
Machine-Level Programming III:
Control Flow

TopicsTopics
 Condition Codes

 Setting
 Testing

 Control Flow
 If-then-else
 Varieties of Loops

Systems I

2

Controlling program execution
We can nowWe can now generate programs that execute lineargenerate programs that execute linear

sequences of instructionssequences of instructions
 Access registers and storage
 Perform computations

But - what about loops, if-then-else, etc.?But - what about loops, if-then-else, etc.?
Need ISA support for:Need ISA support for:

 Comparing and testing data values
 Directing program control

 Jump to some instruction that isnʼt just the next sequential one
 Do so based on some condition that has been tested

3

Condition Codes
Single Bit RegistersSingle Bit Registers

CF Carry Flag SF Sign Flag
ZF Zero Flag OF Overflow Flag

Implicitly Set By Arithmetic OperationsImplicitly Set By Arithmetic Operations
addl Src,Dest
C analog: t = a + b
 CF set if carry out from most significant bit

Used to detect unsigned overflow
 ZF set if t == 0
 SF set if t < 0
 OF set if twoʼs complement overflow

(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

NotNot Set by Set by lealleal instructioninstruction

4

Setting Condition Codes (cont.)

Explicit Setting by Compare InstructionExplicit Setting by Compare Instruction
cmpl Src2,Src1
 cmpl b,a like computing a-b without setting destination
 CF set if carry out from most significant bit

 Used for unsigned comparisons
 ZF set if a == b
 SF set if (a-b) < 0
 OF set if twoʼs complement overflow

(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

5

Setting Condition Codes (cont.)

Explicit Setting by Test instructionExplicit Setting by Test instruction
testl Src2,Src1
 Sets condition codes based on value of Src1 & Src2

 Useful to have one of the operands be a mask
 testl b,a like computing a&b without setting destination
 ZF set when a&b == 0
 SF set when a&b < 0

6

Reading Condition Codes

SetX Condition Description
sete ZF Equal / Zero

setne ~ZF Not Equal / Not Zero

sets SF Negative

setns ~SF Nonnegative

setg ~(SF^OF)&~ZF Greater (Signed)

setge ~(SF^OF) Greater or Equal (Signed)

setl (SF^OF) Less (Signed)

setle (SF^OF)|ZF Less or Equal (Signed)

seta ~CF&~ZF Above (unsigned)

setb CF Below (unsigned)

SetXSetX Instructions Instructions
 Set single byte based on combinations of condition codes

7

Reading Condition Codes (Cont.)
SetXSetX Instructions Instructions

 Set single byte based on
combinations of condition codes

 One of 8 addressable byte registers
 Embedded within first 4 integer

registers
 Does not alter remaining 3 bytes
 Typically use movzbl to finish job

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

%al%ah

%dl%dh

%cl%ch

%bl%bh

int gt (int x, int y)
{
 return x > y;
}

movl 12(%ebp),%eax # eax = y
cmpl %eax,8(%ebp) # Compare x : y
setg %al # al = x > y
movzbl %al,%eax # Zero rest of %eax

Note
inverted
ordering!

Body

8

Jumping

jX Condition Description
jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

jXjX Instructions Instructions
 Jump to different part of code depending on condition codes

9

Conditional Branch Example

int max(int x, int y)
{
 if (x > y)
 return x;
 else
 return y;
}

_max:
pushl %ebp
movl %esp,%ebp

movl 8(%ebp),%edx
movl 12(%ebp),%eax
cmpl %eax,%edx
jle L9
movl %edx,%eax

L9:

movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

10

Conditional Branch Example (Cont.)

movl 8(%ebp),%edx # edx = x
movl 12(%ebp),%eax # eax = y
cmpl %eax,%edx # x : y
jle L9 # if <= goto L9
movl %edx,%eax # eax = x

L9: # Done:

int goto_max(int x, int y)
{
 int rval = y;
 int ok = (x <= y);
 if (ok)
 goto done;
 rval = x;
done:
 return rval;
}

Skipped when x ≤ y

 C allows “goto” as means
of transferring control
 Closer to machine-level

programming style
 Generally considered bad

coding style

11

C Code
int fact_do
 (int x)
{
 int result = 1;
 do {
 result *= x;
 x = x-1;
 } while (x > 1);
 return result;
}

Goto Version
int fact_goto(int x)
{
 int result = 1;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
 return result;
}

“Do-While” Loop Example

 Use backward branch to continue looping
 Only take branch when “while” condition holds

12

Goto Version
int fact_goto
 (int x)
{
 int result = 1;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
 return result;
}

“Do-While” Loop Compilation

RegistersRegisters
%edx x

%eax result

_fact_goto:
pushl %ebp # Setup
movl %esp,%ebp # Setup
movl $1,%eax # eax = 1
movl 8(%ebp),%edx # edx = x

L11:
imull %edx,%eax # result *= x
decl %edx # x--
cmpl $1,%edx # Compare x : 1
jg L11 # if > goto loop

movl %ebp,%esp # Finish
popl %ebp # Finish
ret # Finish

Assembly

13

C Code
do
 Body
 while (Test);

Goto Version
loop:
 Body
 if (Test)
 goto loop

General “Do-While” Translation

 Body can be any C statement
Typically compound statement:

 Test is expression returning integer
= 0 interpreted as false ≠0 interpreted as true

{
 Statement1;
 Statement2;
 …
 Statementn;
}

14

C Code
int fact_while
 (int x)
{
 int result = 1;
 while (x > 1) {
 result *= x;
 x = x-1;
 };
 return result;
}

First Goto Version
int fact_while_goto
 (int x)
{
 int result = 1;
loop:
 if (!(x > 1))
 goto done;
 result *= x;
 x = x-1;
 goto loop;
done:
 return result;
}

“While” Loop Example #1

 Is this code equivalent to the do-while version?
 Must jump out of loop if test fails

15

C Code
int fact_while(int x)
{
 int result = 1;
 while (x > 1) {
 result *= x;
 x = x-1;
 };
 return result;
}

Second Goto Version
int fact_while_goto2
 (int x)
{
 int result = 1;
 if (!(x > 1))
 goto done;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
done:
 return result;
}

Actual “While” Loop Translation

 Uses same inner loop
as do-while version

 Guards loop entry with
extra test

16

C Code
while (Test)
 Body

Do-While Version
 if (!Test)
 goto done;
 do
 Body
 while(Test);
done:

General “While” Translation

Goto Version
 if (!Test)
 goto done;
loop:
 Body
 if (Test)
 goto loop;
done:

17

Summarizing
C ControlC Control

 if-then-else
 do-while
 while
 switch

Assembler ControlAssembler Control
 jump
 Conditional jump

CompilerCompiler
 Must generate assembly

code to implement more
complex control

Standard TechniquesStandard Techniques
 All loops converted to do-while

form
 Large switch statements use

jump tables

Conditions in CISCConditions in CISC
 CISC machines generally have

condition code registers

Conditions in RISCConditions in RISC
 Use general registers to store

condition information
 Special comparison instructions
 E.g., on Alpha:
cmple $16,1,$1
 Sets register $1 to 1 when

Register $16 <= 1

18

Summary
Instruction support for control flowInstruction support for control flow

 Test/Compare instructions modify condition codes
 Branch/Jump instructions can conditionally execute based

on condition code
 ….and set program counter (%eip) point to some instruction

elsewhere in the program

Next timeNext time
 More loop examples
 Switch statements and jump tables

