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Z-buffer Pipeline and OpenGL 
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Reading 
 Required: 

Watt, Section 5.2.2 – 5.2.4, 6.3, 6.6 (esp. intro and 
subsections 1, 4, and 8–10),  

 Further reading: 
Foley, et al, Chapter 5.6 and Chapter 6 
David F. Rogers and J. Alan Adams, Mathematical 
Elements for Computer Graphics, 2nd Ed., McGraw-
Hill, New York, 1990, Chapter 2.  
I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, 
A characterization of ten hidden surface algorithms, 
ACM Computing Surveys 6(1): 1-55, March 1974. 



!  The OpenGL Programming Guide, 7th Edition 
!  Interactive Computer Graphics: A Top-down Approach 

using OpenGL, 6th Edition 
!  The OpenGL Superbible, 5th Edition 
!  The OpenGL Shading Language Guide, 3rd Edition 
!  OpenGL and the X Window System 
!  OpenGL Programming for Mac OS X 
!  OpenGL ES 2.0  
!  WebGL (to appear) 

Resources 



!  The OpenGL Website: www.opengl.org 
! API specifications 
!  Reference pages and developer resources 
!  PDF of the OpenGL Reference Card 
! Discussion forums 

!  The Khronos Website: www.khronos.org 
! Overview of all Khronos APIs 
! Numerous presentations 

Resources 
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3D Geometry Pipeline 
  Before being turned into pixels by graphics hardware, a piece of 

geometry goes through a number of transformations... 
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  Projections transform points in n-space to m-space, where m<n. 
  In 3-D, we map points from 3-space to the projection plane (PP) 

along projectors emanating from the center of projection (COP):  

  The center of projection is exactly the same as the pinhole in a pinhole 
camera. 

  There are two basic types of projections: 
Perspective – distance from COP to PP finite 
Parallel – distance from COP to PP infinite 

Projections 
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Parallel projections 
  For parallel projections, we specify a direction of 
projection (DOP) instead of a COP. 
  There are two types of parallel projections: 

Orthographic projection –  DOP perpendicular to PP 
Oblique projection –  DOP not perpendicular to PP 

  We can write orthographic projection onto the z =0 plane 
with a simple matrix. 

  But normally, we do not drop the z value right away.  Why 
not? 
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Properties of parallel projection 

 Properties of parallel projection: 
Not realistic looking 
Good for exact measurements 
Are actually a kind of affine transformation 
 Parallel lines remain parallel 
 Angles not (in general) preserved 

Most often used in CAD, architectural 
drawings, etc., where taking exact measurement 
is important 
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Derivation of perspective projection 
  Consider the projection of a point onto the projection plane: 

  By similar triangles, we can compute how much the x and y 
coordinates are scaled: 

  [Note: Watt uses a left-handed coordinate system, and he looks down 
the +z axis, so his PP is at +d.] 
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Homogeneous coordinates revisited 
  Remember how we said that affine transformations work 
with the last coordinate always set to one. 
  What happens if the coordinate is not one?   
  We divide all the coordinates by W: 

  If W = 1, then nothing changes. 
  Sometimes we call this division step the “perspective 
divide.” 
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Homogeneous coordinates and perspective projection 
  Now we can re-write the perspective projection as a matrix equation: 

  After division by W, we get: 

  Again, projection implies dropping the z coordinate to give a 2D 
image, but we usually keep it around a little while longer. 
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Projective normalization 
 After applying the perspective transformation and 
dividing by w, we are free to do a simple parallel 
projection to get the 2D image. 
 What does this imply about the shape of things 
after the perspective transformation + divide? 
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Vanishing points 
  What happens to two parallel lines that are not parallel to the projection 

plane? 
  Think of train tracks receding into the horizon... 

  The equation for a line is: 

  After perspective transformation we get: 
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Vanishing points (cont'd) 
  Dividing by W: 

  Letting t go to infinity: 

  We get a point that depends only on v 
  What happens to the line                 ? 
  Each set of parallel lines intersect at a vanishing point on 
the PP.  
  Q: How many vanishing points are there? 
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Properties of perspective projections 
  The perspective projection is an example of a projective 

transformation. 

  Here are some properties of projective transformations: 
Lines map to lines 
Parallel lines do not necessarily remain parallel 
Ratios are not preserved 

  One of the advantages of perspective projection is that size varies 
inversely with distance –  looks realistic. 

  A disadvantage is that we can't judge distances as exactly as we can 
with parallel projections. 

  Q:  Why did nature give us eyes that perform  perspective 
projections?  

  Q: Do our eyes “see in 3D”? 
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Z-buffer 
  We can use projections for hidden surface elimination. 
  The Z-buffer' or depth buffer algorithm [Catmull, 1974] is probably the 

simplest and most widely used of these techniques. 
  Here is pseudocode for the Z-buffer hidden surface algorithm: 

for each pixel (i,j) do 
 Z-buffer [i,j]  ← FAR 
 Framebuffer[i,j] ← <background color> 

end for 
for each polygon A do 

 for each pixel in A do 
  Compute depth z and shade s of A at (i,j) 
  if z > Z-buffer [i,j] then 
   Z-buffer [i,j] ← z 
   Framebuffer[i,j] ← s 
  end if 
 end for 

end for 
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Z-buffer, cont'd 
  The process of filling in the pixels inside of a polygon is called 

rasterization. 
  During rasterization, the z value and shade s can be computed 

incrementally (fast!). 

Curious fact: 

"  Described as the “brute-force image space algorithm” by [SSS] 
"  Mentioned only in Appendix B of [SSS] as a point of comparison 

for huge memories, but written off as totally impractical. 

Today, Z-buffers are commonly implemented in hardware. 
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Ray tracing vs. Z-Buffer 
 Ray tracing: 
  for each ray { 
            for each object { 
                 test for intersection 
            } 
        } 
 
Z-Buffer: 
 

  for each object { 
 project_onto_screen; 
   for each ray { 
      test for intersection 

           } 
        } 
 
In both cases, optimizations are applied to the inner loop. 
 
