Z-buftfer Pipeline and OpenGL
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m Required:
m Watt, Section 5.2.2 — 5.2.4, 6.3, 6.6 (esp. intro and
subsections 1, 4, and 8—10),

® Further reading:

m Foley, et al, Chapter 5.6 and Chapter 6

m David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2"4 Ed., McGraw-
Hill, New York, 1990, Chapter 2.

m [. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
A characterization of ten hidden surface algorithms,
ACM Computing Surveys 6(1): 1-55, March 1974.
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* The OpenGL Programming Guide, 7th Edition

" Interactive Computer Graphics: A Top-down Approach
using OpenGL, 6th Edition

* The OpenGL Superbible, 5Sth Edition

* The OpenGL Shading Language Guide, 3rd Edition
* OpenGL and the X Window System

* OpenGL Programming for Mac OS X

"= OpenGL ES 2.0

= WebGL (to appear)
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" The OpenGL Website: www.opengl.org
= API specifications
= Reference pages and developer resources
= PDF of the OpenGL Reference Card
" Discussion forums

= The Khronos Website: www.khronos.org

= Overview of all Khronos APIs

* Numerous presentations



3D Geometry Pipeline

m Before being turned into pixels by graphics hardware, a piece of
geometry goes through a number of transformations...

(1 Y2
Model space
- (Object sgace) Projective transformation,
1 T9 scale, translate
z 22
. scale, translate,
B = Normalized projection space
~
Yuw O World space
<> (Object space) Project,
.’ scale, translate
) Ys
Zw rotate, translate @ Normalized device space
(Screen space)
d x
Ye E
ye space
- (View space) scale
/
Yi Image space
hd T 34 (Window space)
€
/ (Raster space)
Ze (Screen space)
T (Device space)
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Projections

®m Projections transform points in n-space to m-space, where m<n.

® In 3-D, we map points from 3-space to the projection plane (PP)
along projectors emanating from the center of projection (COP):

7 v

DOP
y L
COP i / /

m The center of projection 1s exactly the same as the pinhole in a pinhole
camera.

m There are two basic types of projections:

m Perspective — distance from COP to PP finite
m Parallel — distance from COP to PP infinite
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Parallel projections

m For parallel projections, we specify a direction of
projection (DOP) instead of a COP.

m There are two types of parallel projections:
® Orthographic projection — DOP perpendicular to PP
m Oblique projection — DOP not perpendicular to PP
m We can write orthographic projection onto the z =0 plane
with a simple matrix.

B -_X-
Y111 0o o
yl=lo 1 0 ol
b _0001_?

® But normally, we do not drop the z value right away. Why

not?
University of Texas at Austin  CS384G - Computer Graphics Fall 2010 Don Fussell



Properties of parallel projection

m Properties of parallel projection:
m Not realistic looking
®m Good for exact measurements

m Are actually a kind of affine transformation
mParallel lines remain parallel
mAngles not (in general) preserved

m Most often used in CAD, architectural
drawings, etc., where taking exact measurement
1s important
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m By similar triangles, we can compute how much the x and y
coordinates are scaled:

N g,
X'=——x y'=-—y

< &4

m [Note: Watt uses a left-handed coordinate system, and he looks down
the +z axis, so his PP is at +d.]
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@) Homogeneous coordinates revisited

® Remember how we said that affine transformations work
with the last coordinate always set to one.

®m What happens if the coordinate is not one?
m We divide all the coordinates by W

X/W]| [x
Y /W y
ZIW Z
wiwl |1

m [f W = I, then nothing changes.

m Sometimes we call this division step the “perspective
divide.”
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Homogeneous coordinates and perspective projection

m Now we can re-write the perspective projection as a matrix equation:

x] [t o o o[ x"
vi=lo 1 o of||-| »
wl| [0 0 -1/d o_i —zid
m After division by W, we get: X d-
x' Z
y'|=|-2d
| T

®  Again, projection implies dropping the z coordinate to give a 2D
image, but we usually keep it around a little while longer.
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Projective normalization

m After applying the perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D 1mage.

® What does this imply about the shape of things
after the perspective transformation + divide?

A Q
[\

A
?A
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Vanishing points

m What happens to two parallel lines that are not parallel to the projection
plane?

® Think of train tracks receding into the horizon... %

=

.| [V
: e P 4
®m The equation for alineis: /=p+tv=| "|+¢]| "’
pZ VZ
1 1 0 ]
X | p. +tv,
m After perspective transformation we get: | Y [=| p +1v,
W] |-(p.+tv,)/d
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Vanishing points (cont'd)

® Dividing by W- _ptl
'xl' P, + tVZ
y'| = _ptw,
p,t+ 1,
L —p. + v yd -
—(p.+tv.)ld Y
. - %
m [etting ¢ go to infinity: VZ
e
VZ
. 1
m We get a point that depends only on v

m What happens to the line £ = q + 1v?

m Each set of parallel lines intersect at a vanishing point on
the PP.

® Q: How many vanishing points are there?
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Properties of perspective projections

The perspective projection is an example of a projective
transformation.

Here are some properties of projective transformations:
m Lines map to lines
m Parallel lines do not necessarily remain parallel
m Ratios are not preserved

One of the advantages of perspective projection is that size varies
inversely with distance — looks realistic.

