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Overview
WhatWhatʼ̓s wrong with the sequentials wrong with the sequential  (SEQ) Y86?(SEQ) Y86?

 Itʼs slow!
 Each piece of hardware is used only a small fraction of time
 We would like to find a way to get more performance with

only a little more hardware

General Principles of PipeliningGeneral Principles of Pipelining
 Goal
 Difficulties

Creating a Pipelined Y86 ProcessorCreating a Pipelined Y86 Processor
 Rearranging SEQ
 Inserting pipeline registers
 Problems with data and control hazards



3

Real-World Pipelines: Car Washes

IdeaIdea
 Divide process into

independent stages
 Move objects through stages

in sequence
 At any given times, multiple

objects being processed

Sequential Parallel

Pipelined
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Laundry example
Ann, Brian, Cathy, DaveAnn, Brian, Cathy, Dave

each have one load of clotheseach have one load of clothes
to wash, dry, and foldto wash, dry, and fold

Washer takes 30 minutesWasher takes 30 minutes

Dryer takes 30 minutesDryer takes 30 minutes

““FolderFolder”” takes 30 minutes takes 30 minutes

““StasherStasher”” takes 30 minutes takes 30 minutes
to put clothes into drawersto put clothes into drawers

A B C D

Slide courtesy of D. Patterson
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Sequential Laundry

Sequential laundry takes 8 hours for 4 loadsSequential laundry takes 8 hours for 4 loads
If they learned pipelining, how long would  laundry take?If they learned pipelining, how long would  laundry take?
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Pipelined Laundry: Start ASAP

Pipelined laundry takes 3.5 hours for 4 loads!Pipelined laundry takes 3.5 hours for 4 loads!
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Pipelining Lessons

Pipelining doesnPipelining doesnʼ̓t help t help latencylatency
of single task, it helpsof single task, it helps
throughputthroughput of entire workload of entire workload

MultipleMultiple tasks operating tasks operating
simultaneously usingsimultaneously using
different resourcesdifferent resources

Potential speedup = Potential speedup = NumberNumber
pipe stagespipe stages

Pipeline rate limited by Pipeline rate limited by slowestslowest
pipeline stagepipeline stage

Unbalanced lengths of pipeUnbalanced lengths of pipe
stages reduces speedupstages reduces speedup

Time to Time to ““fillfill”” pipeline and time pipeline and time
to to ““draindrain”” it reduces speedup it reduces speedup

Stall for DependencesStall for Dependences
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Computational Example

SystemSystem
 Computation requires total of 300 picoseconds
 Additional 20 picoseconds to save result in register
 Must have clock cycle of at least 320 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GOPS
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3-Way Pipelined Version

SystemSystem
 Divide combinational logic into 3 blocks of 100 ps each
 Can begin new operation as soon as previous one passes

through stage A.
 Begin new operation every 120 ps

 Overall latency increases
 360 ps from start to finish
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Delay = 360 ps
Throughput = 8.33 GOPS
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Pipeline Diagrams
UnpipelinedUnpipelined

 Cannot start new operation until previous one completes

3-Way Pipelined3-Way Pipelined

 Up to 3 operations in process simultaneously

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3



11

Operating a Pipeline
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Limitations: Nonuniform Delays

 Throughput limited by slowest stage
 Other stages sit idle for much of the time
 Challenging to partition system into balanced stages
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Limitations: Register Overhead

 As try to deepen pipeline, overhead of loading registers
becomes more significant

 Percentage of clock cycle spent loading register:
 1-stage pipeline: 6.25%
 3-stage pipeline: 16.67%
 6-stage pipeline: 28.57%

 High speeds of modern processor designs obtained through
very deep pipelining
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Revisiting the Performance Eqn

Instruction Count: No changeInstruction Count: No change
ClockClock  Cycle TimeCycle Time

 Improves by factor of almost N for N-deep pipeline
 Not quite factor of N due to pipeline overheads

Cycles Per InstructionCycles Per Instruction
 In ideal world, CPI would stay the same
 An individual instruction takes N cycles
 But we have N instructions in flight at a time
 So - average CPIpipe = CPIno_pipe * N/N

Thus performance can improve by up to factor of NThus performance can improve by up to factor of N

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
   timeCPU !!==



15

Data Dependencies

SystemSystem
 Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3
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Data Hazards

 Result does not feed back around in time for next operation
 Pipelining has changed behavior of system
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Data Dependencies in Processors

 Result from one instruction used as operand for another
 Read-after-write (RAW) dependency

 Very common in actual programs
 Must make sure our pipeline handles these properly

 Get correct results
 Minimize performance impact

1    irmovl $50, %eax

2    addl %eax,  %ebx

3    mrmovl 100( %ebx ),  %edx
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SEQ Hardware
 Stages occur in sequenceStages occur in sequence
 One operation in processOne operation in process

at a timeat a time
 One stage for each logicalOne stage for each logical

pipeline operationpipeline operation
 Fetch (get next instruction

from memory)
 Decode (figure out what

instruction does and get
values from regfile)

 Execute (compute)
 Memory (access data

memory if necessary)
 Write back (write any

instruction result to
regfile)
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Instruction
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SEQ+ Hardware
 Still sequential

implementation
 Reorder PC stage to put at

beginning

PC StagePC Stage
 Task is to select PC for

current instruction
 Based on results

computed by previous
instruction

Processor StateProcessor State
 PC is no longer stored in

register
 But, can determine PC

based on other stored
information
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Instruction
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Adding Pipeline Registers
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Pipeline Stages
FetchFetch

 Select current PC
 Read instruction
 Compute incremented PC

DecodeDecode
 Read program registers

ExecuteExecute
 Operate ALU

MemoryMemory
 Read or write data memory

Write BackWrite Back
 Update register file
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Summary
TodayToday

 Pipelining principles (assembly line)
 Overheads due to imperfect pipelining
 Breaking instruction execution into sequence of stages

Next TimeNext Time
 Pipelining hardware: registers and feedback paths
 Difficulties with pipelines: hazards
 Method of mitigating hazards


