The Graphics Pipeline

Ray Tracing: Why Slow?

Basic ray tracing: 1 ray/pixel

Ray Tracing: Why Slow?

Basic ray tracing: 1 ray/pixel

But you really want shadows, reflections,
global illumination, antialiasing...

* 100-1000 rays/pixel

Rendering: Rasterization

Tessellate objects into primitives

Rendering: Rasterization

Tessellate objects into primitives
Draw each separately:
» determine position and color

« draw pixels to screen /

-

Rendering: Rasterization

Tessellate objects into primitives
Draw each separately:
» determine position and color

« draw pixels to screen /

Embarrassingly parallel r
Fast

Rendering: Rasterization

How to deal with overlaps?

Rendering: Rasterization

How to deal with overlaps?

Keep track of depth of
previously-drawn pixels

Depth image or depth

buffer

Rendering: Rasterization

How to deal with overlaps?
» depth buffer

How to deal with shadows/reflections?

Rendering: Rasterization

How to deal with overlaps?
» depth buffer

How to deal with shadows/reflections?
 hmm...

Ray Tracing vs Rasterization

Ray Tracing Rasterization

Loop over pixels Loop over triangles

Light effects “easy” Light effects require
shadows, reflections, caustics, ... hacks and tricks

Slow-ish Blazingly fast
Used In movies Used In games

Ray Tracing vs Rasterization

Rasterized 3D graphics imagery

Rasterization Algorithms

Actually rasterizing objects not so easy...

T

Rasterization Algorithms

Actually rasterizing objects not so easy...

...S0 use specialized hardware to do it

Vertex Shader

Vertex List J<

Tessellation/
Geometry Shaders

-
Trlangle List :—
O
Primitive Assembly §
Fragment Shader l
e I m7[RasterizationJ
[Textures | —
) E—
. T —

|
?’ﬂ[FramebuﬁerH Screen J

CPU | GPU

Vertices and Triangles

Vertex List

Triangle List

X Y z

0.0 0.0 1.0

10 0.0 10

0.0 1.0 1.0

1.0 1.0 1.0

0.0 0.0 00

1.0 0.0 0.0

0.0 10 0.0

1.0 10 00

QINFR|IC|IN|A|H | =N -0 —
NNV NN W W] = -
Slalnil balbdN|WIOVNININ]X

Sending Data to the GPU

One vertex/triangle at a time: very slow

Vertex Buffer Objects: big arrays of data
* vertex positions

» vertex colors

* texture info

* etc

Shaders

Small arbitrary programs that run on GPU
Massively parallel

Shaders

Small arbitrary programs that run on GPU
Massively parallel

Four kinds: vertex, tessellation, geometry,
fragment

Shaders

Small arbitrary programs that run on GPU
Massively parallel

Four kinds: vertex, tessellation, geometry,
fragment

These days: used for many non-rendering
applications (GPGPU)

Vertex Shader

Runs in parallel on every vertex
* NO access to triangles or other verts

Vertex Shader

Runs in parallel on every vertex
* NO access to triangles or other verts

Malin job: transform vertex positions

Vertex Shader

Runs in parallel on every vertex
* NO access to triangles or other verts

Malin job: transform vertex positions

Also used for shading

Vertex Shader

Vertex List J<

Tessellation/
Geometry Shaders

-
Trlangle List :—
O
Primitive Assembly §
Fragment Shader l
e I m7[RasterizationJ
[Textures | —
) E—
. T —

|
?’ﬂ[FramebuﬁerH Screen J

CPU | GPU

Processing Primitives

Assembly: group verts into polygons

Processing Primitives

Assembly: group verts into polygons

Tessellation shader: runs on each triangle

» can split triangles into subtriangles
®* increase level of detall near camera, etc

Processing Primitives

Assembly: group verts into polygons

Tessellation shader: runs on each triangle

» can split triangles into subtriangles
®* increase level of detall near camera, etc

Geometry shader: runs on each triangle
» can access verts and neighbors
* more general than tessellation, slower

Vertex Shader

Vertex List J<

Tessellation/
Geometry Shaders

-
Trlangle List :—
O
Primitive Assembly §
Fragment Shader l
e I m7[RasterizationJ
[Textures | —
) E—
. T —

|
?’ﬂ[FramebuﬁerH Screen J

CPU | GPU

Fragment Shader

Runs in parallel on each fragment (pixel)
* rasterization: one tri -> many fragments

Writes color and depth for one pixel (only)

Final texturing/coloring of the pixels

Fragment Shader

Many fragments per triangle...

