
CS395T:	Structured	Models	for	NLP	
Lecture	10:	Trees	4

Greg	Durrett

Administrivia

‣ Project	1	graded	by	late	week	/	this	weekend

Recall:	Eisner’s	Algorithm
‣ LeM	and	right	children	are	built	independently,	heads	are	edges	of	spans
‣ Complete	item:	all	children	are	aPached,	head	is	at	the	“tall	end”
‣ Incomplete	item:	arc	from	“tall	end”	to	“short	end”,	may	sTll	expect	children

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

Recall:	MST	Algorithm

‣ Eisner:	search	over	the	space	of	projecTve	trees,	O(n3)

‣MST:	find	maximum	directed	spanning	tree	—	finds	nonprojecTve	trees	
as	well	as	projecTve	trees	O(n2)

‣MST	restricted	to	features	on	single	dependencies,	Eisner	can	be	
generalized	to	incorporate	higher-order	features	(grandparents,	siblings,	
etc.)	at	a	Tme	complexity	cost,	or	with	beaming

Recall:	TransiTon-Based	Parsing

‣ Start:	stack	contains	[ROOT],	buffer	contains	[I	ate	some	spaghed	bolognese]

‣ ShiM:	top	of	buffer	->	top	of	stack

‣ LeM-Arc: �|w�2, w�1 ! �|w�1 w�1w�2

‣ Right-Arc �|w�2, w�1 ! �|w�2

is	now	a	child	of,

w�1 w�2,

‣ End:	stack	contains	[ROOT],	buffer	is	empty	[]

‣Must	take	2n	steps	for	n	words	(n	shiMs,	n	LA/RA)

is	now	a	child	of

‣ Arc-standard	system:	three	operaTons

Recall:	TransiTon-Based	Parsing

[ROOT	ate]

I

[some	spaghed	bolognese]

[ROOT	ate	some	spaghed]

I

[bolognese]

[ROOT	ate	spaghed]

I some

[bolognese]

S

L

I	ate	some	spaghed	bolognese

S

ROOT S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	leM	arc	between	them
pop	two,	right	arc	between	them

This	Lecture

‣ Global	Decoding

‣ Early	updaTng

‣ ConnecTons	to	reinforcement	learning,	dynamic	oracles

‣ State-of-the-art	dependency	parsers,	related	tasks

Greedy	Training:	StaTc	States

‣ Greedy:	each	box	forms	a	training	example	(s,a*)

State	space

Gold	end	state

Start	state

=	Bad	alternaTve	decisions

Global	Decoding

‣ Greedy	parser:	trained	to	make	the	right	decision	(S,	LA,	RA)	from	
any	gold	state	we	might	come	to

‣Why	might	this	be	bad?

‣What	we	opTmizing	when	we	decode	each	sentence?

s abest(s)

abest argmaxaw
>f(s, a)

‣ Nothing…we’re	execuTng:

Global	Decoding

[ROOT	gave	him]

I

[dinner]

‣ Correct:	Right-arc,	ShiM,	Right-arc,	Right-arc

I	gave	him	dinner

ROOT

[ROOT	gave]

I

[dinner]

him

[ROOT	gave	dinner]

I

[]

him

[ROOT	gave]

I

[]

him dinner

Global	Decoding:	A	Cartoon

S

LA

RA

‣ Both	wrong!	Also	
both	probably	
low	scoring!

RA S
‣ Correct,	high	
scoring	opTon

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

[ROOT	gave	him	dinner]

I

[]

LA

[ROOT	gave]

I him

[dinner]

Global	Decoding:	A	Cartoon

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

‣ Lookahead	can	help	us	avoid	gedng	stuck	in	bad	spots

‣ Global	model:	maximize	sum	of	scores	over	all	decisions

‣ Similar	to	how	Viterbi	works:	we	maintain	uncertainty	over	the	current	
state	so	that	if	another	one	looks	more	opTmal	going	forward,	we	can	
use	that	one

Global	ShiM-Reduce	Parsing

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

‣ Global:

‣ Can	we	do	search	exactly?

‣ No!	Use	beam	search

‣ Greedy:	repeatedly	execute

s abest(s)

abest argmaxaw
>f(s, a)

argmaxs,af(s,a) =
2nX

i=1

w>f(si, ai)

si+1 = ai(si)

‣ How	many	states	s	are	there?

