
Code Optimization II:
Machine Independent Optimizations

TopicsTopics
 Machine-Independent Optimizations

 Code motion
 Reduction in strength
 Common subexpression sharing

 Tuning
 Identifying performance bottlenecks

Systems I

2

Vector ADT

ProceduresProcedures
vec_ptr new_vec(int len)

 Create vector of specified length
int get_vec_element(vec_ptr v, int index, int *dest)

 Retrieve vector element, store at *dest
 Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
 Return pointer to start of vector data

 Similar to array implementations in Pascal, ML, Java
 E.g., always do bounds checking

length
data • • •

0 1 2 length–1

3

Optimization Example

ProcedureProcedure
 Compute sum of all elements of integer vector
 Store result at destination location
 Vector data structure and operations defined via abstract data type

Pentium II/III Performance: Clock Cycles / ElementPentium II/III Performance: Clock Cycles / Element
 42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
 int i;
 *dest = 0;
 for (i = 0; i < vec_length(v); i++) {
 int val;
 get_vec_element(v, i, &val);
 *dest += val;
 }
}

4

Reduction in Strength

OptimizationOptimization
 Avoid procedure call to retrieve each vector element

Get pointer to start of array before loop
Within loop just do pointer reference
Not as clean in terms of data abstraction

 CPE: 6.00 (Compiled -O2)
Procedure calls are expensive!
Bounds checking is expensive

void combine2(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 *dest = 0;
 for (i = 0; i < length; i++) {
 *dest += data[i];
}

5

Eliminate Unneeded Memory Refs

OptimizationOptimization
 Donʼt need to store in destination until end
 Local variable sum held in register
 Avoids 1 memory read, 1 memory write per cycle
 CPE: 2.00 (Compiled -O2)

Memory references are expensive!

void combine3(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

6

Detecting Unneeded Memory Refs.

PerformancePerformance
 Combine2

5 instructions in 6 clock cycles
 addl must read and write memory

 Combine3
4 instructions in 2 clock cycles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine2

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine3

7

Optimization Blocker: Memory Aliasing
AliasingAliasing

 Two different memory references specify single location

ExampleExample
 v: [3, 2, 17]

 combine2(v, get_vec_start(v)+2) --> ?

 combine3(v, get_vec_start(v)+2) --> ?

ObservationsObservations
 Easy to have happen in C

Since allowed to do address arithmetic
Direct access to storage structures

 Get in habit of introducing local variables
Accumulating within loops
Your way of telling compiler not to check for aliasing

8

Previous Best Combining Code

TaskTask
 Compute sum of all elements in vector
 Vector represented by C-style abstract data type
 Achieved CPE of 2.00

 Cycles per element

void combine4(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

9

General Forms of Combining

Data TypesData Types
 Use different declarations

for data_t
 int

 float

 double

void abstract_combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *data = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP data[i];
 *dest = t;
}

OperationsOperations
 Use different definitions

of OP and IDENT
 + / 0
 * / 1

10

Machine Independent Opt. Results
OptimizationsOptimizations

 Reduce function calls and memory references within loop

Performance AnomalyPerformance Anomaly
 Computing FP product of all elements exceptionally slow.
 Very large speedup when accumulate in temporary
 Caused by quirk of IA32 floating point

 Memory uses 64-bit format, register use 80
 Benchmark data caused overflow of 64 bits, but not 80

Integer Floating Point Method
+ * + *

Abstract -g 42.06 41.86 41.44 160.00

Abstract -O2 31.25 33.25 31.25 143.00

Move vec_length 20.66 21.25 21.15 135.00

data access 6.00 9.00 8.00 117.00

Accum. in temp 2.00 4.00 3.00 5.00

11

Pointer Code

OptimizationOptimization
 Use pointers rather than array references
 CPE: 3.00 (Compiled -O2)

Oops! Weʼre not making progress here!
Warning: Some compilers do better job optimizing array code

void combine4p(vec_ptr v, int *dest)
{
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int *dend = data+length;
 int sum = 0;
 while (data < dend) {
 sum += *data;
 data++;
 }
 *dest = sum;
}

12

Pointer vs. Array Code Inner Loops
Array CodeArray Code

Pointer CodePointer Code

PerformancePerformance
 Array Code: 4 instructions in 2 clock cycles
 Pointer Code: Almost same 4 instructions in 3 clock cycles

.L24: # Loop:
addl (%eax,%edx,4),%ecx # sum += data[i]
incl %edx # i++
cmpl %esi,%edx # i:length
jl .L24 # if < goto Loop