Fragment Shader

Many fragments per triangle...

GPU automatically applies
barycentric interpolation

UV coords, normals,
colors, ...

Vertex Shader

Vertex List J<

Tessellation/
Geometry Shaders

-
Trlangle List :—
O
Primitive Assembly §
Fragment Shader l
e I m7[RasterizationJ
[Textures | —
) E—
. T —

|
?’ﬂ[FramebuﬁerH Screen J

CPU | GPU

Normalized Device Coordinates

Before rasterization, must decide what
geometry to show and where

Normalized Device Coordinates

Before rasterization, must decide what
geometry to show and where

-1,1, 1)

GPU draws everything _—
in unit cube T~z

Normalized Device Coordinates

Before rasterization, must decide what
geometry to show and where

-1,1, 1)

GPU draws everything _—— """
. . "r“‘“-»_% +Y /
In unit cube \ T
III".IIII II +¥ I;"II“ =1, 1)
Everything clipped]\

(1,-1,-1}

Normalized Device Coordinates

X & Y axes map to screen width & height

i-1,1, 1)
T (1,1, 1)
= —
= |
I':-EHHH___ +Y ,l'I
\ — '
\ . +z | +y
i T f
\ / -
I"., | / +x
L1 i
Ill II +::{ _f‘lll:‘ll--ll 1:‘
1 &
(-1 _.I_.l:l'm_- | /
|I 4
|
|/
. 1
-\._\..}.

Normalized Device Coordinates

X & Y axes map to screen width & height
Z used for depth

Normalized Device Coordinates

Notice: deeper points have higher z
(not right-handed)

-1, 1,1
T (1,1, 1)
T -
.r-F"' |
I':-EHHH___ +Y ,l'I
II II
III -\-\-\-\'-___ +E III
|II T [
| II.'
".II | /
\ [
Ill II +::{ _|'.III|1|-1| 1:‘
&
(=1, -1, -1 | 4
|I 4
|
I
. 1
-\._\..}.

Camera Goordinates

Notice: look down negative z direction

up center
+9 _z
_look
4»ﬂﬁif
eye

tangent

Camera Goordinates

Notice: look down negative z direction

Projection: transform from camera to NDC
(typically in vertex shader)

center “.1,1)
. T (1,11
e —
TI;'?EHH—“"H +Y III.'
> |0 O k "-II T = = ."Ill
i
\ | /
II g
Y€ tangent \ i /1.1
-1, -1, =1}~ | 4
| \ |I ff
|/
I| A
Ny’

|:1|_1|-1}

Goordinate Systems in Graphics

model world
\ 7/

view matrixV

object

up center
0ok — .
ey} perspective f
tangent matrix P v

camera normalized device

For Extra Gonfusion

Screen coordinates
(0,0)

Framebuffer

Memory region containing pixel data

The old days: mapped to RAM with DMA
* CPU could write to It directly

Framebuffer

Memory region containing pixel data

The old days: mapped to RAM with DMA
* CPU could write to It directly

Now: GPU controls it

Framebuffer

Several layers:
* Color buffer: RGB of each pixel

Framebuffer

Several layers:
* Color buffer: RGB of each pixel
* Depth buffer

Framebuffer

Several layers:

* Color buffer: RGB of each pixel
* Depth buffer

» Stencll buffer, etc

Framebuffer

Several layers:

* Color buffer: RGB of each pixel
* Depth buffer

» Stencll buffer, etc

Can be saved to file, to texture, to screen

Displaying the Framebuffer

CRTs: beam sweeps across screen
drawing pixels

* one pass: 1/60 secs

Start Horizontal Scan

| Horizontal
Retrace

== | \ygical
Retrace

CRT Sweeping

Displaying the Framebuffer

CRTs: beam sweeps across screen
drawing pixels

* one pass: 1/60 secs

Start Horizontal Scan
N\ /
F\rh { J\\
......... —>.
LCDs: grabs framebuffer ||~ S5——— " Horzon
_____ - = etrace
every 1/60 secs — ‘-x-»'-:,/vm
. —3 | Retrace
%.:‘:o —1——“9;"’)

