
Linking II

TopicsTopics
 Relocation
 Static libraries
 Loading
 Dynamic linking of shared libraries

Systems I

2

Relocating Symbols and Resolving
External References

 Symbols are lexical entities that name functions and variables.
 Each symbol has a value (typically a memory address).
 Code consists of symbol definitions and references.
 References can be either local or external.

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of local
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e

Def of
local
symbol
ep

Defs of
local
symbols
x and y

Refs of local
symbols ep,x,y

Def of
local
symbol a

Ref to external
symbol a

3

m.o Relocation Info
Disassembly of section .text:

00000000 <main>: 00000000 <main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: e8 fc ff ff ff call 4 <main+0x4>
 4: R_386_PC32 a
 8: 6a 00 pushl $0x0
 a: e8 fc ff ff ff call b <main+0xb>
 b: R_386_PC32 exit
 f: 90 nop

Disassembly of section .data:

00000000 <e>:
 0: 07 00 00 00

source: objdump

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

4

a.o Relocation Info (.text)
a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .text:

00000000 <a>:
 0: 55 pushl %ebp
 1: 8b 15 00 00 00 movl 0x0,%edx
 6: 00
 3: R_386_32 ep
 7: a1 00 00 00 00 movl 0x0,%eax
 8: R_386_32 x
 c: 89 e5 movl %esp,%ebp
 e: 03 02 addl (%edx),%eax
 10: 89 ec movl %ebp,%esp
 12: 03 05 00 00 00 addl 0x0,%eax
 17: 00
 14: R_386_32 y
 18: 5d popl %ebp
 19: c3 ret

5

a.o Relocation Info (.data)
a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .data:

00000000 <ep>:
 0: 00 00 00 00

0: R_386_32 e
 00000004 <x>:
 4: 0f 00 00 00

6

Executable After Relocation and
External Reference Resolution (.text)

08048530 <main>:
 8048530: 55 pushl %ebp
 8048531: 89 e5 movl %esp,%ebp
 8048533: e8 08 00 00 00 call 8048540 <a>
 8048538: 6a 00 pushl $0x0
 804853a: e8 35 ff ff ff call 8048474 <_init+0x94>
 804853f: 90 nop

08048540 <a>:
 8048540: 55 pushl %ebp
 8048541: 8b 15 1c a0 04 movl 0x804a01c,%edx
 8048546: 08
 8048547: a1 20 a0 04 08 movl 0x804a020,%eax
 804854c: 89 e5 movl %esp,%ebp
 804854e: 03 02 addl (%edx),%eax
 8048550: 89 ec movl %ebp,%esp
 8048552: 03 05 d0 a3 04 addl 0x804a3d0,%eax
 8048557: 08
 8048558: 5d popl %ebp
 8048559: c3 ret

7

Executable After Relocation and
External Reference Resolution(.data)

Disassembly of section .data:

0804a018 <e>:
 804a018: 07 00 00 00

0804a01c <ep>:
 804a01c: 18 a0 04 08

0804a020 <x>:
 804a020: 0f 00 00 00

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

8

Strong and Weak Symbols
Program symbols are either strong or weakProgram symbols are either strong or weak

 strong: procedures and initialized globals
 weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

9

Linkerʼs Symbol Rules
Rule 1. A strong symbol can only appear once.Rule 1. A strong symbol can only appear once.

Rule 2. A weak symbol can be overridden by a strongRule 2. A weak symbol can be overridden by a strong
symbol of the same name.symbol of the same name.
 references to the weak symbol resolve to the strong symbol.

Rule 3. If there are multiple weak symbols, the linkerRule 3. If there are multiple weak symbols, the linker
can pick an arbitrary one.can pick an arbitrary one.

10

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {}

11

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty!

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.

References to x will refer to the same initialized
variable.

12

Packaging Commonly Used
Functions
How to package functions commonly used by programmers?How to package functions commonly used by programmers?

 Math, I/O, memory management, string manipulation, etc.

Awkward, given the linker framework so far:Awkward, given the linker framework so far:
 Option 1: Put all functions in a single source file

 Programmers link big object file into their programs
 Space and time inefficient

 Option 2: Put each function in a separate source file
 Programmers explicitly link appropriate binaries into their programs
 More efficient, but burdensome on the programmer

Solution: Solution: static librariesstatic libraries (. (.aa archive filesarchive files))
 Concatenate related relocatable object files into a single file with an

index (called an archive).
 Enhance linker so that it tries to resolve unresolved external

references by looking for the symbols in one or more archives.
 If an archive member file resolves reference, link into executable.

13

Static Libraries (archives)

Translator

p1.c

p1.o

Translator

p2.c

p2.o libc.a
static library (archive) of
relocatable object files
concatenated into one file.

executable object file (only contains code
and data for libc functions that are called
from p1.c and p2.c)

Further improves modularity and efficiency by packaging
commonly used functions [e.g., C standard library (libc),
math library (libm)]

Linker selects only the .o files in the archive that are actually
needed by the program.

Linker (ld)

p

14

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

ar rs libc.a \
 atoi.o printf.o … random.o

Archiver allows incremental updates:
• Recompile function that changes and replace .o file in
archive.

C standard library

15

Commonly Used Libraries
libclibc.a.a (the C standard library) (the C standard library)

 8 MB archive of 900 object files.
 I/O, memory allocation, signal handling, string handling, data and

time, random numbers, integer math
libmlibm.a.a (the C math library) (the C math library)

 1 MB archive of 226 object files.
 floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

16

Using Static Libraries
LinkerLinkerʼ̓s algorithm for resolving external references:s algorithm for resolving external references:

 Scan .o files and .a files in the command line order.
 During the scan, keep a list of the current unresolved

references.
 As each new .o or .a file obj is encountered, try to resolve

each unresolved reference in the list against the symbols in
obj.

 If any entries in the unresolved list at end of scan, then error.

Problem:Problem:
 Command line order matters!
 Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

17

Loading Executable Binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program p

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

18

Shared Libraries
Static libraries have the following disadvantages:Static libraries have the following disadvantages:

 Potential for duplicating lots of common code in the executable
files on a filesystem.
 e.g., every C program needs the standard C library

 Potential for duplicating lots of code in the virtual memory space of
many processes.

 Minor bug fixes of system libraries require each application to
explicitly relink

Solution:Solution:
 Shared libraries (dynamic link libraries, DLLs) whose members are

dynamically loaded into memory and linked into an application at
run-time.
 Dynamic linking can occur when executable is first loaded and run.

» Common case for Linux, handled automatically by ld-linux.so.
 Dynamic linking can also occur after program has begun.

» In Linux, this is done explicitly by user with dlopen().
» Basis for High-Performance Web Servers.

 Shared library routines can be shared by multiple processes.

19

Dynamically Linked Shared Libraries

libc.so functions called by m.c
and a.c are loaded, linked, and
(potentially) shared among
processes.

Shared library of dynamically
relocatable object files

Translators
(cc1, as)

m.c

m.o

Translators
(cc1,as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

Fully linked executable
pʼ (in memory)

Partially linked executable
p
(on disk)

P’

20

The Complete Picture

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

libwhatever.a

p’

libm.so

