
University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

TRAPs and Subroutines

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 2

System Calls

Certain operations require specialized knowledge
and protection:

specific knowledge of I/O device registers
and the sequence of operations needed to use them
I/O resources shared among multiple users/programs;
a mistake could affect lots of other users!

Not every programmer knows (or wants to know)
this level of detail

Provide service routines or system calls
(part of operating system) to safely and conveniently
perform low-level, privileged operations

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 3

System Call

1. User program invokes system call.
2. Operating system code performs operation.
3. Returns control to user program.

In LC-3, this is done through the TRAP mechanism.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 4

LC-3 TRAP Mechanism
1. A set of service routines.

part of operating system -- routines start at arbitrary addresses
(convention is that system code is below x3000)

up to 256 routines

2. Table of starting addresses.
stored at x0000 through x00FF in memory
called System Control Block in some architectures

3. TRAP instruction.
used by program to transfer control to operating system
8-bit trap vector names one of the 256 service routines

4. A linkage back to the user program.
want execution to resume
immediately after the TRAP instruction

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 5

TRAP Instruction

Trap vector
identifies which system call to invoke
8-bit index into table of service routine addresses

in LC-3, this table is stored in memory at 0x0000 – 0x00FF
8-bit trap vector is zero-extended into 16-bit memory address

Where to go
lookup starting address from table; place in PC

How to get back
save address of next instruction (current PC) in R7

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 6

TRAP

NOTE: PC has already been incremented
during instruction fetch stage.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 7

RET (JMP R7)

How do we transfer control back to
instruction following the TRAP?

We saved old PC in R7.
JMP R7 gets us back to the user program at the right spot.
LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.

Must make sure that service routine does not
change R7, or we won’t know where to return.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 8

TRAP Mechanism Operation

1. Lookup starting address.
2. Transfer to service routine.
3. Return (JMP R7).

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 9

Example: TRAP Instruction
.ORIG x3000

LD R2, TERM ; Load negative ASCII ‘7’
LD R3, ASCII ; Load ASCII difference

AGAIN TRAP x23 ; input character
ADD R1, R2, R0 ; Test for terminate
BRz EXIT ; Exit if done
ADD R0, R0, R3 ; Change to lowercase
TRAP x21 ; Output to monitor...
BRnzp AGAIN ; ... again and again...

TERM .FILL xFFC9 ; -‘7’
ASCII .FILL x0020 ; lowercase bit
EXIT TRAP x25 ; halt

.END

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 10

Example: Output Service Routine
.ORIG x0430 ; syscall address

ST R7, SaveR7 ; save R7 & R1
ST R1, SaveR1

; ----- Write character
TryWrite LDI R1, CRTSR ; get status

BRzp TryWrite ; look for bit 15 on
WriteIt STI R0, CRTDR ; write char
; ----- Return from TRAP
Return LD R1, SaveR1 ; restore R1 & R7

LD R7, SaveR7
RET ; back to user

CRTSR .FILL xF3FC
CRTDR .FILL xF3FF
SaveR1 .FILL 0
SaveR7 .FILL 0

.END

stored in table,
location x21

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 11

TRAP Routine Names

write a string to the consolePUTSx22
print prompt to console,
read and echo character from keyboardINx23

read a single character (no echo)GETCx20

x25

x21

vector

halt the programHALT

output a character to the monitorOUT

routinesymbol

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 12

Saving and Restoring Registers
Must save the value of a register if:

Its value will be destroyed by service routine, and
We will need to use the value after that action.

Who saves?
caller of service routine?

knows what it needs later, but may not know what gets altered by
called routine

called service routine?
knows what it alters, but does not know what will be needed later by
calling routine

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 13

Example
LEAR3, Binary

LD R6, ASCII ; char->digit template
LD R7, COUNT ; initialize to 10

AGAIN TRAP x23 ; Get char
ADD R0, R0, R6 ; convert to number
STR R0, R3, #0 ; store number
ADD R3, R3, #1 ; incr pointer
ADD R7, R7, -1 ; decr counter
BRp AGAIN ; more?
BRnzp NEXT

ASCII .FILL xFFD0
COUNT .FILL #10
Binary .BLKW #10 What’s wrong with this routine?

What happens to R7?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 14

Saving and Restoring Registers
Called routine -- “callee-save”

Before start, save any registers that will be altered
(unless altered value is desired by calling program!)
Before return, restore those same registers

Calling routine -- “caller-save”
Save registers destroyed by own instructions or
by called routines (if known), if values needed later

save R7 before TRAP
save R0 before TRAP x23 (input character)

Or avoid using those registers altogether

Values are saved by storing them in memory.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 15

Question

Can a service routine call another service
routine?

If so, is there anything special the calling
service routine must do?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 16

What about User Code?

Service routines provide three main functions:
1. Shield programmers from system-specific details.
2. Write frequently-used code just once.
3. Protect system resources from malicious/clumsy
 programmers.

