
Lighting and Shading

Today: Local Illumination

Solving the rendering equation is too
expensive

First do local illumination

Then “hack in” reflections and shadows

Local Shading: Notation

light intensity in, light intensity out

vector pointing to: light, normal direction,
eye, reflection direction

Ignore camera and light direction
completely

Ambient Term

material constant

Ignore camera and light direction
completely

Ambient Term

material constant

one eq.
per color
channel

Lambertian surface – constant BRDF

Diffuse Term

Lambertian surface – constant BRDF

Diffuse Term

ignore back faces

Perfect specular surface doesn’t work

Specular Term

Perfect specular surface doesn’t work

Phong model:

Specular Term

specularity coefficient

Perfect specular surface doesn’t work

Phong model:

Looks like “highlight” that
moves with light & eye

Specular Term

Putting It Together

Putting It Together

typically:

Putting It Together

typically:

three copies of equation, one per color channel

Specularity Coefficient
more specular

h
ig

h
e
r

e
xp

o
o

n
e
n
t

Light Attenuation

Real light attenuation: inverse square law

Light Attenuation

Real light attenuation: inverse square law

Tends to look bad: too dim
or washed out

So, we cheat

d is light-to-point distance

Can tweak constant & linear term to taste

Light Attenuation

Directional Light

“Light at infinity”

• Sun

All light rays parallel

Obviously, no attenuation

Dealing with Discrete Geometry

Flat shading: use normal per face

Very obvious discontinuities
at edges

Only used for stylized “chunky” effect

Gouraud Interpolation

First, compute color at vertices

Linearly interpolate color
over face

Gouraud Interpolation

First, compute color at vertices

Linearly interpolate color
over face

Color now continuous, but still obvious
artifacts (nobody uses this anymore)

Phong Interpolation

First, linearly interpolate normals

Next, renormalize normals
(important)

Then, compute color per pixel

Phong Interpolation

First, linearly interpolate normals

Next, renormalize normals
(important)

Then, compute color per pixel

Because of all of the normalizations, used
to be considered decadent;
now the standard local shading scheme

Local vs Global Illumination

Local:

• shade each object based only on itself,
the eye, and the light sources

Global:

• take all other objects in scene into
account also

• BRDFs and the rendering equation

Local vs Global Illumination

Grey Area:

• take other objects into account, without
full global illumination

• adds realism without being too slow

Local vs Global Illumination

Grey Area:

• take other objects into account, without
full global illumination

• adds realism without being too slow

• common techniques exist for

• shadows

• reflections

• refractions

Shooting Shadow Rays

Shooting Shadow Rays

For each intersection pt:

• for each light:

• shoot ray from point to light

• if it hits an object:

• do nothing (shadow)

• else add shading contribution

Classic Bug

Classic Bug

at what t does the
ray hit an object?

Classic Bug

at what t does the
ray hit an object?

Classic Bug

at what t does the
ray hit an object?

if lucky: {-1.2, 0.0}

Classic Bug

at what t does the
ray hit an object?

if lucky: {-1.2, 0.0}

if unlucky: {-1.2, 1e-12}

Ignore t Near Zero?

Ignore t Near Zero?

Ignore t Near Zero?

Fix: move slightly in normal direction (or
backward ray direction) before shooting
shadow ray

Hard Shadows

real-world doesn’t
look like this

Hard Shadows

real-world doesn’t
look like this

shadows usually
soft

why?

Soft Shadows

Other Secondary Rays

Translucent objects

Other Secondary Rays

Reflection & refraction

Reflection

Purely specular (mirrored) surface

Reflection

Purely specular (mirrored) surface:

1. Incoming ray hits surface

Reflection

Purely specular (mirrored) surface:

1. Incoming ray hits surface

2. Shoot secondary reflection ray

Reflection

Purely specular (mirrored) surface:

1. Incoming ray hits surface

2. Shoot secondary reflection ray

3. Set pixel color to color “seen” by

Choosing the Reflection Ray

Angle of reflection = angle of incidence

Choosing the Reflection Ray

Angle of reflection = angle of incidence

I.e. negate component of in normal dir

• leave tangent component untouched

Choosing the Reflection Ray

Angle of reflection = angle of incidence

I.e. negate component of in normal dir

• leave tangent component untouched

Choosing the Reflection Ray

Angle of reflection = angle of incidence

I.e. negate component of in normal dir

• leave tangent component untouched

The math:

Choosing the Reflection Ray

Reflection in Practice

Objects may not be perfectly mirrored

• blend reflected color with basic shading

Reflection in Practice

Objects may not be perfectly mirrored

• blend reflected color with basic shading

Objects have base color

• multiplies reflected color

Reflections in Practice

Reflection ray might hit reflective objects

• cast recursive reflection rays…

• stop after some
maximum recursion
limit

Refraction

Refraction

Light bends when
moving between
different materials

Caused by change
in speed of light

We “see” dotted straw

Index of Refraction

Measures speed of light in material

Index of Refraction

Measures speed of light in material

Common values:

• Vacuum: 1.0

• Air: 1.0001

• Water: 1.33

• Glass: 1.5

Snell’s Law

Special cases:

•

•

Implementing Snell’s Law

Solve for alpha

Shoot refraction ray

Refractions in Practice

Again, usually multiplied by a base color

Light bends when entering and leaving

• must detect both when ray-tracing

Reflection & Refraction Example