CRT Sweeping

Flickering and Tearing

Framebuffer changes while monitor draws

Double-Buffering to Stop Tearing

Use two framebuffers

Double Buffering frame 0 frame 1 frame 2 frame 3
buffer 0 front back front back ceee
buffer 1 back front back front ceece

Render to back buffer while showing
front buffer

Then swap

Double-Buffering to Stop Tearing

On CRTs: must wait for vertical retrace
to swap

Start Horizontal Scan

- | Horizontal
: Retrace

=> | Vertical
Retrace

CRT Sweeping

Double-Buffering to Stop Tearing

On CRTs: must wait for vertical retrace
to swap

* “vsync”
e occurs 1/60 sec

Start Horizontal Scan

" Horizontal
Retrace

| Vertical
Retrace

CRT Sweeping

Double-Buffering to Stop Tearing

On CRTs: must wait for vertical retrace

to swap
* “vsync”
« occurs 1/60 sec

On LCDs: swap when
not reading

Start

Horizontal Scan
/
f\ { \

__L_\;.\. ————————— -.f'-:‘-.'

i | Horizontal
~=cT T Retrace

_______ ==
— ~ s
| - ==l | Vertical
\ — Retrace

CRT Sweeping

GCommunicating with GPU

Very low level / awkward

GCommunicating with GPU

Very low level / awkward

Two types of data:

» vertex attributes in VBOs
 global variables (“uniforms”)

Shaders

GPU

CPU

VBOs

vertPos]
vertNormals]

Uniforms

View
lightPos

GCommunicating with GPU

Very low level / awkward

Two types of data:

» vertex attributes in VBOs
 global variables (“uniforms”)

GPU stores no variable names — just
location numbers

Shaders

GPU

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

CPU

VBOs

vertPos]
vertNormals]

Uniforms

View
lightPos

GCommunicating with GPU

Very low level / awkward

Two types of data:

» vertex attributes in VBOs
 global variables (“uniforms”)

GPU stores no variable names — just
location numbers

GPU programming is lots of “plumbing”
* binding inputs and outputs correctly

Shaders

Inputs

position
normal

Uniforms

View
lightPos

GPU

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

CPU

VBOs

vertPos]
vertNormals]

Uniforms

View
lightPos

Shaders i GPU CPU

Inputs Vertex VBOs

Attributes

vertPos|]
vertNormals]

position

normal
orma 1

2

3 Uniforms

Uniforms

View
lightPos

: Global
view : | Memory
lightPos — '

— 1

2 :
3 : when shader is compiled

Shaders GPU

Inputs : | Vertex

st Attributes

normal —

1

Uniforms

: Global
view : | Memory
lightPos — '

— 1
2
3

CPU

VBOs

vertPos]
vertNormals]

Uniforms

View
lightPos

glBindAttribLocation()

Shaders GPU

Inputs i | Vertex

sosition Attributes

normal —

1

Uniforms

: Global
view : | Memory
lightPos — '

— 1
2
3

CPU

VBOs

vertPos]
vertNormals]

Uniforms

view (2)
lightPos (1)

glGetUniformLocation()

Shaders GPU

Inputs : | Vertex

st Attributes

normal —

1

CPU

VBOs

vertPos]
vertNormals]

2
3

Uniforms

: Global
view : | Memory
lightPos — '

— 1
2
3

Uniforms

view (2)
lightPos (1)

at render time:
glVertexAttribPointer()

Shaders GPU

Inputs : | Vertex

st Attributes

normal —

1

CPU

VBOs

vertPos]
vertNormals]

2
3

Uniforms

: Global
view : | Memory
lightPos — '

— 1

2

Uniforms

view (2)
lightPos (1)

at render time:
glVertexAttribPointer()
glUniform®*()

Shaders

Inputs

position ——
normal —

GPU

Vertex
Attributes

1

Uniforms

View
lightPos —

Global
Memory

— 1

2

CPU

VBOs

vertPosl]
vertNormals(]

Uniforms

view (2)
lightPos (1)

VAOSs store the VBO state

Ray Tracing: Why Slow? Reprise

Basic ray tracing: 1 ray/pixel

But you really want shadows, reflections,
global illumination, antialiasing...

* 100-1000 rays/pixel

Much less hardware support
* Inhomogeneous / unpredictable work

