Basic Ray Tracing

Rendering: Reality

Eye acts as pinhole camera %Cv/ié

Photons from light
hit objects

Rendering: Reality

Eye acts as pinhole camera

tons/sec
one lightbulb = 10 pho

Photons from light
hit objects

Rendering: Reality

Eye acts as pinhole camera

9 photons/sec
one lightbulb = 10 pho

Photons from light
hit objects

Bounce everywhere

Extremely few
hit eye, form image

Rendering: Reality

Useful abstraction: virtual image plane

aperture (virtual camera origin, = eye)

\

virtual camera
(image plane in front)

© www.scratchapixel.com

Rendering: Reality

Pros
* photorealistic
* embarrassingly parallel?

cons

« SLOW for all but extremely trivial
scenes

Rendering: Ray Tracing

Reverse of reality
* shoot rays through image plane
* See what they hit '"‘/9

Camera

(% Light Source

)@cene Object

Rendering: Ray Tracing

Reverse of reality
* shoot rays through image plane
* see what they hit ""/9

Camera

» reflections? NIENAEGeE

(% Light Source

shadows? R ;
)\ ‘\Scene Object

Rendering: Ray Tracing

Reverse of reality
* shoot rays through image plane
* see what they hit "“/9

Camera

L1 (% Light Source
 reflections? B ¢
shadows? T

* shoot secondary rays \Q
Scene Object

Rendering: Ray Tracing

Reverse of reality
* shoot rays through image plane
* see what they hit "“/9

Camera

g=e (% Light Source
* reflections? S ¢
shadows? KT

* shoot secondary rays \Q
Scene Object

Embarrassingly parallel

“Ray Tracing is Slow”

Very true in the past; still true today
But real-time ray tracing is coming

[Nvidia OptiX]

Image

Camera / 8 Light Source

What Is the time complexity?)& HoroeDied

Image

Camera / % Light Source

Why Slow? P
What Is the time Complexity?)\ Sesne Object

Naive algorithm: O(NR)
* R: number of rays
* N: number of objects

Image

Camera / % Light Source
\

Why Slow? o ;
What Is the time Complexity?)\ Sesne Object

Naive algorithm: O(NR)
* R: number of rays
* N: number of objects

But rays can be cast in parallel
« each ray O(N)
» even faster with good culling

Image

Camera / % Light Source

Why Slow? S

Despite being parallel:

1. poor cache coherence
* nearby rays can hit different geometry

Image

Camera / % Light Source

Why Slow?)? —

Despite being parallel:

1. poor cache coherence
* nearby rays can hit different geometry

2. unpredictable
* must shade pixels whose rays hit object
* may require tracing rays recursively

Basic Algorithm

For each pixel:
* shoot ray from camera through pixel
 find first object it hits
* If it hit something
* shade that pixel

Basic Algorithm

For each pixel:
* shoot ray from camera through pixel
 find first object it hits
 |f it hit something
* shade that pixel
* maybe shoot secondary rays

Shoot Rays From GCamera

Ray has origin and direction

Shoot Rays From GCamera

Ray has origin and direction

Points on ray are the positive span
o+vt, t>0

Shoot Rays From GCamera

Ray has origin and direction

Points on ray are the positive span
o+vt, t>0

(why positive?)

Shoot Rays From GCamera

How to pick ray?
* obviously origin is eye

Shoot Rays From GCamera

How to pick ray?
* obviously origin is eye
* pick direction to pierce center of pixel

Shoot Rays From GCamera

How to pick ray?
* obviously origin is eye
* pick direction to pierce center of pixel

Shoot Rays From GCamera

How to pick ray?
* obviously origin is eye
* pick direction to pierce center of pixel

Antialiasing:
multiple
rays/pixel

Find First Object Hit By Ray

Collision detection: find all values of t
where ray hits object boundary

Take smallest positive value of t

Find First Object Hit By Ray

Collision detection: find all values of t
where ray hits object boundary

Take smallest positive value of t

Ray-Plane Collision Detection
o+ vt
Plane specified by:

* point on plane i \
* plane normal Tq

Ray-Plane Collision Detection
o+ vt
Plane specified by:

* point on plane i \
* plane normal Tq

(o+vt—q)-n=0

_ (g—o)n
t = %5

Ray-Plane Collision Detection
o+ vt
Plane specified by:

* point on plane i \
* plane normal Tq

(o+vt—q)-n=0

_ (g—o)n
t = %5

(what if t < 0?)

Ray-Plane Collision Detection
o+ vt
Plane specified by:

* point on plane f \
* plane normal Tq

(o+vt—q)-n=0

_ (g—o)n
t = %5

(what if t < 07?)
(what if denominator = 0?)

Ray-Triangle Collision Detection

First, intersect with triangle’s plane

Next: Is P inside or outside
the triangle?