A disadvantage is that we can't judge distances as exactly as we can
with parallel projections.

Q: Why did nature give us eyes that perform perspective
projections?

Q: Do our eyes “see in 3D”?
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/-buftfer

m We can use projections for hidden surface elimination.

m The Z-buffer' or depth buffer algorithm [Catmull, 1974] 1s probably the
simplest and most widely used of these techniques.

m Here is pseudocode for the Z-buffer hidden surface algorithm:

for each pixel (i,j) do
Z-buffer [i,j] < FAR
Framebuffer[i,j] < <background color>
end for
for each polygon A do
for each pixel in A do
Compute depth z and shade s of A at (i)
if z > Z-buffer [i,j] then
Z-buffer [i,j] < z
Framebuffer[i,j] <— s
end if
end for
end for
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/-bufter, cont'd

m The process of filling in the pixels inside of a polygon is called
rasterization.

® During rasterization, the z value and shade s can be computed
incrementally (fast!).

(:1:17 Y1, Zl)
Yi g (R17G17Bl)

A
\

($27?J2, 29)
(R2a G27 B )

L ——1

($3, Y3, 23)
(R3, Gs, Bs)

Ti

Curious fact:

» Described as the “brute-force image space algorithm” by [SSS]

¢+ Mentioned only in Appendix B of [SSS] as a point of comparison
for huge memories, but written off as totally impractical.

Today, Z-buffers are commonly implemented in hardware.
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Ray tracing vs. Z-Buffer

Ray tracing:

for each ray {
for each object {
test for intersection

b
j

Z-Buffer:

for each object {
project_onto screen;
for each ray {
test for intersection

b
b

In both cases, optimizations are applied to the inner loop.

Biggest differences:
- ray order vs. object order
- Z-buffer does some work in screen space
- Z-buffer restricted to rays from a single
center of projection!
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Gouraud vs. Phong interpolation

® Does Z-buffer graphics hardware do a full shading
calculation at every point? Not in the past, but
this has changed!

® Smooth surfaces are often approximated by
polygonal facets, because:

m Graphics hardware generally wants polygons (esp.
triangles).

® Sometimes it easier to write ray-surface intersection
algorithms for polygonal models.

®m How do we compute the shading for such a
surface?
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m For a distant viewer and a distant light source,
how will the color of each triangle vary?

m Result: faceted, not smooth, appearance.
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Gouraud interpolation

m To get a smoother result that 1s easily performed in hardware, we can

do Gouraud interpolation.

y o Na
m Here s how it works: N,
¢ Compute normals at the vertices.

+ Shade only the vertices. N,

* Interpolate the resulting vertex colors. |
Shade
|
I,
I, Q
|

Interpolate

'

Iq

Ibﬁ

I

I
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Gouraud 1nterpolation, cont'd

®m  Gouraud interpolation has significant limitations.
+[f the polygonal approximation is too coarse, we can miss specular highlights.

+*We will encounter Mach banding (derivative discontinuity enhanced by human eye).

¢ Alas, this is usually what graphics hardware supported until very recently.
¢ But new graphics hardware supports...
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Phong interpolation

m To get an even smoother result with fewer artifacts, we can perform
Phong interpolation.

m Here' s how it works: N,
1. Compute normals at the vertices. Ny
2. Interpolate normals and normalize.
N,

3. Shade using the interpolated normals.

Interpolate
¢
g KN
}
Shade

i
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Gouraud vs. Phong interpolation
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Texture mapping and the z-buffer

m Texture-mapping can also be handled in z-buffer algorithms.
m Method:

m Scan conversion 1s done in screen space, as usual
m Each pixel is colored according to the texture
m Texture coordinates are found by Gouraud-style interpolation

(.’El, Y1, Zl)

Yi A (R, Gy, By) u A
(p141) ) o (ug,v1)
¢ N IR e Lt )':
A (w2, V) X AT AT
(w2, Y2, 22) NE
(R23G2732) :
\
(u2,v2)
K‘\‘ (3,3, 23)
I (R37 GBJB3)
(’U,g,Ug) ‘
T .

®m Note: Mapping is more complicated if you want to do perspective
right!
- linear in world space != linear in screen space
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Antialiasing textures

m [f you render an object with a texture map using point-sampling, you
can get aliasing:

e

= :
'%’%Es&__-r

[

From Crow, SIGGRAPH '84
m Proper antialiasing requires area averaging over pixels:

From Crow, SIGGRAPH '84

® [n some cases, you can average directly over the texture pixels to do

the anti-aliasing.
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Computing the average color

m The computationally difficult part is summing over the
covered pixels.
m Several methods have been used.

® The simplest is brute force:

m Figure out which texels are covered and add up their colors to
compute the average.
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Mipmaps

m A faster method is mip maps developed by Lance Williams in 1983:
m Stands for “multum in parvo” — many things in a small place
m  Keep textures prefiltered at multiple resolutions

m Has become the graphics hardware standard

128x128 64x64 2 5 Ix1

-
| .....

magnify
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Mipmap pyramid

® The mip map hierarchy can be thought of as an image pyramid:

Level 0 (T,[1,j]) is the original image.