Biggest differences: 

 - ray order vs. object order 
 - Z-buffer does some work in screen space 
 - Z-buffer restricted to rays from a single 

          center of projection! 
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Gouraud vs. Phong interpolation 

 Does Z-buffer graphics hardware do a full shading 
calculation at every point?  Not in the past, but 
this has changed! 
 Smooth surfaces are often approximated by 
polygonal facets, because: 

Graphics hardware generally wants polygons (esp. 
triangles). 
Sometimes it easier to write ray-surface intersection 
algorithms for polygonal models. 

 How do we compute the shading for such a 
surface? 
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Faceted shading 
 Assume each face has a constant normal: 

 For a distant viewer and a distant light source, 
how will the color of each triangle vary? 
 Result: faceted, not smooth, appearance. 
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Gouraud interpolation 
  To get a smoother result that is easily performed in hardware, we can 

do Gouraud interpolation. 
  Here’s how it works: 
"  Compute normals at the vertices. 
"  Shade only the vertices. 
"  Interpolate the resulting vertex colors. 
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Gouraud interpolation, cont'd 
  Gouraud interpolation has significant limitations. 

" If the polygonal approximation is too coarse, we can miss specular highlights. 

" We will encounter Mach banding (derivative discontinuity enhanced by human eye). 

"  Alas, this is usually what graphics hardware supported until very recently. 
"  But new graphics hardware supports… 



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 23 

Phong interpolation 
  To get an even smoother result with fewer artifacts, we can perform 

Phong interpolation. 
  Here’s how it works: 

1.  Compute normals at the vertices. 
2.  Interpolate normals and normalize. 
3.  Shade using the interpolated normals. 
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Gouraud vs. Phong interpolation 
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Texture mapping and the z-buffer 
  Texture-mapping can also be handled in z-buffer algorithms. 

Method: 
Scan conversion is done in screen space, as usual 
Each pixel is colored according to the texture 
Texture coordinates are found by Gouraud-style interpolation 

 
 
 
 
 
 
 
 
 

Note:  Mapping is more complicated if you want to do perspective 
right! 

  - linear in world space != linear in screen space 
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Antialiasing textures 
  If you render an object with a texture map using point-sampling, you 

can get aliasing: 

From Crow, SIGGRAPH '84 
  Proper antialiasing requires area averaging over pixels: 

From Crow, SIGGRAPH '84 
  In some cases, you can average directly over the texture pixels to do 

the anti-aliasing. 
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Computing the average color 
  The computationally difficult part is summing over the 
covered pixels.   
  Several methods have been used. 
  The simplest is brute force:  

Figure out which texels are covered and add up their colors to 
compute the average. 
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Mipmaps 
  A faster method is mip maps developed by Lance Williams in 1983: 

Stands for “multum in parvo” – many things in a small place 
Keep textures prefiltered at multiple resolutions 
Has become the graphics hardware standard 

magnify 
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Mipmap pyramid 

  The mip map hierarchy can be thought of as an image pyramid: 
Level 0 (T0[i,j]) is the original image. 
Level 1 (T1[i,j]) averages over 2x2 neighborhoods of original. 
Level 2 (T2[i,j]) averages over 4x4 neighborhoods of original 
Level 3 (T3[i,j]) averages over 8x8 neighborhoods of original 

  What’s a fast way to pre-compute the texture map for each level? 
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Mipmap resampling 

  What would the mipmap return for an average over a 5 x 5 
neighborhood at location (u0,v0)? 

  How do we measure the fractional distance between levels? 

  What if you need to average over a non-square region? 
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Summed area tables 
  A more accurate method than mipmaps is summed area 
tables invented by Frank Crow in 1984. 
  Recall from calculus: 

  In discrete form: 

  Q: If we wanted to do this real fast, what might we pre-
compute? 
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Summed area tables (cont’d) 
  We can extend this idea to 2D by creating a table, S[i,j], that contains 

the sum of everything below and to the left. 

  Q: How do we compute the average over a region from (l, b) to (r, t)? 
  Characteristics: 

Requires more memory and precision 
Gives less blurry textures 
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Comparison of techniques 
 

Point sampled 

   

 MIP-mapped 

 
 
Summed area table 

 
       From Crow, SIGGRAPH '84 
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Cost of Z-buffering 
  Z-buffering is the algorithm of choice for hardware 
rendering (today), so let’s think about how to make it run 
as fast as possible… 
  The steps involved in the Z-buffer algorithm are: 
1.  Send a triangle to the graphics hardware. 
2.  Transform the vertices of the triangle using the modeling matrix. 
3.  Transform the vertices using the projection matrix. 
4.  Set up for incremental rasterization calculations 
5.  Rasterize 

(generate “fragments” = potential pixels) 
6.  Shade at each fragment 
7.  Update the framebuffer according to z. 

  What is the overall cost of Z-buffering? 



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 35 

Cost of Z-buffering, cont’d 
  We can approximate the cost of this method as: 

 
 where: 
kbus = bus cost to send a vertex 
vbus = number of vertices sent over the bus 
kxform = cost of transforming a vertex 
vxform = number of vertices transformed 
ksetup = cost of setting up for rasterization 
t        = number of triangles being rasterized 
kshade = cost of shading a fragment 
d        = depth complexity 

         (average times a pixel is covered) 
m2     = number of pixels in frame buffer 

2( )bus bus xform xform setup shadek v k v k t k dm+ + +
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Accelerating Z-buffers 
 Given this cost function: 

 what can we do to accelerate Z-buffering? 