P

o

P

Ray-Triangle Collision Detection
P, B

Normal:

o (B=A)x(C—A) C
 [[(B=A)x(C—-A)

Ray-Triangle Collision Detection
P. B

Normal:

o (B=A)x(C—A) C
 [[(B=A)x(C—-A)

|dea: If P inside, must be left
of line AB

Ray-Triangle Collision Detection
P. B

Normal:
o (B=A)x(C—A) C
— [(B=A)x(C-A)
|dea: If P inside, must be left
of line AB

(B—A)x (P—A)-7>0

Ray-Triangle Collision Detection
P

Normal:

(B—A)x (C—A) C

N = [B=A)x(C—A)]

ldea: If P inside, must be on
correct side of lines

(B—A)x(P—A)-n>0
(C—B)x (P—B)-7>0
(A—C)x (P-C)-n>0

Ray-Sphere Collision Detection

Sphere specified by
* center C
* radius r

Ray-Sphere Collision Detection

Sphere specified by
* center C
* radius r

lo+ 0t —C|| =r

Ray-Sphere Collision Detection

Sphere specified by
* center C
* radius r

lo+ 0t —C|| =r

key idea: can square both sides

lo + it — C||* = 72

Ray-Sphere Collision Detection

Sphere specified by
* center C
* radius r

t* +[2(0—C)-0]t+ [(0=C)-(0—C) —r?| =0

Quadratic equation!

Zero, One, or Two Roots

No Intersection

Two Points of Intersection

Single Point of Intersection —/

Ray-Box Gollision Detection

Challenge: ray could hit any of six sides

A N —

origin

Could do lots of ray-p
rectangle checks...

ane and point-in-

What is Shading?

Shading: coloring the pixels

What does color depend on?

What is Shading?

Shading: coloring the pixels

What does color depend on?
* object material

* Incoming light

* angle of viewer

Shading Materials

Different materials can behave very
differently

* Opague vs translucent vs transparent
* shiny vs dull

Shading Materials

Different materials can behave very
differently

* Opague vs translucent vs transparent
* shiny vs dull

We classify different responses to light
into “types”

Emissive Lighting

Light generated within material

Diffuse Reflection

Light comes Iin, bounces out randomly

on a surface

Light rays shining

Diffuse Reflection

Light comes In, bounces out randomly

‘\“x -
. R’Eﬂﬁﬁ Eﬂ -

—-:_::':-."' - sﬂaffe-r -
ff_,.- e

e

F

o

k1

dnrectmnﬁ]

EVa

Typical for “rough” unpolished materials
View angle doesn’t matter

. -

on a surface

Light rays shining

Specular Reflection

Light reflects perfectly

Y.

Specular Reflection
(smooth surfaces)

Typical for smooth, “polished” surfaces

General Opaque Materials

Lie on diffuse-specular spectrum

General Opaque Materials

Lie on diffuse-specular spectrum

Pure diffuse: Lambertian

e |dealized material common in CV...

General Opaque Materials

Lie on diffuse-specular spectrum

Pure diffuse: Lambertian

e |dealized material common in CV...

Pure specular: mirror

What About Translucent?

Subsurface Scattering

Light
Interacting \
i [\.

What About Translucent?

Subsurface Scattering
Refraction

What About Translucent?

Subsurface Scattering
Refraction

Structural Color

Not today.

The Rendering Equation
Lout (9?"7 qb’r‘) — f@i fqb?, f’r(e?“a Cb?“a 9’133 gbz)Lln(QZa Qb@) COS 9’&

The Rendering Equation
Lout (9?"7 qb’r‘) — f@i fqb?, f’r(e?“a Cb?“a 9’133 gbz)Lln(QZa Qb@) COS 9’&

e

LOUt (flb"") — f’d‘)z €hemisphere f’r (’lf),,«, /LDZ) Lm(@@) U/}/" L

The Rendering Equation

Lout (9?"7 qb’r‘) — f@i fqbf,, f’r(e?”a Cb?“) 9’133 gbz)Lln(Q@a Qb@) COS 9’&

A A e

LOUt (QD"") — f’d‘)z €hemisphere f’r (’(Z),,«, /LDZ) Lin(wi) Wi =N

AN

BRDF
“Bidirectional Reflectance
Distribution Function”
(encodes material)

Why the Cosine Term?

Light at angle hits surface more sparsely
« “Lambert’s Cosine Law”

BRDFs

Positive and bidirectional: f,(w,,w;) = f(1;, w,)

Captured for different materials, stored In
libraries

Source Driver Hoop
Light Source

—py (M STy r:-'"'_
-~ "'.r*=~.
Reflectance Detector — * _,"1.\:.

£ A

)

LN :‘-:_,:_:_:\". Rotating Annuli

T T I e e T S N P

Transmittanoe Detector

BRDFs

Positive and bidirectional: f, (w,,w;) = f.(1;, w,)

Captured for different materials, stored In
libraries

More complicated versions exist that
account for wavelength, subsurface
scattering, transmission, etc etc

The Rendering Equation
Lout(g’r) qb’r‘) — f@i fqb% f’r(g?“a Cb?") 9’53 gbZ)Lln(Q@a Qb@) COS 9’&

e

LOUt (QD”") — ftbz €hemisphere f’r (rd\)’r’ ’LZ)@) Lm(fu/}?') ’UAJ@ L

Often too slow for graphics
* approximate!

Local llumination

Simplifying assumptions:
* Ignore everything
except:
eye, light,
and object

Local llumination

Simplifying assumptions:

* Ignhore everything except eye, light, and
object
* Dbasic version: no shadows, reflections, etc

Local llumination

Simplifying assumptions:

* Ignhore everything except eye, light, and
object
* basic version: no shadows, reflections, etc
* but can support basic shadows/reflection

Local llumination

Simplifying assumptions:

* Ignhore everything except eye, light, and
object
* basic version: no shadows, reflections, etc
* but can support basic shadows/reflection

* only point lights

* only simple (diffuse & specular)
materials

Global Hlumination

