
Machine-Level Programming I:
Introduction

TopicsTopics
 Assembly Programmerʼs

Execution Model
 Accessing Information

 Registers

Systems I

2

IA32 Processors
Totally Dominate General Purpose CPU MarketTotally Dominate General Purpose CPU Market

Evolutionary DesignEvolutionary Design
 Starting in 1978 with 8086
 Added more features as time goes on
 Still support old features, although obsolete

Complex Instruction Set Computer (CISC)Complex Instruction Set Computer (CISC)
 Many different instructions with many different formats

 But, only small subset encountered with Linux programs
 Hard to match performance of Reduced Instruction Set

Computers (RISC)
 But, Intel has done just that!

3

X86 Evolution: Programmerʼs View
NameName DateDate TransistorsTransistors

80868086 19781978 29K29K
 16-bit processor. Basis for IBM PC & DOS
 Limited to 1MB address space. DOS only

gives you 640K

8028680286 19821982 134K134K
 Added elaborate, but not very useful,

addressing scheme
 Basis for IBM PC-AT and Windows

386386 19851985 275K275K
 Extended to 32 bits. Added “flat

addressing”
 Capable of running Unix
 Linux/gcc uses no instructions introduced

in later models

4

X86 Evolution: Programmerʼs View
NameName DateDate TransistorsTransistors

486486 19891989 1.9M1.9M
 Added on-chip floating-point unit

PentiumPentium 19931993 3.1M3.1M
Pentium/MMXPentium/MMX 19971997 4.5M4.5M

 Added special collection of instructions
for operating on 64-bit vectors of 1, 2, or
4 byte integer data

PentiumProPentiumPro 19951995 6.5M6.5M
 Added conditional move instructions
 Hardware can execute instructions out of

order

5

X86 Evolution: Programmerʼs View
NameName DateDate TransistorsTransistors

Pentium IIIPentium III 19991999 8.2M8.2M
 Added “streaming SIMD” instructions

for operating on 128-bit vectors of 1, 2,
or 4 byte integer or floating point data

Pentium 4Pentium 4 20012001 42M42M
 Added 8-byte formats and 144 new

instructions for streaming SIMD mode
 “Superpipelined” with very fast clocks

““NehalemNehalem”” 20092009 700M+700M+
 4 Cores on the same chip
 8MB+ of on-chip memory

6

X86 Evolution: Clones
Advanced Micro Devices (AMD)Advanced Micro Devices (AMD)

 Historically
AMD has followed just behind Intel
A little bit slower, a lot cheaper

 Recently
Drove 64-bit extensions to IA32 architecture
Acquired ATI (graphics chip company)
Increasing core counts too
6-core Opteron (Istanbul) 2009

Variety ofVariety of x86x86 chips in different marketschips in different markets
Embedded/low power (Atom, Neo)
Desktop/laptop
Server
Supercomputer

7

Abstract and Concrete Machine
Models

1) loops
2) conditionals
3) switch
4) Proc. call
5) Proc. return

Machine Models Data Control
1) char
2) int, float
3) double
4) struct, array
5) pointer

mem proc

C

Assembly
1) byte
2) 2-byte word
3) 4-byte long word
4) contiguous byte allocation
5) address of initial byte

3) branch/jump
4) call
5) retmem regs alu

processorStack Cond.
Codes

8

Assembly Programmerʼs View

Programmer-Visible StateProgrammer-Visible State
 EIP Program Counter

Address of next instruction
 Register File

Heavily used program data
 Condition Codes

Store status information about
most recent arithmetic operation

Used for conditional branching

E
I
P

Registers

CPU Memory

Object Code
Program Data

OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

 Memory
 Byte addressable array
 Code, user data, (some) OS

data
 Includes stack used to

support procedures

9

By the By the architecturearchitecture of a system, I mean the complete and of a system, I mean the complete and
detailed specification of the user interface. detailed specification of the user interface. …… As As BlaauwBlaauw
has said, has said, ““Where architecture tells Where architecture tells whatwhat happens, happens,
implementation tells implementation tells howhow it is made to happen. it is made to happen.””

The Mythical Man-MonthThe Mythical Man-Month, Brooks, pg 45, Brooks, pg 45

Slide adapted from M.J. Irwin, 2005

10

Instruction Set Architecture
Principles
Contract between programmer and the hardwareContract between programmer and the hardware

 Defines visible state of the system
 Defines how state changes in response to instructions

Programmer: ISA is model of how a program will executeProgrammer: ISA is model of how a program will execute
Hardware Designer: ISA is formal definition of the correct way toHardware Designer: ISA is formal definition of the correct way to

execute a programexecute a program
 With a stable ISA, SW doesnʼt care what the HW looks like under

the covers
 Hardware implementations can change (drastically)
 As long as the HW implements the same ISA, all prior SW will still run

 Example: x86 ISA has spanned many chips
 Instructions have been added but the SW of prior chips still runs on

later chips

ISA specificationISA specification
 The binary encodings of the instruction set

11

Instruction Set Architecture
Contract between programmer and the hardwareContract between programmer and the hardware

 Defines visible state of the system
 Defines how state changes in response to instructions

Programmer: ISA is model of how a program willProgrammer: ISA is model of how a program will
executeexecute

Hardware Designer: ISA is formal definition of theHardware Designer: ISA is formal definition of the
correct way to execute a programcorrect way to execute a program

ISA specificationISA specification
 The binary encodings of the instruction set

12

ISA Basics

Op Mode Ra Rb

Mem
Regs

Before State

Mem
Regs

After State

instructionInstruction formats
Instruction types
Addressing modes

Data types
Operations
Interrupts/Events

Machine state
Memory organization
Register organization

13

Architecture vs. Implementation
Architecture:Architecture: defines what a computer systemdefines what a computer system

does in response to a program and a set ofdoes in response to a program and a set of
datadata
 Programmer visible elements of computer system

Implementation:Implementation: defines how a computer does defines how a computer does
itit
 Sequence of steps to complete operations
 Time to execute each operation
 Hidden “bookkeeping” functions

14

Examples
Architecture or Implementation?Architecture or Implementation?