Level 1 (T,[1,)]) averages over 2x2 neighborhoods of original.

[1.1]
Level 2 (T,[1,)]) averages over 4x4 neighborhoods of original
[1.1]

Level 3 (T;[1,j]) averages over 8x8 neighborhoods of original

m What s a fast way to pre-compute the texture map for each level?

University of Texas at Austin  CS384G - Computer Graphics
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Mipmap resampling

Filter size yx T
8x8 — / 2
L ALy
5x5 ¢ i (\( T
4x4 — /oo
> U

®m What would the mipmap return for an average overa 5 X 5
neighborhood at location (u,,v,)?

®m How do we measure the fractional distance between levels?

m What if you need to average over a non-square region?
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Summed area tables

® A more accurate method than mipmaps is summed area
tables invented by Frank Crow in 1984.

m Recall from calculus:

ff(x)dx E ff(x)dx — }f(x)dx

m m k
m In discrete form: Y fi1= Y flil- Y, flil
i=k i=0 i=0

m Q: If we wanted to do this real fast, what might we pre-
compute?
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Summed area tables (cont” d)

m We can extend this idea to 2D by creating a table, S[i./], that contains
the sum of everything below and to the left.

Sli, j1

[ r

® Q: How do we compute the average over a region from (/, b) to (7, t)?

m Characteristics:
m Requires more memory and precision
m Gives less blurry textures

University of Texas at Austin  CS384G - Computer Graphics Fall 2010 Don Fussell 32



Point sampled

MIP-mapped

Summed area table

Figure 5: CheckerBoards mapped onto a square showing vertically compressed texture.

From Crow, SIGGRAPH '84
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Cost of Z-buffering

m Z-buffering 1s the algorithm of choice for hardware
rendering (today), so let” s think about how to make it run
as fast as possible...

m The steps involved in the Z-buffer algorithm are:

Send a triangle to the graphics hardware.

Transform the vertices of the triangle using the modeling matrix.
Transform the vertices using the projection matrix.

Set up for incremental rasterization calculations

DR W

. Rasterize
(generate “fragments” = potential pixels)

SN

Shade at each fragment
7. Update the framebuffer according to z.

m What is the overall cost of Z-buffering?
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Cost of Z-buffering, cont’ d

®m We can approximate the cost of this method as:

k, v, +k, v +k, t+k, . (dmz)

xform = xform setup

where:
ki, = bus cost to send a vertex
Vi — number of vertices sent over the bus

K, form = COst of transforming a vertex
Vyform — Number of vertices transformed
ksemp = cost of setting up for rasterization
t = number of triangles being rasterized
K hade = cOst of shading a fragment
d = depth complexity

(average times a pixel 1s covered)
m? = number of pixels in frame buffer
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Accelerating Z-buffers

m (31ven this cost function:
K, Vi, Tk % +k, t+k, . (dmz)

xform ” xform setup

what can we do to accelerate Z-buffering?

Accel method Vi, \4 t d m

S xform
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Introduction to Modern OpenGL

Programming

Adapted from SIGGRAPH 2012 slides by

Ed Angel
University of New Mexico

and

Dave Shreiner
ARM, Inc

o gmmEmESSSSE
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Outline

Evolution of the OpenGL Pipeline
A Prototype Application in OpenGL
OpenGL Shading Language (GLSL)
Vertex Shaders

Fragment Shaders

Examples



What Is OpenGL?

= OpenGL 1s a computer graphics rendering API

= With it, you can generate high-quality color images
by rendering with geometric and 1mage primitives

» [t forms the basis of many interactive applications
that include 3D graphics

* By using OpenGL, the graphics part of your
application can be
= operating system independent

= window system independent
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* We’ll concentrate on the latest versions of OpenGL
* They enforce a new way to program with OpenGL

» Allows more efficient use of GPU resources
* If you’re familiar with “classic” graphics pipelines,
modern OpenGL doesn’t support
* Fixed-function graphics operations
" lighting
* transformations

= All applications must use shaders for their graphics
processing



The Evolution of the OpenGL

Pipeline

o gmmEmESSSSE
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In the Beginning ...

= OpenGL 1.0 was released on July 15, 1994
* [ts pipeline was entirely fixed-function

* the only operations available were fixed by the
implementation

s
-

ey @

* The pipeline evolved, but remained fixed-function
through OpenGL versions 1.1 through 2.0 (Sept. 2004)




The Start of the Programmable Pipeline

= OpenGL 2.0 (officially) added programmable shaders

" yvertex shading augmented the fixed-function transform and
lighting stage
" fragment shading augmented the fragment coloring stage

* However, the fixed-function pipeline was still available

Vertex
Transform and
Lighting

Primitive Fragment
Setup and Coloring and
Rasterization Texturing
A
—>




An Evolutionary Change

" OpenGL 3.0 introduced the deprecation model
» the method used to remove features from OpenGL

= The pipeline remained the same until OpenGL 3.1
(released March 24t 2009)

* Introduced a change in how OpenGL contexts are used

Full

Forward Compatible

Includes all features (including those marked deprecated)
available in the current version of OpenGL