Global	ShiM-Reduce	Parsing

[ROOT	gave	him	dinner]

I

[]

[ROOT	gave]

I him

[dinner]
LA

RA

S

-1.2

+0.9

[ROOT	gave	him]

I

[]
-3.0

dinner

[ROOT	gave	dinner]

I

[]
-2.0

him

[ROOT	gave	dinner]

I him
+2.0

[]

‣ Beam	search	gave	us	the 
lookahead	to	make	the	right 
decision

Training	Global	Parsers

‣ Can	compute	approximate	maxes	with	beam	search

‣ Structured	SVM:	do	loss-augmented	decode, 
gradient	=	gold	feats	-	guess	feats

‣What	happens	if	we	set	beam	size	=	1?

argmaxs,af(s,a) =
2nX

i=1

w>f(si, ai)

‣ Structured	perceptron:	normal	decode, 
gradient	=	gold	feats	-	guess	feats

Global	Training
For	each	epoch

For	each	sentence

For	i=1…2*len(sentence)						#	2n	transiTons	in	arc-standard

beam[i]	=	compute_successors(beam[i-1])

predicTon	=	beam[2*len(sentence),0]				#	argmax	=	top	of	last	beam

apply_gradient_update(feats(gold)	-	feats(predicTon))
	#	Feats	are	cumulaTve	over	the	whole	sentence

Global	Training

‣ Learn	negaTve	weights	for	features	in	these	states	—	
greedy	training	would	never	see	these	states

State	space

Gold	end	stateStart	state

‣ In	global,	we	keep	going	if	we	screw	up!

Pred	end	state

Global	vs.	Greedy

‣ Greedy:	2n	local	training	examples

State	space

Gold	end	stateStart	state

‣ Global:	one	global	example

‣ In	global,	we	keep	going	if	we	screw	up!

Early	UpdaTng

Early	UpdaTng

This	
decision	
was	bad

But	these	might’ve	been	
good!	hard	to	tell

Collins	and	Roark	(2004)

State	space

Gold	end	stateStart	state

Early	UpdaTng

[ROOT	gave	dinner]

I

[]

him

I	gave	him	dinner

ROOT

‣ Ideally	we	don’t	want	to	penalize	this	decision	(update	away	from	it)	
—	instead	just	penalize	the	decision	that	was	obviously	wrong

[ROOT	gave]

I

[]

him
‣Wrong	state	—	we	already	
messed	up!

dinner

‣Made	the	best	of	a	bad	situaTon	by	
pudng	a	good	arc	in	(gave->dinner)

RA

Collins	and	Roark	(2004)

Early	UpdaTng

‣ SoluTon:	make	an	update	as	soon	as	the	gold	parse	falls	off	the	beam

‣ gold	feats	-	guess	feats	computed	up	to	this	point

Early	UpdaTng

[ROOT	gave	him	dinner]

I

[]

[ROOT	gave]

I him

[dinner]
LA

RA

S

-1.2

+0.9
[ROOT	gave	him]

I

[]
+1.0

dinner

[ROOT	gave	dinner]

I

[]
-2.0

him

[ROOT	gave	dinner]

I him
-3.0

[]‣ Gold	has	fallen	off	beam!

‣ Update:	gold	feats	-	pred	feats

Training	with	Early	UpdaTng
For	each	epoch

For	each	sentence

For	i=1…2*len(sentence)						#	2n	transiTons	in	arc-standard

beam[i]	=	compute_successors(beam[i-1])

If	beam[i]	does	not	contain	gold:

break

apply_gradient_update(feats(gold[0:i])	-	feats(beam[i,0]))
	#	Feats	are	cumulaTve	up	unTl	this	point

apply_gradient_update(feats(gold)	-	feats(beam[2*len(sentence),0]))
	#	Gold	survived	to	the	end	but	may	sTll	not	be	one-best

ConnecTons	to	Reinforcement	
Learning

MoTvaTon

‣ Part	of	the	benefit	is	we	see	states	we	wouldn’t	
have	seen	during	greedy	decoding
‣ (STll	true	even	with	early	updaTng	due	to	beam	search)

BePer	Greedy	Algorithm

For	each	epoch:

For	each	sentence:

Parse	the	sentence	with	the	current	weights

For	each	state	s	in	the	parse:

Determine	what	the	right	acTon	a*	was

Train	on	this	example	(update	towards	f(s,	a*),	away	from	f(s,	apred))

‣ How	do	we	determine	this?

Dynamic	Oracles
‣When	you	make	some	bad	decisions,	how	do	you	dig	yourself	out?

