CS395T: Structured Models for NLP Lecture 13: Neural Networks

Greg Durrett

Project 2 due on Tuesday

Project 1 samples posted on website

Administrivia

- Neural network history
- Neural network basics
- Feedforward neural networks
- Backpropagation
- Applications

This Lecture

A brief history of (modern) NLP

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998

LSTMs: Hochreiter and Schmidhuber (1997)

Henderson (2003): neural shift-reduce parser, not SOTA

- Collobert and Weston 2011: "NLP (almost) from scratch" Feedforward neural nets induce features for
 - sequential CRFs ("neural CRF")
 - 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision
- Socher: tree-structured RNNs
 - Started working well for sentiment in 2013, but only worked for weird tasks before that, some lackluster parsing results

2008-2013: A glimmer of light...

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
 - Basic convnets work pretty well for NLP
- Sutskever et al., Bahdanau et al. seq2seq for neural MT
 - LSTMs actually do well at NLP problems
- Chen and Manning transition-based dependency parser
 - Feedforward neural networks for parsing

2015: explosion of neural nets for everything under the sun

2014: Stuff starts working

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - - **Regularization**: dropout was very important
 - Computers not big enough: can't run for enough iterations
- Inputs: need word representations to have the right continuous semantics
 - Dealing with unknown words: word pieces, use character LSTMs, ... complex stuff!

Why didn't they work before?

Neural Net Basics

- Linear classification: $\operatorname{argmax}_{y} w^{\top} f(x, y)$
- How can we do nonlinear classification?
- Polynomial, etc. from kernels, but these are slow!
- Kernels are neither necessary nor sufficient: not every pair of features interacts, might need to go beyonds pairs
- Instead, want to learn intermediate conjunctive features of the input

Neural Networks

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \ldots, x_m)$) **Output** *Y*
 - (generally $\mathbf{y} = (y_1, \ldots, y_n)$)

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$ "or"

(looks like action potential in neuron)

the movie was not good

(Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$)

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classifier

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Neural network

...possible because we transformed the space!

Adopted from Chris Dyer

$\boldsymbol{y} = g(\mathbf{W}\boldsymbol{x} + \boldsymbol{b})$

Adopted from Chris Dyer

$$y = g(Wx + b)$$

$$z = g(Vy + c)$$

$$z = g(Vg(Wx + b) + c)$$

output of first layer

"Feedforward": computation "feeds forward" (not recurrent)

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$z = V(Wx + b) + c$$

Adopted from Chris Dyer

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural network

...possible because we transformed the space!

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Using multiple layers of processing to induce deep representations parallels visual processing in the brain

From O'Reilly et al. (2013)

Feedforward Networks, Backpropagation

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top} f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top} f(\mathbf{x}, y'))}$$
$$P(y|\mathbf{x}) = \operatorname{softmax}_{y}(w^{\top} f(\mathbf{x}, y))$$
$$P(y|\mathbf{x}) = \operatorname{softmax}_{y}(w_{y}^{\top} g(Vf(\mathbf{x})))$$

Hidden representation z, can see this as "induced features"

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Assumes that the labels y are indexed and associated with coordinates in a vector space

Logistic Regression with NNs

- Single scalar probability
- softmax_v: score vector -> prob of y
- Feature function no longer looks at label — same shared processing for each label.
 - softmax: score vector -> probability vector

Neural Networks for Classification

Training Neural Networks

- $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$
- Maximize log likelihood of training data
- $\log P(y = i^* | \mathbf{x}) = \log \left(\operatorname{softmax}(Wq(Vf(\mathbf{x}))) \cdot e_{i^*} \right)$
- i*: index of the gold label
- $\triangleright e_i$: 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = Wg(Vf(\mathbf{x})) \cdot e_{i^*}$$

 \mathcal{m} $-\log \sum \exp(Wg(Vf(\mathbf{x})) \cdot e_j)$ j=1

$$\begin{aligned} \mathcal{L}(\mathbf{x}, i^*) &= Wg(Vf(\mathbf{x})) \cdot e_{i^*} - \log \sum_{j=1}^m \exp(Wg(Vf(\mathbf{x})) \cdot e_j) \\ \mathcal{L}(\mathbf{x}, i^*) &= W\mathbf{z} \cdot e_{i^*} - \log \sum_{j=1}^m \exp(W\mathbf{z} \cdot e_j) \quad \mathbf{z} = g(Vf(\mathbf{x})) \\ \text{Activations at} \\ \text{Gradient with respect to } W \quad j \quad \text{Activations at} \\ \frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) &= \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j & \text{if } \mathbf{i} = \mathbf{i}^* & \mathbf{i} \\ -P(y = i | \mathbf{x}) \mathbf{z}_j & \text{otherwise} \end{cases} \\ \text{Looks like logistic regression with } \mathbf{z} \text{ as the features!} \quad -P(y = i | \mathbf{x}) \mathbf{z}_j \end{aligned}$$