Accel method        vbus      vxform           t              d               m 

2( )bus bus xform xform setup shadek v k v k t k dm+ + +
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Introduction to Modern OpenGL 
Programming 

Adapted from SIGGRAPH 2012 slides by 
Ed Angel 

University of New Mexico 
and 

Dave Shreiner 
ARM, Inc 



!  Evolution of the OpenGL Pipeline 
!  A Prototype Application in OpenGL 
!  OpenGL Shading Language (GLSL) 
!  Vertex Shaders 
!  Fragment Shaders 
!  Examples 

 
 
 
 
 

Outline 



!  OpenGL is a computer graphics rendering API 
! With it, you can generate high-quality color images 

by rendering with geometric and image primitives 
!  It forms the basis of many interactive applications 

that include 3D graphics  
!  By using OpenGL, the graphics part of your 

application can be 
!  operating system independent 
!  window system independent 

What Is OpenGL? 



!  We’ll concentrate on the latest versions of OpenGL 
!  They enforce a new way to program with OpenGL 

!  Allows more efficient use of GPU resources 
!  If you’re familiar with “classic” graphics pipelines, 

modern OpenGL doesn’t support 
!  Fixed-function graphics operations 

!  lighting 
!  transformations 

!  All applications must use shaders for their graphics 
processing 

This is the “new” OpenGL 
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The Evolution of the OpenGL 
Pipeline 



!  OpenGL 1.0 was released on July 1st, 1994 
!   Its pipeline was entirely fixed-function 

!  the only operations available were fixed by the 
implementation 

 
!  The pipeline evolved, but remained fixed-function 

through OpenGL versions 1.1 through 2.0 (Sept. 2004) 

In the Beginning … 

Primitive 
Setup and 

Rasterization 

Fragment 
Coloring and 

Texturing 
Blending 

Vertex 
Data 

Pixel 
Data 

Vertex 
Transform and 

Lighting 

Texture 
Store 



!  OpenGL 2.0 (officially) added programmable shaders 
!  vertex shading augmented the fixed-function transform and 

lighting stage 
!  fragment shading augmented the fragment coloring stage 

!  However, the fixed-function pipeline was still available 

 

The Start of the Programmable Pipeline 

Primitive 
Setup and 

Rasterization 

Fragment 
Coloring and 

Texturing 
Blending 

Vertex 
Data 

Pixel 
Data 

Vertex 
Transform and 

Lighting 

Texture 
Store 



!  OpenGL 3.0 introduced the deprecation model 
!  the method used to remove features from OpenGL 

!  The pipeline remained the same until OpenGL 3.1 
(released March 24th, 2009) 

!  Introduced a change in how OpenGL contexts are used 
 

An Evolutionary Change 

Context Type Description 

Full Includes all features (including those marked deprecated) 
available in the current version of OpenGL 

Forward Compatible Includes all non-deprecated features (i.e., creates a context 
that would be similar to the next version of OpenGL) 



!  OpenGL 3.1 removed the fixed-function pipeline 
!  programs were required to use only shaders 

!  Additionally, almost all data is GPU-resident 
!  all vertex data sent using buffer objects 

The Exclusively Programmable Pipeline 

Primitive 
Setup and 

Rasterization 

Fragment 
Shader Blending 

Vertex 
Data 

Pixel 
Data 

Vertex 
Shader 

Texture 
Store 



!  OpenGL 3.2 (released August 3rd, 2009) added an 
additional shading stage – geometry shaders 

More Programmability 

Primitive 
Setup and 

Rasterization 

Fragment 
Shader Blending 

Vertex 
Data 

Pixel 
Data 

Vertex 
Shader 

Texture 
Store 

Geometry 
Shader 



! OpenGL 3.2 also introduced context profiles 
!  profiles control which features are exposed 
!  currently two types of profiles: core and compatible 

More Evolution – Context Profiles 

Context Type Profile Description 

Full 
core All features of the current release 

compatible All features ever in OpenGL 

Forward Compatible 
core All non-deprecated features 

compatible Not supported 



!  OpenGL 4.1 (released July 25th, 2010) included 
additional shading stages – tessellation-control and 
tessellation-evaluation shaders 

!  Latest version is 4.3 

The Latest Pipelines 

Primitive 
Setup and 

Rasterization 

Fragment 
Shader Blending 

Vertex 
Data 

Pixel 
Data 

Vertex 
Shader 

Texture 
Store 

Geometry 
Shader 

Tessellation 
Control 
Shader 

Tessellation 
Evaluation 

Shader 



OpenGL ES and WebGL 

!  OpenGL ES 2.0 
!  Designed for embedded and hand-held devices such as cell 

phones 

!  Based on OpenGL 3.1 

!  Shader based 

!  WebGL  
!  JavaScript implementation of ES 2.0 

!  Runs on most recent browsers 
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OpenGL Application 
Development 



A Simplified Pipeline Model 

Vertex 
Processing Rasterizer Fragment 

Processing 

Vertex 
Shader 

Fragment 
Shader 

GPU Data Flow Application Framebuffer

Vertices Vertices Fragments Pixels



!  Modern OpenGL programs essentially do the 
following steps: 
1.  Create shader programs 
2.  Create buffer objects and load data into them 
3.  “Connect” data locations with shader variables 
4.  Render 

OpenGL Programming in a Nutshell 



!  OpenGL applications need a place to render into 
!  usually an on-screen window 

!  Need to communicate with native windowing 
system 

!  Each windowing system interface is different 
!  We use GLUT (more specifically, freeglut) 

!  simple, open-source library that works everywhere 
!  handles all windowing operations: 

!  opening windows 
!  input processing 

Application Framework Requirements 



!  Operating systems deal with library functions 
differently 
!  compiler linkage and runtime libraries may expose 

different functions 
!  Additionally, OpenGL has many versions and 

profiles which expose different sets of functions 
! managing function access is cumbersome, and 

window-system dependent 
!  We use another open-source library, GLEW, to 

hide those details 

Simplifying Working with OpenGL 



!  Geometric objects are represented using vertices 
!  A vertex is a collection of generic attributes 

