
CS 429H, Spring 2011
Code Optimization

Assigned: Fri Apr 15, Due: Friday May 6, 11:59PM

Christian Miller (ckm@cs.utexas.edu ) is the lead person for this assignment.

1 Introduction

This assignment deals with optimizing memory intensive code. Image processing offers many examples of
functions that can benefit from optimization. In this lab, wewill consider two image processing operations:
rotate , which rotates an image counter-clockwise by90◦, andsmooth , which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented as a two-dimensional matrixM , whereMi,j

denotes the value of(i, j)th pixel of M . Pixel values are triples of red, green, and blue (RGB) values. We
will only consider square images. LetN denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, from0 to N − 1.

Given this representation, therotate operation can be implemented quite simply as the combination of
the following two matrix operations:

• Transpose: For each(i, j) pair,Mi,j andMj,i are interchanged.

• Exchange rows: Row i is exchanged with rowN − 1 − i.

This combination is illustrated in Figure 1.

The smooth operation is implemented by replacing every pixel value with the average of all the pixels
around it (in a maximum of3 × 3 window centered at that pixel). Consider Figure 2. The values of pixels
M2[1][1] andM2[N-1][N-1] are given below:

M2[1][1] =

∑

2

i=0

∑

2

j=0
M1[i][j]

9

M2[N− 1][N− 1] =

∑N−1

i=N−2

∑N−1

j=N−2
M1[i][j]

4

1



Rotate by 90 

(counter−clockwise)

Transpose
Exchange

Rows

j

i

i

j

i

j

(0,0)

(0,0)

(0,0)

Figure 1: Rotation of an image by90◦ counterclockwise

smooth

M1[1][1]

M1[N−1][N−1]

M2[1][1]

M2[N−1][N−1]

Figure 2: Smoothing an image

2



2 Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web
page.

3 Hand Out Instructions

You can get a copy of this handout and the assignment code fromthe CS429H labs webpage:

http://www.cs.utexas.edu/˜fussell/courses/cs429h/la bs/labs.shtml

Start by copyingperflab-handout.tar to a protected directory in which you plan to do your work.
Then give the command:tar xvf perflab-handout.tar . This will cause a number of files to be
unpacked into the directory. The only file you will be modifying and handing in iskernels.c . The
driver.c program is a driver program that allows you to evaluate the performance of your solutions. Use
the commandmake driver to generate the driver code and run it with the command./driver .

Looking at the filekernels.c you’ll notice a C structureteam into which you should insert the requested
identifying information about the one or two individuals comprising your programming team.Do this right
away so you don’t forget.

4 Implementation Overview

Data Structures

The core data structure deals with image representation. Apixel is a struct as shown below:

typedef struct {
unsigned short red; / * R value * /
unsigned short green; / * G value * /
unsigned short blue; / * B value * /

} pixel;

As can be seen, RGB values have 16-bit representations (“16-bit color”). An imageI is represented as a one-
dimensional array ofpixel s, where the(i, j)th pixel is I[RIDX(i,j,n)] . Heren is the dimension of the image
matrix, andRIDX is a macro defined as follows:

#define RIDX(i,j,n) ((i) * (n)+(j))

See the filedefs.h for this code.

3



Rotate

The following C function computes the result of rotating thesource imagesrc by 90◦ and stores the result in desti-
nation imagedst . dim is the dimension of the image.

void naive_rotate(int dim, pixel * src, pixel * dst) {
int i, j;

for(i=0; i < dim; i++)
for(j=0; j < dim; j++)

dst[RIDX(dim-1-j,i,dim)] = src[RIDX(i,j,dim)];

return;
}

The above code scans the rows of the source image matrix, copying to the columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as possible using techniques like code motion, loop unrolling
and blocking.

See the filekernels.c for this code.

Smooth

The smoothing function takes as input a source imagesrc and returns the smoothed result in the destination image
dst . Here is part of an implementation:

void naive_smooth(int dim, pixel * src, pixel * dst) {
int i, j;

for(i=0; i < dim; i++)
for(j=0; j < dim; j++)

dst[RIDX(i,j,dim)] = avg(dim, i, j, src); / * Smooth the (i,j)th pixel * /

return;
}

The functionavg returns the average of all the pixels around the(i,j) th pixel. Your task is to optimizesmooth
(andavg ) to run as fast as possible. (Note:The functionavg is a local function and you can get rid of it altogether to
implementsmooth in some other way.)

This code (and an implementation ofavg ) is in the filekernels.c .

Performance measures

Our main performance measure isCPEor Cycles per Element. If a function takesC cycles to run for an image of size
N × N , the CPE value isC/N2. Table 1 summarizes the performance of the naive implementations shown above
and compares it against an optimized implementation. Performance is shown for for 5 different values ofN . All
measurements were made onschorr , a 3 GHz Core 2 Duo machine.

The ratios (speedups) of the optimized implementation overthe naive one will constitute ascoreof your implementa-
tion. To summarize the overall effect over different valuesof N , we will compute thegeometric meanof the results

4



Test case 1 2 3 4 5

Method N 64 128 256 512 1024 Geom. Mean
Naiverotate (CPE) 5.1 6.3 10.7 15.2 21.4
Optimizedrotate (CPE) 4.6 4.6 4.7 6.7 12.3
Speedup (naive/opt) 1.1 1.4 2.3 2.3 1.7 1.7

Method N 32 64 128 256 512 Geom. Mean
Naivesmooth (CPE) 108.3 108.0 107.8 107.5 107.6
Optimizedsmooth (CPE) 39.4 43.2 43.5 43.4 43.6
Speedup (naive/opt) 2.7 2.5 2.5 2.5 2.5 2.5

Table 1: CPEs and Ratios for Optimized vs. Naive Implementations

for these 5 values. That is, if the measured speedups forN = {32, 64, 128, 256, 512} areR32, R64, R128, R256, and
R512 then we compute the overall performance as

R = 5

√

R32 × R64 × R128 × R256 × R512

Assumptions

To make life easier, you can assume thatN is a multiple of 32. Your code must run correctly for all such values ofN ,
but we will measure its performance only for the 5 values shown in Table 1.