.L30: # Loop:
addl (%eax),%ecx # sum += *data
addl $4,%eax # data ++
cmpl %edx,%eax # data:dend
jb .L30 # if < goto Loop

13

Machine-Independent Opt. Summary
Code MotionCode Motion

 Compilers are good at this for simple loop/array structures
 Donʼt do well in presence of procedure calls and memory aliasing

Reduction in StrengthReduction in Strength
 Shift, add instead of multiply or divide

 compilers are (generally) good at this
 Exact trade-offs machine-dependent

 Keep data in registers rather than memory
 compilers are not good at this, since concerned with aliasing

Share Common Share Common SubexpressionsSubexpressions
 compilers have limited algebraic reasoning capabilities

14

Important Tools
MeasurementMeasurement

 Accurately compute time taken by code
Most modern machines have built in cycle counters
Using them to get reliable measurements is tricky

 Profile procedure calling frequencies
Unix tool gprof

ObservationObservation
 Generating assembly code

Lets you see what optimizations compiler can make
Understand capabilities/limitations of particular compiler

15

Code Profiling Example
TaskTask

 Count word frequencies in text document
 Produce sorted list of words from most frequent to least

StepsSteps
 Convert strings to lowercase
 Apply hash function
 Read words and insert into hash table

 Mostly list operations
 Maintain counter for each unique word

 Sort results

Data SetData Set
 Collected works of Shakespeare
 946,596 total words, 26,596 unique
 Initial implementation: 9.2 seconds

thatthat11,51911,519
inin11,72211,722
mymy12,93612,936
youyou1401014010
aa15,37015,370
ofof18,51418,514
toto20,95720,957
II21,02921,029
andand27,52927,529
thethe29,80129,801

Shakespeareʼs
most frequent words

16

Code Profiling
Augment Executable Program with Timing FunctionsAugment Executable Program with Timing Functions

 Computes (approximate) amount of time spent in each
function

 Time computation method
 Periodically (~ every 10ms) interrupt program
 Determine what function is currently executing
 Increment its timer by interval (e.g., 10ms)

 Also maintains counter for each function indicating number
of times called

UsingUsing
gcc –O2 –pg prog.c –o prog
./prog

 Executes in normal fashion, but also generates file gmon.out
gprof prog

 Generates profile information based on gmon.out

17

Profiling Results

Call StatisticsCall Statistics
 Number of calls and cumulative time for each function

Performance LimiterPerformance Limiter
 Using inefficient sorting algorithm
 Single call uses 87% of CPU time

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 86.60 8.21 8.21 1 8210.00 8210.00 sort_words
 5.80 8.76 0.55 946596 0.00 0.00 lower1
 4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
 1.27 9.33 0.12 946596 0.00 0.00 h_add

18

Code Optimizations

 First step: Use more efficient sorting function
 Library function qsort

0

1

2

3

4

5

6

7

8

9

10

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
P

U
 S

e
c

s
.

Rest

Hash

Lower

List

Sort

19

Further Optimizations

 Iter first: Use iterative function to insert elements into linked
list
 Causes code to slow down

 Iter last: Iterative function, places new entry at end of list
 Tend to place most common words at front of list

 Big table: Increase number of hash buckets
 Better hash: Use more sophisticated hash function
 Linear lower: Move strlen out of loop

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
P

U
 S

e
c

s
.

Rest

Hash

Lower

List

Sort

20

Profiling Observations
BenefitsBenefits

 Helps identify performance bottlenecks
 Especially useful when have complex system with many

components

LimitationsLimitations
 Only shows performance for data tested
 E.g., linear lower did not show big gain, since words are

short
 Quadratic inefficiency could remain lurking in code

 Timing mechanism fairly crude
 Only works for programs that run for > 3 seconds

21

Role of Programmer
How should I write my programs, given that I have a good, optimizing

compiler?

DonDonʼ̓t: Smash Code into Obliviont: Smash Code into Oblivion
 Hard to read, maintain, & assure correctness

Do:Do:
 Select best algorithm
 Write code thatʼs readable & maintainable

 Procedures, recursion, without built-in constant limits
 Even though these factors can slow down code

 Eliminate optimization blockers
 Allows compiler to do its job

Focus on Inner LoopsFocus on Inner Loops
 Do detailed optimizations where code will be executed repeatedly
 Will get most performance gain here

22

Summary
TodayToday

 Optimization blocker: procedure calls
 Optimization blocker: memory aliasing
 Tools (profiling) for understanding performance

Next timeNext time
 Memory system optimization