Includes all non-deprecated features (i.e., creates a context
that would be similar to the next version of OpenGL)



* OpenGL 3.1 removed the fixed-function pipeline
» programs were required to use only shaders

* Additionally, almost all data 1s GPU-resident
= all vertex data sent using buffer objects



= OpenGL 3.2 (released August 34, 2009) added an
additional shading stage — geometry shaders




More Evolution — Context Protiles

" OpenGL 3.2 also introduced context profiles

= profiles control which features are exposed

= currently two types of profiles: core and compatible

Full

Forward Compatible

core
compatible
core

compatible

All features of the current release

All features ever in OpenGL

All non-deprecated features

Not supported



The Latest Pipelines

= OpenGL 4.1 (released July 25%™, 2010) included
additional shading stages — tessellation-control and
tessellation-evaluation shaders

= | atest version is 4.3

¥

Tessellation
Control
Shader

L

|

Tessellation
Evaluation
Shader

Primitive
Setup and
Rasterization

Geometry

Shader

A

A

e
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() OpenGL ES and WebGL
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= OpenGL ES 2.0

= Designed for embedded and hand-held devices such as cell
phones

= Based on OpenGL 3.1
= Shader based

= WebGL

= JavaScript implementation of ES 2.0

= Runs on most recent browsers



OpenGL Application

Development

o gmmEmESSSSE
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A Simplified Pipeline Model

Application > Framebuffer

Vertices Vertices Fragments Pixels

Vertex : Fragment
: Rasterizer .
Processing Processing




OpenGL Programming 1n a Nutshell

* Modern OpenGL programs essentially do the
following steps:

1. Create shader programs

. Create buffer objects and load data into them

2
3. “Connect” data locations with shader variables
4. Render



Application Framework Requirements

" OpenGL applications need a place to render into
" usually an on-screen window

* Need to communicate with native windowing
system

* Each windowing system interface 1s different
* We use GLUT (more specifically, freeglut)

* simple, open-source library that works everywhere

* handles all windowing operations:
" opening windows
" Input processing



Simplifying Working with OpenGL

» Operating systems deal with library functions
differently

= compiler linkage and runtime libraries may expose
different functions
= Additionally, OpenGL has many versions and
profiles which expose different sets of functions

" managing function access i1s cumbersome, and
window-system dependent

* We use another open-source library, GLEW, to
hide those details



Representing Geometric Objects

Geometric objects are represented using vertices
A vertex 1s a collection of generic atzributes
= positional coordinates
= colors o=
" texture coordinates ,
" any other data associated with that point in space

Position stored in 4 dimensional homogeneous
coordinates

Vertex data must be stored 1in vertex buffer objects
(VBOs)

VBOs must be stored in vertex array objects
(VAO:s)

T N X




OpenGL’s Geometric Primitives

= All primitives are specified by vertices

A A % @

GL_POINTS GL_LINES GL_LINE_STRIP  GL_LINE_LOOP

».
= —
GL_TRIANGLES \’ GL TRIANGLE FAN
GL_TRIANGLE_STRIP



A First Program

o gmmEmESSSSE
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Rendering a Cube

= We’ll render a cube with colors at each vertex
" Our example demonstrates:

" initializing vertex data
* organizing data for rendering

= simple object modeling
= building up 3D objects from geometric primitives

* building geometric primitives from vertices
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= We’ll build each cube face from individual
triangles

* Need to determine how much storage is required
= (6 faces)(2 triangles/face)(3 vertices/triangle)
const int NumVertices = 36;

* To simplify communicating with GLSL, we’ll use a
vec4 class (implemented in C++) similar to GLSL’s
vecd type

= we’ll also typedef it to add logical meaning

typedeft vec4 point4d;
typedef vec4 color4;



Initializing the Cube’s Data (cont’d)

» Before we can 1nitialize our VBO, we need to stage the
data
= Qur cube has two attributes per vertex
" position
= color
= We create two arrays to hold the VBO data

point4 points[NumVertices];
colord4d colors[NumVertices];



Cube Data

// Vertices of a unit cube centered at origin, sides aligned

with axes
point4 vertex positions[8] = {
point4( -0.5, -0.5, 0.5, 1.0 ),
point4( -0.5, ©.5, 0.5, 1.0 ),
point4( ©.5, ©.5, 0.5, 1.0 ),
point4( ©.5, -0.5, 0.5, 1.0 ),
point4( -0.5, -0.5, -0.5, 1.0 ),
point4( -0.5, 0.5, -0.5, 1.0 ),
point4( ©.5, 0.5, -0.5, 1.0 ),
point4( 0.5, -0.5, -0.5, 1.0 )

i



color4(
color4(
color4(
color4(
color4(
color4(
color4(
color4(

// RGBA colors

colord vertex colors[8
0.
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//
//
//
//
//
//
//
//

black
red
yellow
green
blue
magenta
white
cyan



Generating a Cube Face from Vertices

// quad() generates two triangles for each face and assigns
colors to the vertices

int Index = 0; // global variable indexing into VBO arrays

void quad(int a, int b, int c, int d4d) ({

colors[Index] = vertex colors[a]; points[Index]
vertex positions[a]; Index++;

colors[Index] = vertex colors[b]; points[Index]
vertex positions[b]; Index++;

colors[Index] = vertex colors[c]; points[Index]
vertex positions([c]; Index++;

colors[Index] = vertex colors[a]; points[Index]
vertex positions[a]; Index++;

colors[Index] = vertex colors[c]; points[Index]
vertex positions([c]; Index++;

colors[Index] = vertex colors[d]; points[Index] =
vertex positions[d]; Index++;