Are there any reasons to provide the same functions
for non-system (user) code?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 17

Subroutines
A subroutine is a program fragment that:

lives in user space
performs a well-defined task
is invoked (called) by another user program
returns control to the calling program when finished

Like a service routine, but not part of the OS
not concerned with protecting hardware resources
no special privilege required

Reasons for subroutines:
reuse useful (and debugged!) code without having to
keep typing it in
divide task among multiple programmers
use vendor-supplied library of useful routines

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 18

JSR Instruction

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.

saving the return address is called “linking”
target address is PC-relative (PC + Sext(IR[10:0]))
bit 11 specifies addressing mode

if =1, PC-relative: target address = PC + Sext(IR[10:0])
if =0, register: target address = contents of register IR[8:6]

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 19

JSR

NOTE: PC has already been incremented
during instruction fetch stage.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 20

JSRR Instruction

Just like JSR, except Register addressing
mode.

target address is Base Register
bit 11 specifies addressing mode

What important feature does JSRR provide
that JSR does not?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 21

JSRR

NOTE: PC has already been incremented
during instruction fetch stage.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 22

Returning from a Subroutine

RET (JMP R7) gets us back to the calling
routine.

just like TRAP

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 23

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits
ADD R0, R0, #1 ; add one
RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3
ADD R0, R3, #0 ; copy R3 to R0
JSR 2sComp ; negate
ADD R4, R1, R0 ; add to R1
...

Note: Caller should save R0 if we’ll need it later!

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 24

Passing Information to/from Subroutines
Arguments

A value passed in to a subroutine is called an argument.
This is a value needed by the subroutine to do its job.
Examples:

In 2sComp routine, R0 is the number to be negated
In OUT service routine, R0 is the character to be printed.
In PUTS routine, R0 is address of string to be printed.

Return Values
A value passed out of a subroutine is called a return value.
This is the value that you called the subroutine to compute.
Examples:

In 2sComp routine, negated value is returned in R0.
In GETC service routine, character read from the keyboard
is returned in R0.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 25

Using Subroutines

In order to use a subroutine, a programmer must
know:

its address (or at least a label that will be bound to its
address)
its function (what does it do?)

NOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run.

its arguments (where to pass data in, if any)
its return values (where to get computed data, if any)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 26

Saving and Restore Registers
Since subroutines are just like service routines,
we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,
except for return values.

Save anything that the subroutine will alter internally
that shouldn’t be visible when the subroutine returns.
It’s good practice to restore incoming arguments to
their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other
subroutine or service routine (TRAP).

Otherwise, you won’t be able to return to caller.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 27

Example
1. Write a subroutine FirstChar to:

find the first occurrence of a particular character (in R0)
in a string (pointed to by R1);
return pointer to character or to end of string (NULL) in R2.

2. Use FirstChar to write CountChar, which:
counts the number of occurrences of a particular character (in R0)
in a string (pointed to by R1);
return count in R2.

Can write the second subroutine first,
without knowing the implementation of FirstChar!

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 28

CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R3 <- M(R2)

R3=0

R1 <- R2 + 1

restore
regs

return

no

yes

save R7,
since we’re using JSR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 29

CountChar Implementation
; CountChar: subroutine to count occurrences of a char

CountChar
ST R3, CCR3 ; save registers
ST R4, CCR4
ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 ; save original string ptr
AND R4, R4, #0 ; initialize count to zero

CC1 JSR FirstChar ; find next occurrence (ptr in R2)
LDR R3, R2, #0 ; see if char or null
BRz CC2 ; if null, no more chars
ADD R4, R4, #1 ; increment count
ADD R1, R2, #1 ; point to next char in string

BRnzp CC1
CC2 ADD R2, R4, #0 ; move return val (count) to R2

LD R3, CCR3 ; restore regs
LD R4, CCR4
LD R1, CCR1
LD R7, CCR7
RET ; and return

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 30

FirstChar Algorithm

save regs

R2 <- R1

R3 <- M(R2)

R3=0

R3=R0

R2 <- R2 + 1

restore
regs

return

no

no

yes

yes

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 31

FirstChar Implementation
; FirstChar: subroutine to find first occurrence of a char

FirstChar
ST R3, FCR3 ; save registers
ST R4, FCR4 ; save original char
NOT R4, R0 ; negate R0 for comparisons
ADD R4, R4, #1
ADD R2, R1, #0 ; initialize ptr to beginning of string

FC1 LDR R3, R2, #0 ; read character
BRz FC2 ; if null, we’re done
ADD R3, R3, R4 ; see if matches input char
BRz FC2 ; if yes, we’re done
ADD R2, R2, #1 ; increment pointer
BRnzp FC1

FC2 LD R3, FCR3 ; restore registers
LD R4, FCR4 ;
RET ; and return

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 32

Library Routines
Vendor may provide object files containing
useful subroutines

don’t want to provide source code -- intellectual property
assembler/linker must support EXTERNAL symbols
(or starting address of routine must be supplied to user)

...

.EXTERNAL SQRT

...
LD R2, SQAddr ; load SQRT addr
JSRR R2
...

SQAddr .FILL SQRT

Using JSRR, because we don’t know whether SQRT
is within 1024 instructions.