!  positional coordinates 
!  colors 
!  texture coordinates 
!  any other data associated with that point in space 

!  Position stored in 4 dimensional homogeneous 
coordinates 

!  Vertex data must be stored in vertex buffer objects 
(VBOs) 

!  VBOs must be stored in vertex array objects 
(VAOs) 

Representing Geometric Objects 

x
y
z
w

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠



!  All primitives are specified by vertices 

OpenGL’s Geometric Primitives 

GL_TRIANGLE_STRIP	
GL_TRIANGLE_FAN	

GL_LINES	 GL_LINE_LOOP	GL_LINE_STRIP	

GL_TRIANGLES	

GL_POINTS	
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A First Program 



! We’ll render a cube with colors at each vertex 
! Our example demonstrates: 

!  initializing vertex data 
!  organizing data for rendering 
!  simple object modeling 

!  building up 3D objects from geometric primitives 
!  building geometric primitives from vertices 

Rendering a Cube 



!  We’ll build each cube face from individual  
triangles 

!  Need to determine how much storage is required 
!  (6 faces)(2 triangles/face)(3 vertices/triangle) 
	const	int	NumVertices	=	36;	

!  To simplify communicating with GLSL, we’ll use a 
vec4 class (implemented in C++) similar to GLSL’s 
vec4 type 
!  we’ll also typedef it to add logical meaning 

 typedef		vec4		point4;	
typedef		vec4		color4;	

Initializing the Cube’s Data 



!  Before we can initialize our VBO, we need to stage the 
data 

!  Our cube has two attributes per vertex 
!  position 
!  color 

!  We create two arrays to hold the VBO data 
 point4		points[NumVertices];	
color4		colors[NumVertices];	

Initializing the Cube’s Data (cont’d) 



//	Vertices	of	a	unit	cube	centered	at	origin,	sides	aligned	
with	axes	

point4	vertex_positions[8]	=	{	
				point4(	-0.5,	-0.5,		0.5,	1.0	),	
				point4(	-0.5,		0.5,		0.5,	1.0	),	
				point4(		0.5,		0.5,		0.5,	1.0	),	
				point4(		0.5,	-0.5,		0.5,	1.0	),	
				point4(	-0.5,	-0.5,	-0.5,	1.0	),	
				point4(	-0.5,		0.5,	-0.5,	1.0	),	
				point4(		0.5,		0.5,	-0.5,	1.0	),	
				point4(		0.5,	-0.5,	-0.5,	1.0	)	

};	

Cube Data 



//	RGBA	colors	
color4	vertex_colors[8]	=	{	
				color4(	0.0,	0.0,	0.0,	1.0	),		//	black	
				color4(	1.0,	0.0,	0.0,	1.0	),		//	red	
				color4(	1.0,	1.0,	0.0,	1.0	),		//	yellow	
				color4(	0.0,	1.0,	0.0,	1.0	),		//	green	
				color4(	0.0,	0.0,	1.0,	1.0	),		//	blue	
				color4(	1.0,	0.0,	1.0,	1.0	),		//	magenta	
				color4(	1.0,	1.0,	1.0,	1.0	),		//	white	
				color4(	0.0,	1.0,	1.0,	1.0	)			//	cyan	
};	
	

Cube Data 



// quad() generates two triangles for each face and assigns 
colors to the vertices 

int Index = 0;  // global variable indexing into VBO arrays 
 

void quad(int a, int b, int c, int d) { 
    colors[Index] = vertex_colors[a]; points[Index] = 

vertex_positions[a]; Index++; 
    colors[Index] = vertex_colors[b]; points[Index] = 

vertex_positions[b]; Index++; 
    colors[Index] = vertex_colors[c]; points[Index] = 

vertex_positions[c]; Index++; 
    colors[Index] = vertex_colors[a]; points[Index] = 

vertex_positions[a]; Index++; 
    colors[Index] = vertex_colors[c]; points[Index] = 

vertex_positions[c]; Index++; 
    colors[Index] = vertex_colors[d]; points[Index] = 

vertex_positions[d]; Index++; 
} 

Generating a Cube Face from Vertices 



//	generate	12	triangles:	36	vertices	and	36	
colors	

void	
colorcube()	{	
				quad(	1,	0,	3,	2	);	
				quad(	2,	3,	7,	6	);	
				quad(	3,	0,	4,	7	);	
				quad(	6,	5,	1,	2	);	
				quad(	4,	5,	6,	7	);	
				quad(	5,	4,	0,	1	);	
}	

	
	

Generating the Cube from Faces 



!  VAOs store the data of a geometric object 
!  Steps in using a VAO 

!  generate VAO names by calling 
glGenVertexArrays()	

!  bind a specific VAO for initialization by calling 
glBindVertexArray()	

!  update VBOs associated with this VAO 
!  bind VAO for use in rendering 

!  This approach allows a single function call to 
specify all the data for an objects 
!  previously, you might have needed to make many calls 

to make all the data current  

Vertex Array Objects (VAOs) 



//	Create	a	vertex	array	object	
GLuint	vao;	
glGenVertexArrays(1,	&vao);	
glBindVertexArray(vao);	

	
					

VAOs in Code 



!  Vertex data must be stored in a VBO, and 
associated with a VAO 

!  The code-flow is  similar to configuring a VAO 
!  generate VBO names by calling glGenBuffers()	
!  bind a specific VBO for initialization by calling  

glBindBuffer(GL_ARRAY_BUFFER,	…)	
!  load data into VBO using  

glBufferData(GL_ARRAY_BUFFER,	…)	
!  bind VAO for use in rendering 

glBindVertexArray()	