Generating the Cube from Faces

// generate 12 triangles: 36 vertices and 36

colors

void

colorcube() {
quad( 1, 0, 3, 2 );
quad( 2, 3, 7, 6 );
quad( 3, 0, 4, 7 );
quad( 6, 5, 1, 2 );
quad( 4, 5, 6, 7 );
quad( 5, 4, 0, 1 );



Q) Vertex Array Objects (VAOS)

» VAOs store the data of a geometric object

= Steps in using a VAO

= generate VAO names by calling
glGenVertexArrays()

* bind a specific VAO for initialization by calling
glBindVertexArray()

= update VBOs associated with this VAO
= bind VAO for use in rendering

* This approach allows a single function call to
specify all the data for an objects

= previously, you might have needed to make many calls
to make all the data current



VAOQOs 1in Code

// Create a vertex array object
GLuint vao;
glGenVertexArrays(1l, &vao);
glBindVertexArray(vao);



Storing Vertex Attributes

= Vertex data must be stored in a VBO, and
associated with a VAO

* The code-flow 1s similar to configuring a VAO

generate VBO names by calling glGenBuffers()

bind a specific VBO for 1nitialization by calling
g1BindBuffer(GL_ARRAY BUFFER, ..)

load data into VBO using
glBufferData(GL_ARRAY_BUFFER, ..)

bind VAO for use in rendering
glBindVertexArray()
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// Create and initialize a buffer object
GLuint buffer;

glGenBuffers(1l, &buffer);

glBindBuffer (GL_ARRAY_BUFFER, buffer);

glBufferData(GL_ARRAY_BUFFER, sizeof(points) +
sizeof(colors), NULL,
GL_STATIC DRAW);

glBufferSubData(GL_ARRAY_BUFFER, 0,
sizeof(points), points);

glBufferSubData(GL_ARRAY BUFFER, sizeof(points),
sizeof(colors), colors);



¢y) Connecting Vertex Shaders with Geometry

= Application vertex data enters the OpenGL
pipeline through the vertex shader

= Need to connect vertex data to shader
variables

" requires knowing the attribute location

= Attribute location can either be queried by
calling glGetVertexAttribLocation()



Vertex Array Code

// set up vertex arrays (after shaders are loaded)

GLuint vPosition = glGetAttribLocation(program,
"vPosition”);

glEnableVertexAttribArray(vPosition);

glVertexAttribPointer(vPosition, 4, GL_FLOAT,
GL_FALSE, ©, BUFFER_OFFSET(Q));

GLuint vColor = glGetAttribLocation(program,
"vColor”);

glEnableVertexAttribArray(vColor);

glVertexAttribPointer(vColor, 4, GL_FLOAT,
GL_FALSE, 0, BUFFER _OFFSET(sizeof(points)));



Drawing Geometric Primitives

* For contiguous groups of vertices
glDrawArrays(GL_TRIANGLES, ©, NumVertices);

» Usually invoked 1n display callback

= [nitiates vertex shader



Shaders and GLSL
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GLSL Data Types

Scalar types: float, int, bool

Vector types: vec2, vec3, vecd
lvec2, ivec3, ivecd
bvec2, bvec3, bvec4

Matrix types: mat2, mat3, mat4

Texture sampling: sampler1D, sampler2D, sampler3D,
samplerCube

C++ style constructors: vec3 a = vec3(1.0, 2.0, 3.0);



Operators

= Standard C/C++ arithmetic and logic operators
» Operators overloaded for matrix and vector operations

matd m;
vecd4d a, b, c;

b
C

a*m;
m*a;



Components and Swizzling

For vectors can use [ |, Xxyzw, rgba or stpq
Example:

vec3 V;

vi1l], v.y, v.g, v.t all refer to the same element
Swizzling:

vec3 a, b;

a.xy = b.yx;



Qualifiers

" 1n, out
= Copy vertex attributes and other variables to/from
shaders

" in vec2 tex coord;
=" out vecd color;

* Uniform: variable from application
= yniform float time;
= yniform vec4 rotation;



Flow Control

if else

expression ? true-expression : false-
expression

while, do while
for



Functions

" Built in
* Arithmetic: sqrt, power, abs
" Trigonometric: sin, asin
» Graphical: length, reflect

= User defined



Built-in Variables

= gl Position: output position from vertex
shader

* gl FragColor: output color from fragment
shader
= Only for ES, WebGL and older versions of GLSL

= Present version use an out variable




Simple Vertex Shader for Cube

in vec4 vPosition;
in vec4 vColor;
out vec4 color;

void main() {
color = vColor;
gl Position = vPosition;



1, The Simplest Fragment Shader

in vec4 color;
out vec4 FragColor;

void main() A
FragColor = color;