Goldberg	and	Nivre	(2012)

‣ Score	of	decision	a	in	state	s	leading	to	s’: 
loss(a)	=	loss(best_possible_tree(s’))	-	loss(best_possible_tree(s))

‣ best_possible_tree(s):	computes	the	opTmal	decision	sequence	from	
state	s	to	the	end	resulTng	the	lowest	overall	loss

‣ Implemented	by	a	bunch	of	logic	that	looks	at	the	tree:	“if	we	put	a	right-
arc	from	a->b,	we	can’t	give	b	any	more	children,	so	lose	a	point	for	
every	unbound	child,	also	lose	a	point	if	a	isn’t	b’s	head…”

‣ a*	=	argmina	loss(a)

ConnecTons	to	Reinforcement	Learning

‣Markov	Decision	Process:	states	s,	acTons	a,	transiTons	T,	rewards	r,	
discount	factor

‣ T	is	determinisTc	for	us,					=	1	(no	discount)

‣ Using	the	“bePer	greedy	algorithm”	corresponds	to	on-policy	learning	
here

‣ One	reward	system:	r	=	1	if	acTon	is	what	dynamic	oracle	says,	0	otherwise

‣ But	dynamic	oracles	are	hard	to	build	:(

�

�

‣Maximize	sum	of	rewards	over	the	parse

Searn

Daume	et	al.	(2009)

‣ Searn:	framework	for	turning	structured	problems	into	classificaTon	
problems

‣ Take	the	current	policy	(=	weights),	generate	states	s	by	running	that	
policy	on	a	given	example

‣ Evalute	acTon	a	in	state	s	by	taking	a,	then	following	your	current	policy	
to	compleTon	and	compuTng	the	loss	(=	best_possible_loss	is	
approximated	by	current	policy)

‣What	if	we	just	had	a	loss	funcTon	l(y,y*)	that	scored	whole	predicTons?	
I.e.,	all	reward	comes	at	the	end

‣ DAGGER	algorithm	from	RL	literature

MoTvaTon

State	s,	evaluate	acTons	a

y*

…by	compuTng	losses	here
`(y1,y

⇤)

`(y2,y
⇤)

`(y3,y
⇤)

Global	Models	vs.	RL

‣ RL	techniques	are	usually	not	the	right	thing	to	do	unless	you	loss	
funcTon	and	state	space	are	really	complicated

‣ Otherwise,	best	to	use	dynamic	oracles	or	global	models

‣ Structured	predicTon	problems	aren’t	really	“RL”	in	that	the	
environment	dynamics	are	understood

‣ These	issues	arise	far	beyond	parsing!	Coreference,	machine	translaTon,	
dialogue	systems,	…

State-of-the-art	Parsers

State-of-the-art	Parsers

‣ 2012:	Maltparser	was	SOTA	was	for	transiTon-based	(~90	UAS),	
similar	to	what	you’ll	build

‣ 2010:	Koo’s	3rd-order	parser	was	SOTA	for	graph-based	(~93	UAS)

‣ 2014:	Chen	and	Manning	got	92	UAS	with	transiTon-based	neural	
model

‣ 2005:	MSTParser	got	solid	performance	(~91	UAS)

State-of-the-art	Parsers

Chen	and	Manning	(2014)

Parsey	McParseFace

Andor	et	al.	(2016)

‣ Current	state-of-the-art,	released	by	Google	publicly

‣ 94.61	UAS	on	the	Penn	Treebank	using	a	global	transiTon-based	
system	with	early	updaTng

‣ Feedforward	neural	nets	looking	at	words	and	POS	associated	with	
‣Words	at	the	top	of	the	stack	
‣ Those	words’	children	
‣Words	in	the	buffer
‣ Feature	set	pioneered	by	Chen	and	Manning	(2014),	Google	fine-tuned	it

‣ AddiTonal	data	harvested	via	“tri-training”

Stack	LSTMs

Dyer	et	al.	(2015)

‣ Use	LSTMs	over	stack,	buffer,	past	acTon	sequence.	Trained	greedily
‣ Slightly	less	good	than	Parsey

SemanTc	Role	Labeling
‣ Another	kind	of	tree-structured	annotaTon,	like	a	subset	of	dependency

‣ Verb	roles	from	Propbank	(Palmer	et	al.,	2005),	nominal	predicates	too

Figure	from	He	et	al.	(2017)

quicken:

Abstract	Meaning	RepresentaTon
‣ Graph-structured	annotaTon

The	boy	wants	to	go

Banarescu	et	al.	(2014)

‣ Superset	of	SRL:	full	sentence	analyses,	contains	coreference	and	mulT-
word	expressions	as	well

‣ F1	scores	in	the	60s:	hard!

‣ So	comprehensive	that	it’s	
hard	to	predict,	but	sTll	
doesn’t	handle	tense	or	
some	other	things…

Takeaways

‣ Global	training	is	an	alternaTve	to	greedy	training

‣ Use	beam	search	for	inference	combined	with	early	updaTng	for	best	
results

‣ Dynamic	oracles	+	following	the	predicted	path	in	the	state	space	looks	
like	reinforcement	learning

Survey

‣ Pace	of	last	lecture	+	this	lecture:	[too	slow]	[just	right]	[too	fast]

‣ Pace	of	class	overall:	[too	slow]	[just	right]	[too	fast]

‣Write	one	thing	you	like	about	the	class

‣Write	one	thing	you	don’t	like	about	the	class