Storing Vertex Attributes 



//	Create	and	initialize	a	buffer	object	
GLuint	buffer;	
glGenBuffers(1,	&buffer);	
glBindBuffer(GL_ARRAY_BUFFER,	buffer);	
glBufferData(GL_ARRAY_BUFFER,	sizeof(points)	+	
											sizeof(colors),	NULL,	
GL_STATIC_DRAW);	

glBufferSubData(GL_ARRAY_BUFFER,	0,		
															sizeof(points),	points);	

glBufferSubData(GL_ARRAY_BUFFER,	sizeof(points),	
sizeof(colors),	colors);	

VBOs in Code 



! Application vertex data enters the OpenGL 
pipeline through the vertex shader 

! Need to connect vertex data to shader 
variables 
!  requires knowing the attribute location 

! Attribute location can either be queried by 
calling glGetVertexAttribLocation()	

Connecting Vertex Shaders with Geometry 



//	set	up	vertex	arrays	(after	shaders	are	loaded)	
GLuint	vPosition	=	glGetAttribLocation(program,	

"vPosition”);	
glEnableVertexAttribArray(vPosition);	
glVertexAttribPointer(vPosition,	4,	GL_FLOAT,	

GL_FALSE,	0,	BUFFER_OFFSET(0));	
GLuint	vColor	=	glGetAttribLocation(program,	

"vColor”);	
glEnableVertexAttribArray(vColor);	
glVertexAttribPointer(vColor,	4,	GL_FLOAT,	

GL_FALSE,	0,	BUFFER_OFFSET(sizeof(points)));	

Vertex Array Code 



!  For contiguous groups of vertices 

!  Usually invoked in display callback 
!  Initiates vertex shader 

Drawing Geometric Primitives 

glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	
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Shaders and GLSL 



Scalar types: float, int, bool 
 
Vector types: vec2, vec3, vec4 
                      ivec2, ivec3, ivec4 
                      bvec2, bvec3, bvec4 
 
Matrix types: mat2, mat3, mat4 
 
Texture sampling: sampler1D, sampler2D, sampler3D, 

samplerCube 
 
C++ style constructors: vec3 a = vec3(1.0, 2.0, 3.0); 
 
 

GLSL Data Types 



!  Standard C/C++ arithmetic and logic operators 
!  Operators overloaded for matrix and vector operations 

Operators 

mat4	m;	
vec4	a,	b,	c;	
	
b	=	a*m;	
c	=	m*a;	



For vectors can use [ ], xyzw, rgba or stpq 
Example: 
vec3	v;	
v[1],	v.y,	v.g,	v.t	all refer to the same element 
Swizzling: 
vec3	a,	b;	
a.xy	=	b.yx;	

Components and Swizzling 



!  in, out 
!  Copy vertex attributes and other variables to/from 

shaders 
!  in	vec2	tex_coord;	
!  out	vec4	color;	

! Uniform: variable from application  
!  uniform	float	time;	
!  uniform	vec4	rotation;	

Qualifiers 



!  if 
!  if else 
!  expression ? true-expression : false-

expression 
! while, do while 
!  for 

Flow Control 



!  Built in 
! Arithmetic: sqrt, power, abs 
!  Trigonometric: sin, asin 
! Graphical: length, reflect 

!  User defined 

Functions 



!  gl_Position: output position from vertex 
shader 

!  gl_FragColor: output color from fragment 
shader  
! Only for ES, WebGL and older versions of GLSL 
!  Present version use an out variable 

Built-in Variables 



Simple Vertex Shader for Cube 

in	vec4	vPosition;	
in	vec4	vColor;	
out	vec4	color;	
	
void	main()	{	
				color	=	vColor;	
				gl_Position	=	vPosition;	
}	
	



The Simplest Fragment Shader 

in	vec4	color;	
out	vec4	FragColor;	
	
void	main()	{	
				FragColor	=	color;	
}	



!  Shaders need to be compiled 
and linked to form an 
executable shader program 

!  OpenGL provides the compiler 
and linker 

!  A program must contain 
!  vertex and fragment 

shaders 
!  other shaders are optional 

Getting Shaders into OpenGL 

Create 
Shader 

Load Shader 
Source 

Compile 
Shader 

Create 
Program 

Attach Shader 
to Program 

Link 
Program 

glCreateProgram() 

glShaderSource() 

glCompileShader() 

glCreateShader() 

glAttachShader() 

glLinkProgram() 

Use Program glUseProgram() 

These 
steps need 
to be 
repeated 
for each 
type of 
shader in 
the shader 
program 



!  We’ve created a routine for this course to make it 
easier to load your shaders 
!  available at course website 

GLuint	InitShaders(	const	char*	vFile,	const	char*	
fFile); 

!  InitShaders	takes two filenames 
!  vFile for the vertex shader 
!  fFile for the fragment shader 

!  Fails if shaders don’t compile, or program doesn’t 
link 

 

A Simpler Way 



!  Need to associate a shader variable with an OpenGL data 
source 
!  vertex shader attributes → app vertex attributes 
!  shader uniforms → app provided uniform values 

!  OpenGL relates shader variables to indices for the app to 
set 

!  Two methods for determining variable/index association 
!  specify association before program linkage 
!  query association after program linkage 

Associating Shader Variables and Data 



Assumes you already know the variables’ name 
 
GLint  idx =  
glGetAttribLocation(program, “name”); 

 
GLint  idx =  
glGetUniformLocation(program, “name”); 

Determining Locations After Linking 



Uniform Variables 
glUniform4f(index,	x,	y,	z,	w);	
	
Glboolean	transpose	=	GL_TRUE;			
				//	Since	we’re	C	programmers	
Glfloat	mat[3][4][4]	=	{	…	};	

glUniformMatrix4fv(index,	3,	transpose,	mat);		
      

Initializing Uniform Variable Values 



int	main(int	argc,	char	**argv)	{	
	glutInit(&argc,	argv);	
	glutInitDisplayMode(GLUT_RGBA	|	GLUT_DOUBLE	|	