¥



Getting Shaders into OpenGL

Create
= Shaders need to be compiled Program gs reateProgramiy)
and linked to form an ~
Create
executable shader program s glCreateShader() e
: : | t d
= OpenGL provides the compiler e
and linker Load Shader glShaderSource() repeated
¢ | Source for each
" A program must contain — | type of
Compile _ shader in
= vertex and fragment Shader glCompileShader() the shader
|
shaders LS A
. Attach Shader
= other shaders are optional P — glatachbhadenly
| |
Link ,
Program glLinkProgram()
|
Use Program glUseProgram()
|
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= We’ve created a routine for this course to make it
easier to load your shaders

= gvailable at course website

GLuint InitShaders( const char* vFile, const char¥*
fFile);

» ITnitShaders takes two filenames
= vFile for the vertex shader
* fFile for the fragment shader

» Fails 1f shaders don’t compile, or program doesn’t
link



10, Associating Shader Variables and Data

* Need to associate a shader variable with an OpenGL data
SOUrce
= vertex shader attributes — app vertex attributes
* shader uniforms — app provided uniform values

* OpenGL relates shader variables to indices for the app to
set

* Two methods for determining variable/index association
= specify association before program linkage
" query association after program linkage



Determining Locations After Linking

Assumes you already know the variables’ name

GLint 1idx =
glGetAttribLocation (program, “name”) ;

GLint idx =
glGetUniformLocation (program, “name”) ;



Initializing Uniform Variable Values

Uniform Variables
glUniform4f(index, x, y, z, w);

Glboolean transpose = GL_TRUE;
// Since we’re C programmers
Glfloat mat[3][4][4] = { .. };

glUniformMatrix4fv(index, 3, transpose, mat);



Finishing the Cube Program

int main(int argc, char **argv) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT RGBA | GLUT DOUBLE |
GLUT_DEPTH);
glutInitWindowSize(512, 512);
glutCreateWindow("Color Cube”);
glewInit();
a7 @)
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 9;



Cube Program GLUT Callbacks

void display(void) {
glClear(GL_COLOR_BUFFER _BIT | GL_DEPTH_BUFFER_BIT);

glDrawArrays(GL_TRIANGLES, ©, NumVertices);
glutSwapBuffers();

void keyboard(unsigned char key, int x, int y) {
switch( key ) {
case 033: case 'q': case 'Q':
exit( EXIT_SUCCESS );
break;



Vertex Shader Examples

" A vertex shader is mitiated by each vertex output by
glDrawArrays()

= A vertex shader must output a position in clip
coordinates to the rasterizer

= Basic uses of vertex shaders
= Transformations
* Lighting
= Moving vertex positions



Transtformations



Camera Analogy

3D 1s just like taking a photograph (lots of
photographs!)

viewing
volume

camera

tripod




Transtformations

® Transformations take us from one “space” to

another

World Coords.

Eye Coords.

Perspective
Division

m All of our transforms are 4x4 matrices

1 =

(w)

2D Window
Coordinates

Normalized
Clip Coords. Device

Coords.




1, Camera Analogy Transform Sequence

" Modeling transformations
» assemble the world and move the objects

" Viewing transformations

= define position and orientation of the viewing
volume 1n the world

" Projection transformations
* adjust the lens of the camera

" Viewport transformations
» enlarge or reduce the physical photograph
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3D Homogeneous Transformations

= A vertex 1S
transformed by 4x4
matrices

= all affine operations
are matrix
multiplications

= 3]l matrices are stored
column-major in
OpenGL

= this is opposite of
what “C”
programmers expect

" matrices are always
post-multiplied

= product of matrix and
vector 1s
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" Set up a viewing frustum to specify how much
of the world we can see

" Done 1n two steps
" specify the size of the frustum (projection transform)
" specify 1ts location in space (model-view transform)

* Anything outside of the viewing frustum 1s
clipped

= primitive 1s either modified or discarded (if entirely
outside frustum)
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» OpenGL projection model uses eye coordinates
" the “eye” 1s located at the origin
" Jooking down the -z axis

" Projection matrices use a six-plane model:
" near (1mage) plane and far (infinite) plane
= both are distances from the eye (positive values)
" enclosing planes
" top & bottom, left & right



«) Viewing Transformations

* Position the camera/eye 1n the scene
" To “fly through” a scene

* change viewing transformation and
redraw scene
" LookAt(eye,, eye, eye,,
look,, looky, look,,
upr upy) upz)
= up vector determines unique orientation
= careful of degenerate positions



Translation

Move object or change
frame origin

1 0 0 ¢
01 0 ¢

y

T(t,.t,.t,)= e
t

z

\0 0 0 T}



Stretch, mirror or decimate a
coordinate direction

(s. 0 0 0)
0 s, 0 0
S(S,»S,,8.) =
0 0 s. O
SO0 =0 -1

Note, there’s a translation applied here to
make things easier to see



Note, there’s a translation applied
here to make things easier to see




0, Vertex Shader for Cube Rotation

in vec4 vPosition;
in vec4 vColor;

out vec4 color;
uniform vec3 theta;

void main() {
// Compute the sines and cosines of theta for

// each of the three axes in one computation.
vec3 angles = radians(theta);

vec3 c¢ = cos(angles);

vec3 s = sin(angles);