 Number of GP registers
 Width of memory bus
 Binary representation of the instruction
sub r4,r2,#27

 Number of cycles to execute FP instruction
 How condition code bits are set on a move instruction
 Size of the instruction cache
 Type of FP format

15

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc -O p1.c p2.c -o p
Use optimizations (-O)
Put resulting binary in file p

16

Compiling Into Assembly
C CodeC Code

int sum(int x, int y)
{
 int t = x+y;
 return t;
}

Generated Assembly
_sum:

pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %ebp,%esp
popl %ebp
ret

Obtain with command
gcc -O -S code.c

Produces file code.s

17

Assembly Characteristics
Minimal Data TypesMinimal Data Types

 “Integer” data of 1, 2, or 4 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes
 No aggregate types such as arrays or structures

 Just contiguously allocated bytes in memory

Primitive OperationsPrimitive Operations
 Perform arithmetic function on register or memory data
 Transfer data between memory and register

 Load data from memory into register
 Store register data into memory

 Transfer control
 Unconditional jumps to/from procedures
 Conditional branches

18

Code for sum
0x401040 <sum>:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

Object Code
AssemblerAssembler

 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable

code
 Missing linkages between code in

different files

LinkerLinker
 Resolves references between files
 Combines with static run-time

libraries
 E.g., code for malloc, printf

 Some libraries are dynamically linked
 Linking occurs when program begins

execution

• Total of 13
bytes

• Each
instruction 1,
2, or 3 bytes

• Starts at
address
0x401040

19

Machine Instruction Example
C CodeC Code

 Add two signed integers

AssemblyAssembly
 Add 2 4-byte integers

“Long” words in GCC parlance
Same instruction whether

signed or unsigned
 Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

» Return function value in %eax

Object CodeObject Code
 3-byte instruction
 Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to
expression
x += y

20

Disassembled
00401040 <_sum>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 0c mov 0xc(%ebp),%eax
 6: 03 45 08 add 0x8(%ebp),%eax
 9: 89 ec mov %ebp,%esp
 b: 5d pop %ebp
 c: c3 ret
 d: 8d 76 00 lea 0x0(%esi),%esi

Disassembling Object Code

DisassemblerDisassembler
objdump -d p

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

21

Disassembled
0x401040 <sum>: push %ebp
0x401041 <sum+1>: mov %esp,%ebp
0x401043 <sum+3>: mov 0xc(%ebp),%eax
0x401046 <sum+6>: add 0x8(%ebp),%eax
0x401049 <sum+9>: mov %ebp,%esp
0x40104b <sum+11>: pop %ebp
0x40104c <sum+12>: ret
0x40104d <sum+13>: lea 0x0(%esi),%esi

Alternate Disassembly

Within Within gdbgdb Debugger Debugger
gdb p

disassemble sum

 Disassemble procedure
x/13b sum

 Examine the 13 bytes starting at sum

Object
0x401040:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

22

What Can be Disassembled?

 Anything that can be interpreted as executable code
 Disassembler examines bytes and reconstructs assembly

source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

23

Whose Assembler?

Intel/Microsoft Differs from GASIntel/Microsoft Differs from GAS
 Operands listed in opposite order

mov Dest, Src movl Src, Dest
 Constants not preceded by ʻ$ʼ, Denote hex with ʻhʼ at end

100h $0x100

 Operand size indicated by operands rather than operator suffix
sub subl

 Addressing format shows effective address computation
[eax*4+100h] $0x100(,%eax,4)

lea eax,[ecx+ecx*2]
sub esp,8
cmp dword ptr [ebp-8],0
mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax
subl $8,%esp
cmpl $0,-8(%ebp)
movl $0x100(,%eax,4),%eax

Intel/Microsoft Format GAS/Gnu Format

24

Moving Data
Moving DataMoving Data

movl Source,Dest:
 Move 4-byte (“long”) word
 Lots of these in typical code

Operand TypesOperand Types
 Immediate: Constant integer data

 Like C constant, but prefixed with ʻ$ʼ
 E.g., $0x400, $-533
 Encoded with 1, 2, or 4 bytes

 Register: One of 8 integer registers
 But %esp and %ebp reserved for special use
 Others have special uses for particular instructions

 Memory: 4 consecutive bytes of memory
 Various “address modes”

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

25

movl Operand Combinations

 Cannot do memory-memory transfers with single
instruction

movl

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;

26

Simple Addressing Modes
NormalNormal (R)(R) MemMem[[RegReg[R]][R]]

 Register R specifies memory address
movl (%ecx),%eax

DisplacementDisplacement D(R)D(R) MemMem[[RegReg[R]+D][R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset
movl 8(%ebp),%edx

27

Summary
TodayToday

 ISA/processor evolution (for x86)
 Programmer machine models
 Introduction to ISA and usage

Next timeNext time
 Memory access
 Arithmetic operations
 C pointers and Addresses