GLUT_DEPTH);	
		glutInitWindowSize(512,	512);	
		glutCreateWindow("Color	Cube”);	
		glewInit();	
		init();	
		glutDisplayFunc(display);	
		glutKeyboardFunc(keyboard);	
		glutMainLoop();	
		return	0;	
}	

Finishing the Cube Program 



void	display(void)	{	
			glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);	

				glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	

				glutSwapBuffers();	

}	

	
void	keyboard(unsigned	char	key,	int	x,	int	y)	{	
				switch(	key	)	{	
								case	033:	case	'q':	case	'Q':	
												exit(	EXIT_SUCCESS	);	
												break;	
				}	
}	

	

Cube Program GLUT Callbacks 



!  A vertex shader is initiated by each vertex output by 
glDrawArrays()	

!  A vertex shader must output a position in clip 
coordinates to the rasterizer 

!  Basic uses of vertex shaders 
!  Transformations 
!  Lighting 
!  Moving vertex positions 

Vertex Shader Examples 



Transformations 



3D is just like taking a photograph (lots of 
photographs!) 

Camera Analogy 

camera

tripod model

viewing
volume



 Transformations take us from one “space” to 
another 

All of our transforms are 4×4 matrices  

Transformations 

Model-View 
Transform

Projection 
Transform

Perspective  
Division
(w)

Viewport 
Transform

Modeling 
Transform

Modeling 
Transform

Object Coords. 

World Coords. Eye Coords. Clip Coords. 
Normalized 

Device 
Coords. 

Vertex 
Data 

2D Window 
Coordinates 



!  Modeling transformations 
!  assemble the world and move the objects 

!  Viewing transformations 
!  define position and orientation of the viewing 

volume in the world 
!  Projection transformations 

!  adjust the lens of the camera 
!  Viewport transformations 

!  enlarge or reduce the physical photograph 

Camera Analogy Transform Sequence 



⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

M

!  matrices are always 
post-multiplied 

!  product of matrix and 
vector is  

!  A vertex is 
transformed by 4×4 
matrices 
!  all affine operations 

are matrix 
multiplications 

!  all matrices are stored 
column-major in 
OpenGL 
!  this is opposite of 

what “C” 
programmers expect 

3D Homogeneous Transformations 

vM



!  Set up a viewing frustum to specify how much 
of the world we can see 

! Done in two steps 
!  specify the size of the frustum (projection transform) 
!  specify its location in space (model-view transform) 

! Anything outside of the viewing frustum is 
clipped 
!  primitive is either modified or discarded (if entirely 

outside frustum) 

View Specification 



!  OpenGL projection model uses eye coordinates 
!  the “eye” is located at the origin 
!  looking down the -z axis 

!  Projection matrices use a six-plane model: 
!  near (image) plane and far (infinite) plane 

! both are distances from the eye (positive values) 
!  enclosing planes 

! top & bottom, left & right 

View Specification (cont’d) 



!  Position the camera/eye in the scene 
!  To “fly through” a scene 

!  change viewing transformation and 
redraw scene 

!  LookAt(eyex,	eyey,	eyez,	
						lookx,	looky,	lookz,	
						upx,	upy,	upz)	
!  up vector determines unique orientation 
!  careful of degenerate positions 

Viewing Transformations 



Move object or change 
frame origin 

Translation 
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Stretch, mirror or decimate a 
coordinate direction 

Scale 

Note, there’s a translation applied here to 
make things easier to see
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Rotate coordinate system about an axis in space 

Rotation 

Note, there’s a translation applied 
here to make things easier to see



Vertex Shader for Cube Rotation 

in	vec4	vPosition;	
in	vec4	vColor;	
out	vec4	color;	
uniform	vec3	theta;	
	
void	main()	{	
				//	Compute	the	sines	and	cosines	of	theta	for	
				//	each	of	the	three	axes	in	one	computation.	
				vec3	angles	=	radians(theta);	
				vec3	c	=	cos(angles);	
				vec3	s	=	sin(angles);	



				//	Remember:	these	matrices	are	column-major	
	
				mat4	rx	=	mat4(	1.0,		0.0,		0.0,	0.0,	
																				0.0,		c.x,		s.x,	0.0,	
																				0.0,	-s.x,		c.x,	0.0,	
																				0.0,		0.0,		0.0,	1.0	);	
	
				mat4	ry	=	mat4(	c.y,	0.0,	-s.y,	0.0,	
																				0.0,	1.0,		0.0,	0.0,	
																				s.y,	0.0,		c.y,	0.0,	
																				0.0,	0.0,		0.0,	1.0	);	
	

Vertex Shader for Cube Rotation 



	
				mat4	rz	=	mat4(	c.z,	-s.z,	0.0,	0.0,	
																				s.z,		c.z,	0.0,	0.0,	
																				0.0,		0.0,	1.0,	0.0,	
																				0.0,		0.0,	0.0,	1.0	);	
	
				color	=	vColor;	
				gl_Position	=	rz	*	ry	*	rx	*	vPosition;	
}		

Vertex Shader for Cube Rotation 



//	compute	angles	using	mouse	and	idle	callbacks		
GLuint	theta;		//	theta	uniform	location	
vec3		Theta;			//	Axis	angles	
	
void	display(void)	{	
			glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);	
	
			glUniform3fv(theta,	1,	Theta);	
			glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	
	
			glutSwapBuffers();	
}	
 

Sending Angles from Application 
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Vertex Lighting 



!  Lighting simulates how objects reflect light 
!  material composition of object 
!  light’s color and position 
!  global lighting parameters 

!  Lighting functions deprecated in 3.1 
!  Can implement in 

!  Application (per vertex) 
!  Vertex or fragment shaders 

Lighting Principles 



!  Computes a color or shade for each vertex using a 
lighting model (the modified Phong model) that takes 
into account  
! Diffuse reflections 
!  Specular reflections  
! Ambient light 
!  Emission 