0, Vertex Shader for Cube Rotation

// Remember: these matrices are column-major

matd rx

mat4 ry

mat4(

mat4(
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0, Vertex Shader for Cube Rotation

mat4 rz = mat4( c.z, -s.z, 0.0, 0.0,
s.z, Cc.z, 9.0, 0.0,
.0, 0.9, 1.9, 0.0,
0.0, 0.0, 0.0, 1.0 );

color = vColor;
gl Position = rz * ry * rx * vPosition;



Sending Angles from Application

// compute angles using mouse and idle callbacks
GLuint theta; // theta uniform location
vec3 Theta; // Axis angles

void display(void) {
glClear(GL_COLOR_BUFFER BIT | GL _DEPTH BUFFER BIT);

glUniform3fv(theta, 1, Theta);
glDrawArrays (GL_TRIANGLES, @, NumVertices);

glutSwapBuffers();



Vertex Lighting
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« Lighting Principles

* Lighting simulates how objects reflect light
* material composition of object

= light’s color and position
= global lighting parameters .
= Lighting functions deprecated in 3.1
* Can implement in

* Application (per vertex)
* Vertex or fragment shaders
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= Computes a color or shade for each vertex using a
lighting model (the modified Phong model) that takes
into account

= Diffuse reflections
= Specular reflections
= Ambient light

* Emission

» Vertex shades are interpolated across polygons by the
rasterizer



Modified Phong Model

* The model 1s a balance between simple computation
and physical realism

* The model uses
= Light positions and intensities
= Surface orientation (normals)
= Material properties (reflectivity)
= Viewer location

= Computed for each source and each color component
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= Modified Phong lighting model

* Computed at vertices

* Lighting contributors
= Surface material properties
= Light properties
* Lighting model properties



Surface Normals

* Normals define how a surface reflects light
= Application usually provides normals as a vertex atttribute
= Current normal is used to compute vertex’s color

* Use unit normals for proper lighting

= scaling affects a normal’s length




Material Properties

» Define the surface properties of a primitive

Property

Diffuse Base object color
Specular Highlight color
Ambient Low-light color
Emission Glow color
Shininess ssrlrlll;)fgtclfness

= you can have separate materials for front and back



0, Adding Lighting to Cube

// vertex shader

in vec4 vPosition;
in vec3 vNormal;
out vec4 color;

uniform vec4 AmbientProduct, DiffuseProduct,
SpecularProduct;

uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec4 LightPosition;

uniform float Shininess;



«, Adding Lighting to Cube

void main() {
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;

vec3 L = normalize(LightPosition.xyz - pos);
vec3 E = normalize(-pos);
vec3 H = normalize(L + E);

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView * vec4(vNormal, 0.0)).xyz;



«, Adding Lighting to Cube

// Compute terms in the illumination equation
vec4 ambient = AmbientProduct;
float Kd = max(dot(L, N), ©0.0);
vec4 diffuse = Kd*DiffuseProduct;
float Ks = pow(max(dot(N, H), ©.0), Shininess);
vec4 specular = Ks * SpecularProduct;
if(dot(L, N) < 0.0)
specular = vec4(0.0, 0.0, 0.0, 1.0)

gl Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;
color.a = 1.0;



Shader Examples
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= A shader that’s executed for each “potential” pixel

= fragments still need to pass several tests before making it to
the framebuffer

* There are lots of effects we can do 1n fragment shaders
= Per-fragment lighting
* Bump Mapping
= Environment (Reflection) Maps
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= Compute lighting using same model as for per
vertex lighting but for each fragment

= Normals and other attributes are sent to vertex
shader and output to rasterizer

= Rasterizer interpolates and provides inputs for
fragment shader



Shader Examples

= Vertex Shaders
" Moving vertices: height fields
= Per vertex lighting: height fields

» Per vertex lighting: cartoon shading

* Fragment Shaders
" Per vertex vs. per fragment lighting: cartoon shader
» Samplers: reflection Map

* Bump mapping
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= A height field 1s a function y = f(x, z) where the
y value represents a quantity such as the height
above a point in the x-z plane.

= Heights fields are usually rendered by sampling
the function to form a rectangular mesh of
triangles or rectangles from the samples y;; =

fx; Z])



Displaying a Height Field

* Form a quadrilateral mesh

for(i=0;i<N;i++) for(j=0;j<N;j++) data[i][j]=Ff(i, j, time);

vertex[Index++] = vec3((float)i/N, data[i][j], (float)j/N);
vertex[Index++] = vec3((float)i/N, data[i][j], (float)(j+1)/N);
vertex[Index++] = vec3((float)(i+1l)/N, data[i][j], (float)(j+1)/N);
vertex[Index++] = vec3((float)(i+1)/N, data[i][j], (float)(j)/N);

* Display each quad using

for(i=0;i<NumVertices ;i+=4) glDrawArrays(GL_LINE_LOOP, 4*i, 4);



Time Varying Vertex Shader

in vec4 vPosition;
in vec4 vColor;

uniform float time; /* in milliseconds */
uniform mat4 ModelView, ProjectionMatrix;

void main() {
vec4d v = vPosition;
vecd t = sin(0.001*time + 5.0%*v);
V.y = 0.1*%t.x*t.z;

gl Position = ModelViewProjectionMatrix * t;
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* Solid Mesh: create two triangles for each
quad