5 Infrastructure

We have provided support code to help you test the correctness of your implementations and measure their perfor-
mance. This section describes how to use this infrastructure. The exact details of each part of the assignment is
described in the following section.

Note: The only source file you will be modifying iskernels.c .

Versioning

You will be writing many versions of therotate andsmooth routines. To help you compare the performance of
all the different versions you’ve written, we provide a way of “registering” functions.

For example, the filekernels.c that we have provided you contains the following function:

void register_rotate_functions() {
add_rotate_function(&rotate, rotate_descr);

}

This function contains one or more calls toadd rotate function . In the above example,
add rotate function registers the functionrotate along with a stringrotate descr which is an ASCII
description of what the function does. See the filekernels.c to see how to create the string descriptions. This
string can be at most 256 characters long.

5



A similar function for your smooth kernels is provided in thefile kernels.c .

Driver

The source code you will write will be linked with object codethat we supply into adriver binary. To create this
binary, you will need to execute the command

unix> make driver

You will need to re-make driver each time you change the code in kernels.c . To test your implementations, you
can then run the command:

unix> ./driver

Thedriver can be run in four different modes:

• Default mode, in which all versions of your implementation are run.

• Autograder mode, in which only therotate() andsmooth() functions are run. This is the mode we will
run in when we use the driver to grade your handin.

• File mode, in which only versions that are mentioned in an input file arerun.

• Dump mode, in which a one-line description of each version is dumped toa text file. You can then edit this text
file to keep only those versions that you’d like to test using thefile mode. You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any arguments,driver will run all of your versions (default mode). Other modes and options can be
specified by command-line arguments todriver , as listed below:

-g : Run onlyrotate() andsmooth() functions (autograder mode).

-f <funcfile> : Execute only those versions specified in<funcfile> (file mode).

-d <dumpfile> : Dump the names of all versions to a dump file called<dumpfile> , one lineto a version
(dump mode).

-q : Quit after dumping version names to a dump file. To be used in tandem with-d . For example, to quit
immediately after printing the dump file, type./driver -qd dumpfile .

-h : Print the command line usage.

Team Information

Important: Before you start, you should fill in the struct inkernels.c with information about your team (group
name, team member names and email addresses).

6



6 Assignment Details

Optimizing Rotate (50 points)

In this part, you will optimizerotate to achieve as low a CPE as possible. You should compiledriver and then
run it with the appropriate arguments to test your implementations.

For example, running driver with the supplied naive version(for rotate ) generates the output shown below:

unix> ./driver
Teamname: bovik
Member 1: Harry Q. Bovik
Email 1: bovik@nowhere.edu

Rotate: Version = naive_rotate: Naive baseline implementa tion:
Dim 64 128 256 512 1024 Mean
Your CPEs 5.1 6.3 10.7 15.2 21.4
Baseline CPEs 5.1 6.3 10.7 15.2 21.4
Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Optimizing Smooth (50 points)

In this part, you will optimizesmooth to achieve as low a CPE as possible.

For example, running driver with the supplied naive version(for smooth ) generates the output shown below:

unix> ./driver

Smooth: Version = naive_smooth: Naive baseline implementa tion:
Dim 32 64 128 256 512 Mean
Your CPEs 108.5 108.0 107.7 107.6 107.5
Baseline CPEs 108.3 108.0 107.8 107.5 107.6
Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Some advice.Look at the assembly code generated for therotate andsmooth . Focus on optimizing the inner
loop (the code that gets repeatedly executed in a loop) usingthe optimization tricks covered in class. Thesmooth is
more compute-intensive and less memory-sensitive than therotate function, so the optimizations are of somewhat
different flavors.

Coding Rules

You may write any code you want, as long as it satisfies the following:

• It must be in ANSI C. You may not use any embedded assembly language statements.

• It must not interfere with the time measurement mechanism. You will also be penalized if your code prints any
extraneous information.

You can only modify code inkernels.c . You are allowed to define macros, additional global variables, and other
procedures in these files.

7



Evaluation

Your solutions forrotate andsmooth will each count for 50% of your grade. The score for each will be based on
the following:

• Correctness: You will get NO CREDIT for buggy code that causes the driver to complain! This includes code
that correctly operates on the test sizes, but incorrectly on image matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

• CPE: You will get full credit for your implementations ofrotate andsmooth if they are correct and achieve
mean CPEs above certain thresholds (to be determined beforethe assignment is due). You will get partial credit
for a correct implementation that does better than the supplied naive one. We will send out a clarification of
grading thresholds by the halfway point of this assignment.

7 Hand In Instructions

You will only submit one file for this assignment:kernels.c . To submit your code, use the following command:

turnin --submit ckm perflab kernels.c

Some things to keep in mind:

• Make sure you have included your identifying information inthe team struct inkernels.c .

• Make sure that therotate() andsmooth() functions correspond to your fastest implemnentations, asthese
are the only functions that will be tested when we use the driver to grade your assignement.

• Remove any extraneous print statements.

• Create a team name of the form:

– “ID” whereID is your UTCS ID, if you are working alone, or

– “ID1+ID2” whereID1 is the UTCS ID of the first team member andID2 is the UTCS ID of the second
team member.

This should be the same as the team name you entered in the structure inkernels.c .

Good luck!

8