!  Vertex shades are interpolated across polygons by the 
rasterizer 

Modified Phong Model 



!  The model is a balance between simple computation 
and physical realism 

!  The model uses 
!  Light positions and intensities 
!  Surface orientation (normals) 
!  Material properties (reflectivity) 
!  Viewer location 

!  Computed for each source and each color component 

Modified Phong Model 



!  Modified Phong lighting model 
!  Computed at vertices 

!  Lighting contributors 
!  Surface material properties 
!  Light properties 
!  Lighting model properties 

OpenGL Lighting 



!  Normals define how a surface reflects light 
!  Application usually provides normals as a vertex atttribute 
!  Current normal is used to compute vertex’s color 
!  Use unit normals for proper lighting 

!  scaling affects a normal’s length 

Surface Normals 



!  Define the surface properties of a primitive 

!  you can have separate materials for front and back 

Material Properties 

Property Description 
Diffuse Base object color 
Specular Highlight color 
Ambient Low-light color 
Emission Glow color 

Shininess Surface 
smoothness 



//	vertex	shader		
	
in	vec4	vPosition;	
in	vec3	vNormal;	
out	vec4	color;	
	
uniform	vec4	AmbientProduct,	DiffuseProduct,	

SpecularProduct;	
uniform	mat4	ModelView;	
uniform	mat4	Projection;	
uniform	vec4	LightPosition;	
uniform	float	Shininess;	

Adding Lighting to Cube 



void	main()	{	
			//	Transform	vertex		position	into	eye	coordinates	
			vec3	pos	=	(ModelView	*	vPosition).xyz;	
									
			vec3	L	=	normalize(LightPosition.xyz	-	pos);	
			vec3	E	=	normalize(-pos);	
			vec3	H	=	normalize(L	+	E);	
	
			//	Transform	vertex	normal	into	eye	coordinates	
			vec3	N	=	normalize(ModelView	*	vec4(vNormal,	0.0)).xyz;	

Adding Lighting to Cube 



//	Compute	terms	in	the	illumination	equation	
				vec4	ambient	=	AmbientProduct;	
				float	Kd	=	max(dot(L,	N),	0.0);	
				vec4		diffuse	=	Kd*DiffuseProduct;	
				float	Ks	=	pow(max(dot(N,	H),	0.0),	Shininess);	
				vec4		specular	=	Ks	*	SpecularProduct;	
				if(dot(L,	N)	<	0.0)		
								specular	=	vec4(0.0,	0.0,	0.0,	1.0)		
	
				gl_Position	=	Projection	*	ModelView	*	vPosition;	
	
				color	=	ambient	+	diffuse	+	specular;	
				color.a	=	1.0;	
}	

Adding Lighting to Cube 
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Shader Examples 



!  A shader that’s executed for each “potential” pixel 
!  fragments still need to pass several tests before making it to 

the framebuffer 
!  There are lots of effects we can do in fragment shaders 

!  Per-fragment lighting 
!  Bump Mapping 
!  Environment (Reflection) Maps 

Fragment Shaders 



!  Compute lighting using same model as for per 
vertex lighting but for each fragment 

!  Normals and other attributes are sent to vertex 
shader and output to rasterizer 

!  Rasterizer interpolates and provides inputs for 
fragment shader 

Per Fragment Lighting 



!  Vertex Shaders 
! Moving vertices: height fields 
!  Per vertex lighting: height fields 
!  Per vertex lighting: cartoon shading 

!  Fragment Shaders 
!  Per vertex vs. per fragment lighting: cartoon shader 
!  Samplers: reflection Map 
!  Bump mapping 

Shader Examples 



!  A height field is a function y = f(x, z) where the 
y value represents a quantity such as the height 
above a point in the x-z plane. 

!  Heights fields are usually rendered by sampling 
the function to form a rectangular mesh of 
triangles or rectangles from the samples yij =  
f(xi, zj) 

Height Fields 



!  Form a quadrilateral mesh 

 
 
 
!  Display each quad using 

Displaying a Height Field 

for(i=0;i<N;i++)	for(j=0;j<N;j++)	data[i][j]=f(i,	j,	time);	
	
vertex[Index++]	=	vec3((float)i/N,	data[i][j],	(float)j/N);	
vertex[Index++]	=	vec3((float)i/N,	data[i][j],	(float)(j+1)/N);	
vertex[Index++]	=	vec3((float)(i+1)/N,	data[i][j],	(float)(j+1)/N);	
vertex[Index++]	=	vec3((float)(i+1)/N,	data[i][j],	(float)(j)/N);		

	for(i=0;i<NumVertices	;i+=4)	glDrawArrays(GL_LINE_LOOP,	4*i,	4);	



Time Varying Vertex Shader 
in	vec4	vPosition;	
in	vec4	vColor;	
	
uniform	float	time;	/*	in	milliseconds	*/	
uniform	mat4	ModelView,	ProjectionMatrix;	
	
void	main()		{	
				vec4		v	=	vPosition;	
				vec4		t	=	sin(0.001*time	+	5.0*v);					
				v.y	=	0.1*t.x*t.z;	
	
				gl_Position	=	ModelViewProjectionMatrix	*	t;	
}	



Mesh Display 



!  Solid Mesh: create two triangles for each 
quad  

! Display with  
glDrawArrays(GL_TRIANGLES,	0,	NumVertices);	

!  For better looking results, we’ll add lighting 
! We’ll do per-vertex lighting 

!  leverage the vertex shader since we’ll also use it to 
vary the mesh in a time-varying way 