" Display with
glDrawArrays(GL_TRIANGLES, ©, NumVertices);

= For better looking results, we’ll add lighting

= We’ll do per-vertex lighting

= Jeverage the vertex shader since we’ll also use it to
vary the mesh 1n a time-varying way



Mesh Shader

uniform float time, shininess;

uniform vec4 vPosition, light position diffuse light,

specular_light;

uniform mat4 ModelViewMatrix, ModelViewProjectionMatrix,
NormalMatrix;

void main() {
vec4d v = vPosition;
vec4d t = sin(0.001*time + 5.0%*v);
v.y = 0.1*t.x*t.z;

gl Position = ModelViewProjectionMatrix * v;
vec4 diffuse, specular;

vec4 eyePosition = ModelViewMatrix * vPosition;
vec4 eyelLightPos = light position;



Mesh Shader (cont’d)

vec3 N
vec3 L
vec3 E =
vec3 H

float Kd
float Ks
diffuse

specular
color

normalize(NormalMatrix * Normal);
normalize(eyelLightPos.xyz - eyePosition.xyz);
-normalize(eyePosition.xyz);

normalize(L + E);

= max(dot(L, N), 0.0);

= pow(max(dot(N, H), ©.0), shininess);
= Kd*diffuse light;

= Ks*specular light;

= diffuse + specular;
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Texture Mapping
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geometry screen




Texture Mapping in OpenGL

" Images and geometry flow through separate
pipelines that join at the rasterizer

= “complex” textures do not affect geometric
complexity

Vertices —s»

Pixels =——>



) Applying Textures

= Three basic steps to applying a texture

1. specify the texture
" read or generate 1mage
= assign to texture
= cnable texturing

2. assign texture coordinates to vertices

3. specify texture parameters
= wrapping, filtering
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specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

TNy Tt B L

supply texture coordinates for vertex
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= Have OpenGL store your images
" one image per texture object

* may be shared by several graphics contexts

= (Jenerate texture names
glGenTextures(n, *texIds);



’ %f_@@@ﬁ‘?\\ \
/Q%‘w‘a‘ 7 )\ S
eof [T | A '
\\%, &/ .“7// )
/
NG

= Create texture objects with texture data and
state

= glBindTexture(target, id);

" Bind textures before using
» glBindTexture(target, id);



Specifying a Texture Image

" Define a texture image from an array of
texels in CPU memory
glTexImage2D(target, Level, components,
w, h, border, format, type, *texels);

* Texel colors are processed by pixel pipeline

= pixel scales, biases and lookups can be
done
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* Based on parametric texture coordinates

» Coordinates need to be specified at each vertex

Texture Space Object Space
(s, t) = (0.2, 0.8)
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// Declare the sampler

uniform sampler2D diffuse mat;

// GLSL 3.30 has overloaded texture() ;
// Apply the material color

vec3 diffuse = intensity *
texture2D (diffuse mat, coord) .rgb;



Texturing the Cube

// add texture coordinate attribute to quad
function

quad (int a, int b, int ¢, int d) {

quad colors[Index] = vertex colors[a];
points[Index] = vertex positions[a];
tex coords[Index] = vec2(0.0, 0.0);
Index++;

... // rest of vertices



Creating a Texture Image

// Create a checkerboard pattern
for (int 1 = 0; 1 < 64; i++) {
for (int j = 0; j < 64; j++) {

GLubyte c;

c = (((1 & 0x8) == 0) * ((J & 0x8) == 0)) * 255;
image[i] [J]I[0] = c;

image[i] [J]I[1] = c;

image[i] [J]1[2] = c;

image2[i] [J]1[0] = c;

image2[i] [J]1[1] = O;

image2[i] [J]1[2] = c;

}



Texture Object

GLuint textures[1];
glGenTextures(1, textures);

glBindTexture(GL_TEXTURE_ 2D, textures[0]);
glTexImage2D(GL_TEXTURE_ 2D, ©, GL RGB, TextureSize,

TextureSize, GL_RGB, GL_UNSIGNED BYTE, image);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_ T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_NEAREST);
glActiveTexture(GL_TEXTURE®);



Vertex Shader

in vecd4 vPosition;
in vec4d vColor;
in vec?2 vTexCoord;

out vec4d color;
out vec2 texCoord;

void main () {
color = vColor;
texCoord vTexCoord;
gl Position = vPosition;



Fragment Shader

in vecd4d color;
in vec2 texCoord;
out wvec4 FragColor;

uniform sampler texture;

void main () {
FragColor = color * texture (texture,

texCoord) ;



How does the human visual system?
How do humans perceive color?
How do we represent color in computations?

 Glassner, Principles of Digital Image Synthesis,
pp. 5-32. [Course reader pp.1-28]

e Watt , Chapter 15.

* Brian Wandell. Foundations of Vision. Sinauer
Associates, Sunderland, MA, pp. 45-50 and
69-97, 1995.

[Course reader pp. 29-34 and pp. 35-63]
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