
Machine-Level Programming VIII:
Structured Data

TopicsTopics
 Alignment
 Unions
 Buffer bounds checking and

overflow

Systems I

2

Alignment

Aligned DataAligned Data
 Primitive data type requires K bytes
 Address must be multiple of K
 Required on some machines; advised on IA32

 treated differently by Linux and Windows!

Motivation for Aligning DataMotivation for Aligning Data
 Memory accessed by (aligned) double or quad-words

 Inefficient to load or store datum that spans quad word
boundaries

 Virtual memory very tricky when datum spans 2 pages

CompilerCompiler
 Inserts gaps in structure to ensure correct alignment of

fields

3

Specific Cases of Alignment
Size of Primitive Data Type:Size of Primitive Data Type:

 1 byte (e.g., char)
 no restrictions on address

 2 bytes (e.g., short)
 lowest 1 bit of address must be 02

 4 bytes (e.g., int, float, char *, etc.)
 lowest 2 bits of address must be 002

 8 bytes (e.g., double)
 Windows (and most other OSʼs & instruction sets):

» lowest 3 bits of address must be 0002
 Linux:

» lowest 2 bits of address must be 002
» i.e., treated the same as a 4-byte primitive data type

 12 bytes (long double)
 Linux:

» lowest 2 bits of address must be 002
» i.e., treated the same as a 4-byte primitive data type

4

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

Satisfying Alignment with Structures
Offsets Within StructureOffsets Within Structure

 Must satisfy elementʼs alignment requirement

Overall Structure PlacementOverall Structure Placement
 Each structure has alignment requirement K

 Largest alignment of any element
 Initial address & structure length must be

multiples of K

Example (under Windows):Example (under Windows):
 K = 8, due to double element
c i[0] i[1] v
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

5

Linux vs. Windows

Windows (including Windows (including CygwinCygwin):):
 K = 8, due to double element

Linux:Linux:
 K = 4; double treated like a 4-byte data type

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

c i[0] i[1] v

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

c i[0] i[1]
p+0 p+4 p+8

Multiple of 4 Multiple of 4
Multiple of 4

v
p+12 p+20

Multiple of 4

6

Overall Alignment Requirement
struct S2 {
 double x;
 int i[2];
 char c;
} *p;

struct S3 {
 float x[2];
 int i[2];
 char c;
} *p;

p+0 p+12p+8 p+16 Windows: p+24
Linux: p+20

ci[0] i[1]x

ci[0] i[1]

p+0 p+12p+8 p+16 p+20

x[0] x[1]

p+4

p must be multiple of:
8 for Windows
4 for Linux

p must be multiple of 4 (in either OS)

7

Ordering Elements Within Structure
struct S4 {
 char c1;
 double v;
 char c2;
 int i;
} *p;

struct S5 {
 double v;
 char c1;
 char c2;
 int i;
} *p;

c1 iv

p+0 p+20p+8 p+16 p+24

c2

c1 iv

p+0 p+12p+8 p+16

c2

10 bytes wasted space in Windows

2 bytes wasted space

8

Arrays of Structures
PrinciplePrinciple

 Allocated by repeating allocation
for array type

 In general, may nest arrays &
structures to arbitrary depth

a[0]

a+0

a[1] a[2]

a+12 a+24 a+36
• • •

a+12 a+20a+16 a+24

struct S6 {
 short i;
 float v;
 short j;
} a[10];

a[1].i a[1].ja[1].v

9

Accessing Element within Array
 Compute offset to start of structure

 Compute 12*i as 4*(i+2i)
 Access element according to its offset

within structure
 Offset by 8
 Assembler gives displacement as a + 8

» Linker must set actual value

a[0]

a+0

a[i]

a+12i

• • • • • •

short get_j(int idx)
{
 return a[idx].j;
}

%eax = idx
leal (%eax,%eax,2),%eax # 3*idx
movswl a+8(,%eax,4),%eax

a+12i a+12i+8

struct S6 {
 short i;
 float v;
 short j;
} a[10];

a[i].i a[i].ja[i].v

10

Satisfying Alignment within Structure
Achieving AlignmentAchieving Alignment

 Starting address of structure array must be
multiple of worst-case alignment for any element
 a must be multiple of 4

 Offset of element within structure must be
multiple of elementʼs alignment requirement
 vʼs offset of 4 is a multiple of 4

 Overall size of structure must be multiple of
worst-case alignment for any element
 Structure padded with unused space to be 12

bytes

struct S6 {
 short i;
 float v;
 short j;
} a[10];

a[0]

a+0

a[i]

a+12i

• • • • • •

a+12i a+12i+4

a[1].i a[1].ja[1].v

Multiple of 4

Multiple of 4

11

Union Allocation
PrinciplesPrinciples

 Overlay union elements
 Allocate according to largest element
 Can only use one field at a time

union U1 {
 char c;
 int i[2];
 double v;
} *up;

c
i[0] i[1]

v
up+0 up+4 up+8struct S1 {

 char c;
 int i[2];
 double v;
} *sp;

c i[0] i[1] v
sp+0 sp+4 sp+8 sp+16 sp+24

(Windows alignment)