Adding Lighting 



uniform	float	time,	shininess;	
uniform	vec4	vPosition,	light_position	diffuse_light,	
specular_light;	
uniform	mat4	ModelViewMatrix,	ModelViewProjectionMatrix,	
				NormalMatrix;	
	
void	main()	{	
			vec4		v	=	vPosition;	
			vec4		t	=	sin(0.001*time	+	5.0*v);	
			v.y	=	0.1*t.x*t.z;	
	
			gl_Position	=	ModelViewProjectionMatrix	*	v;	
	
			vec4	diffuse,	specular;	
			vec4	eyePosition	=	ModelViewMatrix	*	vPosition;	
			vec4	eyeLightPos	=	light_position;	

Mesh Shader 



				vec3	N	=	normalize(NormalMatrix	*	Normal);	
				vec3	L	=	normalize(eyeLightPos.xyz	-	eyePosition.xyz);	
				vec3	E	=	-normalize(eyePosition.xyz);	
				vec3	H	=	normalize(L	+	E);	
	
				float	Kd	=	max(dot(L,	N),	0.0);	
				float	Ks	=	pow(max(dot(N,	H),	0.0),	shininess);	
				diffuse		=	Kd*diffuse_light;	
				specular	=	Ks*specular_light;	
				color				=	diffuse	+	specular;	
}	

Mesh Shader (cont’d) 



Shaded Mesh 
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Texture Mapping 



Texture Mapping 

s 

t 

x 

y 

z 

image 

geometry screen 



Texture Mapping in OpenGL 

!  Images and geometry flow through separate 
pipelines that join at the rasterizer 
!  “complex” textures do not affect geometric 

complexity 

Geometry 
Pipeline 

Pixel 
Pipeline 

Rasterizer 

Vertices

Pixels

Fragment 
Shader 



Applying Textures 
!  Three basic steps to applying a texture 

1.  specify the texture 
!  read or generate image 
!  assign to texture 
!  enable texturing 

2.  assign texture coordinates to vertices 
3.  specify texture parameters 

!  wrapping, filtering 



1.  specify textures in texture objects 
2.  set texture filter  
3.  set texture function  
4.  set texture wrap mode 
5.  set optional perspective correction hint 
6.  bind texture object  
7.  enable texturing 
8.  supply texture coordinates for vertex 

Applying Textures 



Texture Objects 

!  Have OpenGL store your images 
!  one image per texture object 
!  may be shared by several graphics contexts 

!  Generate texture names 
glGenTextures(n,	*texIds);	



Texture Objects (cont'd.) 

!  Create texture objects with texture data and 
state 
!  glBindTexture(target,	id);	

!  Bind textures before using 
!  glBindTexture(target,	id);	



!  Define a texture image from an array of  
   texels in CPU memory 

glTexImage2D(target,	level,	components,	
			w,	h,	border,	format,	type,	*texels);	

!  Texel colors are processed by pixel pipeline 
!  pixel scales, biases and lookups can be 

done 

Specifying a Texture Image 



!  Based on parametric texture coordinates 
!  Coordinates need to be specified at each vertex 

Mapping a Texture 

s 

t 1, 1 
0, 1 

0, 0 1, 0 

(s, t) = (0.2, 0.8) 

(0.4, 0.2) 

(0.8, 0.4) 

A 

B C 

a 

b 
c 

Texture Space Object Space 



Applying the Texture in the Shader 

// Declare the sampler 
uniform sampler2D diffuse_mat; 
// GLSL 3.30 has overloaded texture(); 
// Apply the material color 
vec3 diffuse = intensity * 
   texture2D(diffuse_mat, coord).rgb; 
 



Texturing the Cube 
// add texture coordinate attribute to quad 
function 
 
quad(int a, int b, int c, int d) { 
    quad_colors[Index] = vertex_colors[a]; 
    points[Index] = vertex_positions[a]; 
    tex_coords[Index] = vec2(0.0, 0.0); 
    Index++; 
    … // rest of vertices 
} 



Creating a Texture Image 
// Create a checkerboard pattern 
for (int i = 0; i < 64; i++) { 
    for (int j = 0; j < 64; j++) { 
        GLubyte c; 
        c = (((i & 0x8) == 0) ^ ((j & 0x8) == 0)) * 255; 
        image[i][j][0]  = c; 
        image[i][j][1]  = c; 
        image[i][j][2]  = c; 
        image2[i][j][0] = c; 
        image2[i][j][1] = 0; 
        image2[i][j][2] = c; 
        } 
    } 
 



Texture Object 

GLuint	textures[1];	
glGenTextures(1,	textures);	
	
glBindTexture(GL_TEXTURE_2D,	textures[0]);	
glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGB,	TextureSize,	
														TextureSize,	GL_RGB,	GL_UNSIGNED_BYTE,	image);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_S,	GL_REPEAT);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_T,	GL_REPEAT);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);	
glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);	
glActiveTexture(GL_TEXTURE0);	
	



Vertex Shader 
in vec4 vPosition; 
in vec4 vColor; 
in vec2 vTexCoord; 
 
out vec4 color; 
out vec2 texCoord; 
 
void main() { 
    color       = vColor; 
    texCoord    = vTexCoord; 
    gl_Position = vPosition; 
}  
 



Fragment Shader 
in vec4 color; 
in vec2 texCoord; 
out vec4 FragColor; 
 
uniform sampler texture; 
 
void main() {  
   FragColor = color * texture(texture, texCoord); 
}  
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Next class: Visual Perception 
 Topic: 

 How does the human visual system? 
 How do humans perceive color? 
 How do we represent color in computations? 

 Read: 
  • Glassner, Principles of Digital Image Synthesis, 
    pp. 5-32.  [Course reader pp.1-28]  
  • Watt , Chapter 15. 
  • Brian Wandell. Foundations of Vision. Sinauer  
    Associates, Sunderland, MA, pp. 45-50 and 
    69-97, 1995. 
    [Course reader pp. 29-34 and pp. 35-63]  


