1*t.x*t.z;	
	
				gl_Position	=	ModelViewProjectionMatrix	*	t;	
}	

Mesh Display

!  Solid Mesh: create two triangles for each
quad

! Display with
glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	

!  For better looking results, we’ll add lighting
! We’ll do per-vertex lighting

!  leverage the vertex shader since we’ll also use it to
vary the mesh in a time-varying way

Adding Lighting

uniform	float	time,	shininess;	
uniform	vec4	vPosition,	light_position	diffuse_light,	
specular_light;	
uniform	mat4	ModelViewMatrix,	ModelViewProjectionMatrix,	
				NormalMatrix;	
	
void	main()	{	
			vec4		v	=	vPosition;	
			vec4		t	=	sin(0.001*time	+	5.0*v);	
			v.y	=	0.1*t.x*t.z;	
	
			gl_Position	=	ModelViewProjectionMatrix	*	v;	
	
			vec4	diffuse,	specular;	
			vec4	eyePosition	=	ModelViewMatrix	*	vPosition;	
			vec4	eyeLightPos	=	light_position;	

Mesh Shader

				vec3	N	=	normalize(NormalMatrix	*	Normal);	
				vec3	L	=	normalize(eyeLightPos.xyz	-	eyePosition.xyz);	
				vec3	E	=	-normalize(eyePosition.xyz);	
				vec3	H	=	normalize(L	+	E);	
	
				float	Kd	=	max(dot(L,	N),	0.0);	
				float	Ks	=	pow(max(dot(N,	H),	0.0),	shininess);	
				diffuse		=	Kd*diffuse_light;	
				specular	=	Ks*specular_light;	
				color				=	diffuse	+	specular;	
}	

Mesh Shader (cont’d)

Shaded Mesh

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Texture Mapping

Texture Mapping

s

t

x

y

z

image

geometry screen

Texture Mapping in OpenGL

!  Images and geometry flow through separate
pipelines that join at the rasterizer
!  “complex” textures do not affect geometric

complexity

Geometry
Pipeline

Pixel
Pipeline

Rasterizer

Vertices

Pixels

Fragment
Shader

Applying Textures
!  Three basic steps to applying a texture

1.  specify the texture
!  read or generate image
!  assign to texture
!  enable texturing

2.  assign texture coordinates to vertices
3.  specify texture parameters

!  wrapping, filtering

1.  specify textures in texture objects
2.  set texture filter
3.  set texture function
4.  set texture wrap mode
5.  set optional perspective correction hint
6.  bind texture object
7.  enable texturing
8.  supply texture coordinates for vertex

Applying Textures

Texture Objects

!  Have OpenGL store your images
!  one image per texture object
!  may be shared by several graphics contexts

!  Generate texture names
glGenTextures(n,	*texIds);	

Texture Objects (cont'd.)

!  Create texture objects with texture data and
state
!  glBindTexture(target,	id);	

!  Bind textures before using
!  glBindTexture(target,	id);	

!  Define a texture image from an array of
 texels in CPU memory

glTexImage2D(target,	level,	components,	
			w,	h,	border,	format,	type,	*texels);	

!  Texel colors are processed by pixel pipeline
!  pixel scales, biases and lookups can be

done

Specifying a Texture Image

!  Based on parametric texture coordinates
!  Coordinates need to be specified at each vertex

Mapping a Texture

s

t 1, 1
0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Applying the Texture in the Shader

// Declare the sampler
uniform sampler2D diffuse_mat;
// GLSL 3.30 has overloaded texture();
// Apply the material color
vec3 diffuse = intensity *
 texture2D(diffuse_mat, coord).rgb;

Texturing the Cube
// add texture coordinate attribute to quad
function

quad(int a, int b, int c, int d) {
 quad_colors[Index] = vertex_colors[a];
 points[Index] = vertex_positions[a];
 tex_coords[Index] = vec2(0.0, 0.0);
 Index++;
 … // rest of vertices
}

Creating a Texture Image
// Create a checkerboard pattern
for (int i = 0; i < 64; i++) {
 for (int j = 0; j < 64; j++) {
 GLubyte c;
 c = (((i & 0x8) == 0) ^ ((j & 0x8) == 0)) * 255;
 image[i][j][0] = c;
 image[i][j][1] = c;
 image[i][j][2] = c;
 image2[i][j][0] = c;
 image2[i][j][1] = 0;
 image2[i][j][2] = c;
 }
 }

Texture Object

GLuint	textures[1];	
glGenTextures(1,	textures);	
	
glBindTexture(GL_TEXTURE_2D,	textures[0]);	
glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGB,	TextureSize,	
														TextureSize,	GL_RGB,	GL_UNSIGNED_BYTE,	image);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_S,	GL_REPEAT);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_T,	GL_REPEAT);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);	
glActiveTexture(GL_TEXTURE0);	
	

Vertex Shader
in vec4 vPosition;
in vec4 vColor;
in vec2 vTexCoord;

out vec4 color;
out vec2 texCoord;

void main() {
 color = vColor;
 texCoord = vTexCoord;
 gl_Position = vPosition;
}

Fragment Shader
in vec4 color;
in vec2 texCoord;
out vec4 FragColor;

uniform sampler texture;

void main() {
 FragColor = color * texture(texture, texCoord);
}

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 142

Next class: Visual Perception
 Topic:

 How does the human visual system?
 How do humans perceive color?
 How do we represent color in computations?

 Read:
 • Glassner, Principles of Digital Image Synthesis,
 pp. 5-32. [Course reader pp.1-28]
 • Watt , Chapter 15.
 • Brian Wandell. Foundations of Vision. Sinauer
 Associates, Sunderland, MA, pp. 45-50 and
 69-97, 1995.
 [Course reader pp. 29-34 and pp. 35-63]