12

typedef union {
 float f;
 unsigned u;
} bit_float_t;

float bit2float(unsigned
u) {
 bit_float_t arg;
 arg.u = u;
 return arg.f;
}u

f
0 4 unsigned float2bit(float

f) {
 bit_float_t arg;
 arg.f = f;
 return arg.u;
}

Using Union to Access Bit Patterns

 Get direct access to bit
representation of float

 bit2float generates float with
given bit pattern
 NOT the same as (float) u

 float2bit generates bit pattern
from float
 NOT the same as (unsigned) f

13

Byte Ordering Revisited

IdeaIdea
 Short/long/quad words stored in memory as 2/4/8

consecutive bytes
 Which is most (least) significant?
 Can cause problems when exchanging binary data between

machines

Big Big EndianEndian
 Most significant byte has lowest address
 PowerPC, Sparc

Little Little EndianEndian
 Least significant byte has lowest address
 Intel x86, Alpha

14

Byte Ordering Example
 union {
 unsigned char c[8];
 unsigned short s[4];
 unsigned int i[2];
 unsigned long l[1];
 } dw;

c[3]
s[1]

i[0]

c[2]c[1]
s[0]

c[0] c[7]
s[3]

i[1]

c[6]c[5]
s[2]

c[4]

l[0]

15

Byte Ordering Example (Cont).
int j;
for (j = 0; j < 8; j++)
dw.c[j] = 0xf0 + j;

printf("Characters 0-7 ==
[0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
 dw.c[0], dw.c[1], dw.c[2], dw.c[3],
 dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 ==
[0x%x,0x%x,0x%x,0x%x]\n",
 dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",
 dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",
 dw.l[0]);

16

Byte Ordering on x86
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf3f2f1f0]

Output on Pentium:

f0 f1 f2 f3 f4 f5 f6 f7
c[3]

s[1]

i[0]

LSB MSB
c[2]c[1]

s[0]

c[0]

LSB MSB

LSB MSB
c[7]

s[3]

i[1]

LSB MSB
c[6]c[5]

s[2]

c[4]

LSB MSB

LSB MSB

Print

l[0]
LSB MSB

17

Byte Ordering on Sun
Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]
Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]
Long 0 == [0xf0f1f2f3]

Output on Sun:

c[3]

s[1]

i[0]

LSBMSB
c[2]c[1]

s[0]

c[0]

MSB LSB

LSB MSB
c[7]

s[3]

i[1]

LSB MSB
c[6]c[5]

s[2]

c[4]

MSB LSB

LSB MSB

f0 f1 f2 f3 f4 f5 f6 f7

Print

l[0]
MSB LSB

18

Byte Ordering on Alpha
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf7f6f5f4f3f2f1f0]

Output on Alpha:

c[3]

s[1]

i[0]

LSB MSB

c[2]c[1]

s[0]

c[0]

LSB MSB

LSB MSB

c[7]

s[3]

i[1]

LSB MSB

c[6]c[5]

s[2]

c[4]

LSB MSB

LSB MSB

f0 f1 f2 f3 f4 f5 f6 f7

Print

l[0]
LSB MSB

19

Summary
Arrays in CArrays in C

 Contiguous allocation of memory
 Pointer to first element
 No bounds checking

Compiler OptimizationsCompiler Optimizations
 Compiler often turns array code into pointer code (zd2int)
 Uses addressing modes to scale array indices
 Lots of tricks to improve array indexing in loops

StructuresStructures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

UnionsUnions
 Overlay declarations
 Way to circumvent type system

Extra slides

21

Dynamic Nested Arrays
StrengthStrength

 Can create matrix of
arbitrary size

ProgrammingProgramming
 Must do index

computation explicitly

PerformancePerformance
 Accessing single element

costly
 Must do multiplication

int * new_var_matrix(int n)
{
 return (int *)
 calloc(sizeof(int), n*n);
}

int var_ele
 (int *a, int i,
 int j, int n)
{
 return a[i*n+j];
}

movl 12(%ebp),%eax # i
movl 8(%ebp),%edx # a
imull 20(%ebp),%eax # n*i
addl 16(%ebp),%eax # n*i+j
movl (%edx,%eax,4),%eax # Mem[a+4*(i*n+j)]

22

Dynamic Array Multiplication

Without OptimizationsWithout Optimizations
 Multiplies

 2 for subscripts
 1 for data

 Adds
 4 for array indexing
 1 for loop index
 1 for data

/* Compute element i,k of
 variable matrix product */
int var_prod_ele
 (int *a, int *b,
 int i, int k, int n)
{
 int j;
 int result = 0;
 for (j = 0; j < n; j++)
 result +=
 a[i*n+j] * b[j*n+k];
 return result;
}

A
(i,*)

B

(*,k)

Column-wise
Row-wise

23

Optimizing Dynamic Array Mult.

OptimizationsOptimizations
 Performed when set

optimization level to -O2

Code MotionCode Motion
 Expression i*n can be

computed outside loop

Strength ReductionStrength Reduction
 Incrementing j has effect of

incrementing j*n+k by n

PerformancePerformance
 Compiler can optimize

regular access patterns

{
 int j;
 int result = 0;
 for (j = 0; j < n; j++)
 result +=
 a[i*n+j] * b[j*n+k];
 return result;
}

{
 int j;
 int result = 0;
 int iTn = i*n;
 int jTnPk = k;
 for (j = 0; j < n; j++) {
 result +=
 a[iTn+j] * b[jTnPk];
 jTnPk += n;
 }
 return result;
}