Computing Gradients

Neural Networks for Classification

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j=1} \exp(W\mathbf{z} \cdot e_j)$$

 \mathcal{m}

Gradient with respect to V: apply the chain rule

• Or: $err(root) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$ $\dim = m$

Computing Gradients: Backpropagation

 $\mathbf{z} = g(Vf(\mathbf{x}))$

Activations at hidden layer

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = W_{i^*} - \sum_{j} P(y = j | \mathbf{x})$$
vector vector vector

weights(gold) - E[weights(guess)], like LR with weights and features flipped!

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top} err(\text{root})$$
$$\dim = \mathsf{d}$$

Backpropagation: Picture

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i=1}^{\infty} \frac{1}{i^*}$$

• Gradient with respect to V: apply the chain rule

- First term: gradient of nonlinear activation function at a (depends on current value)
- Second term: gradient of linear function
- Straightforward computation once we have err(z)

Computing Gradients: Backpropagation

- \mathcal{M}
- $\sum_{j=1}^{\infty} \exp(W\mathbf{z} \cdot e_j)$ =1

$\mathbf{z} = g(Vf(\mathbf{x}))$

Activations at hidden layer

$$\frac{\partial \mathbf{z}}{V_{ij}} = \frac{\partial g(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial V_{ij}} \quad \mathbf{a} = V_j$$

Backpropagation: Picture

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

Backpropagation

- $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$
- Step 1: compute $err(root) = e_{i^*} P(\mathbf{y}|\mathbf{x})$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top}err(\text{root})$ (vector)
- Step 4: compute derivatives of V using err(z) (matrix)
- Step 5+: continue backpropagation (compute err(f(x)) if necessary...)

- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- Can compute derivative of loss with respect to z to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- Need to remember the values from the forward computation

Backpropagation: Takeaways

Applications

Part-of-speech tagging with FFNNs

22

- Fed raises interest rates in order to ...
- Word embeddings for each word form input
- ~1000 features here smaller feature vector than in sparse models, but every feature fires on every example
- Weight matrix learns position-dependent processing of the words

NLP with Feedforward Networks

NLP with Feedforward Networks

There was no <u>queue</u> at the ...

h0

Hidden layer mixes these different signals and learns feature conjunctions

Botha et al. (2017)

Multilingual tagging results:

Model	Acc.	Wts.	MB	Ops.
Gillick et al. (2016)	95.06	900k	-	6.63m
Small FF	94.76	241k	0.6	0.27m
+Clusters	95.56	261k	1.0	0.31m
$\frac{1}{2}$ Dim.	95.39	143k	0.7	0.18m

Gillick used LSTMs; this is smaller, faster, and better

NLP with Feedforward Networks

Botha et al. (2017)

word embeddings from input

Sentiment Analysis

Deep Averaging Networks: feedforward neural network on average of

$$h_2 = f(W_2 \cdot h_1 + b_2)$$

$$h_1 = f(W_1 \cdot av + b_1)$$

Sentiment Analysis

		Model	RT	SST fine	SST bin	IMDB	Time (s)	
		DAN-ROOT		46.9	85.7		31	
		DAN-RAND	77.3	45.4	83.2	88.8	136	
		DAN	80.3	47.7	86.3	89.4	136	
Bag-of-words	ſ	NBOW-RAND	76.2	42.3	81.4	88.9	91	
		NBOW	79.0	43.6	83.6	89.0	91	Wang and
		BiNB		41.9	83.1			
		NBSVM-bi	79.4			91.2		
Tree RNNs / CNNS / LSTMS		RecNN*	77.7	43.2	82.4			Ivianning
		RecNTN*		45.7	85.4			(2012)
		DRecNN		49.8	86.6		431	
		TreeLSTM		50.6	86.9			
		DCNN*		48.5	86.9	89.4		
		PVEC*		48.7	87.8	92.6		
		CNN-MC	81.1	47.4	88.1		2,452	Kim (2014)
		WRRBM*				89.2		

lyyer et al. (2015)

Coreference Resolution

Feedforward networks identify coreference arcs

How to implement neural networks for NLP Tensorflow

Practical training techniques

Word representations / word vectors

word2vec, GloVe

Next Time