
CS395T:	Structured	Models	for	NLP	
Lecture	13:	Neural	Networks

Greg	Durrett

Administrivia

‣ Project	2	due	on	Tuesday

‣ Project	1	samples	posted	on	website

This	Lecture

‣ Feedforward	neural	networks

‣ Neural	network	basics

‣ BackpropagaKon

‣ ApplicaKons

‣ Neural	network	history

Unsup:	topic	
models,	
grammar	inducKon

Collins	vs.	
Charniak	
parsers

A	brief	history	of	(modern)	NLP

1980 1990 2000 2010 2017

earliest	stat	MT	
work	at	IBM

“AI	winter”	
rule-based,	
expert	systems

Penn	
treebank

NP VP
S

Ratnaparkhi	
tagger

NNP VBZ

Sup:	SVMs,	
CRFs,	NER,	
SenKment

Semi-sup,	
structured	
predicKon

Neural

History:	NN	“dark	ages”
‣ Convnets:	applied	to	MNIST	by	LeCun	in	1998

‣ LSTMs:	Hochreiter	and	Schmidhuber	(1997)

‣ Henderson	(2003):	neural	shi^-reduce	parser,	not	SOTA

2008-2013:	A	glimmer	of	light…

‣ Collobert	and	Weston	2011:	“NLP	(almost)	from	scratch”
‣ Feedforward	neural	nets	induce	features	for	
sequenKal	CRFs	(“neural	CRF”)

‣ 2008	version	was	marred	by	bad	experiments,	
claimed	SOTA	but	wasn’t,	2011	version	Ked	SOTA

‣ Socher:	tree-structured	RNNs
‣ Started	working	well	for	senKment	in	2013,	but	
only	worked	for	weird	tasks	before	that,	some	
lackluster	parsing	results

‣ Krizhevskey	et	al.	(2012):	AlexNet	for	vision

2014:	Stuff	starts	working

‣ Sutskever	et	al.,	Bahdanau	et	al.	seq2seq	for	neural	MT

‣ Kim	(2014)	+	Kalchbrenner	et	al.	(2014):	sentence	classificaKon	/	senKment

‣ 2015:	explosion	of	neural	nets	for	everything	under	the	sun

‣ Chen	and	Manning	transiKon-based	dependency	parser

‣ Basic	convnets	work	preky	well	for	NLP

‣ LSTMs	actually	do	well	at	NLP	problems

‣ Feedforward	neural	networks	for	parsing

Why	didn’t	they	work	before?
‣ Datasets	too	small:	for	MT,	not	really	beker	unKl	you	have	1M+	parallel	
sentences	(and	really	need	a	lot	more)

‣Op,miza,on	not	well	understood:	good	iniKalizaKon,	per-feature	scaling	
+	momentum	(Adagrad	/	Adadelta	/	Adam)	work	best	out-of-the-box

‣ Regulariza,on:	dropout	was	very	important

‣ Inputs:	need	word	representaKons	to	have	the	right	conKnuous	semanKcs

‣ Dealing	with	unknown	words:	word	pieces,	use	character	LSTMs,	…	
complex	stuff!

‣ Computers	not	big	enough:	can’t	run	for	enough	iteraKons

Neural	Net	Basics

Neural	Networks

‣ How	can	we	do	nonlinear	classificaKon?

‣ Polynomial,	etc.	from	kernels,	but	these	are	slow!

‣ Instead,	want	to	learn	intermediate	conjuncKve	features	of	the	input

argmaxyw
>
f(x, y)‣ Linear	classificaKon:

‣ Kernels	are	neither	necessary	nor	sufficient:	not	every	pair	of	features	
interacts,	might	need	to	go	beyonds	pairs

Neural	Networks:	XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn))
y = x1 XOR x2

‣ Let’s	see	how	we	can	use	neural	nets 
to	learn	a	simple	nonlinear	funcKon

‣ Inputs

‣ Output

Neural	Networks:	XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural	Networks:	XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural	Networks:	XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the	movie	was	not	good

Neural	Networks

Taken	from	hkp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

(Linear model:) y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural	Networks

Taken	from	hkp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	
we	transformed	the	
space!

Deep	Neural	Networks

Adopted from Chris Dyer

y1 = g(w1 · x+ b1)

(this was our neural net from the XOR example)

Deep	Neural	Networks

Adopted from Chris Dyer

y1 = g(w1 · x+ b1)

Deep	Neural	Networks

Adopted from Chris Dyer

}
output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second  
Layer

First	
Layer

“Feedforward”:	computaKon	“feeds	
forward”	(not	recurrent)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?

Deep	Neural	Networks

Taken	from	hkp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	we	
transformed	the	
space!

Deep	Neural	Networks

Taken	from	hkp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep	Neural	Networks

From O’Reilly et al. (2013)

‣ Using	mulKple	layers	of	
processing	to	induce	deep	
representaKons	parallels	visual	
processing	in	the	brain

Feedforward	Networks,	
BackpropagaKon

LogisKc	Regression	with	NNs
P (y|x) = exp(w>f(x, y))P

y0 exp(w>f(x, y0))

P (y|x) = softmaxy(w
>f(x, y))

{
Hidden	representaKon	z,	can	
see	this	as	“induced	features”

‣ so^maxy:	score	vector	->	prob	of	y

‣ Feature	funcKon	no	longer	
looks	at	label	—	same	shared	
processing	for	each	label.	

P (y|x) = softmaxy(w
>
y g(V f(x)))

‣ Assumes	that	the	labels	y	are	indexed	and	associated	with	
coordinates	in	a	vector	space

P (y|x) = softmax(Wg(V f(x)))

‣ Single	scalar	probability

‣ so^max:	score	vector	->	
probability	vector

Neural	Networks	for	ClassificaKon

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

so^maxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

Training	Neural	Networks

‣Maximize	log	likelihood	of	training	data

P (y|x) = softmax(Wg(V f(x)))

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

logP (y = i⇤|x) = log (softmax(Wg(V f(x))) · ei⇤)

L(x, i⇤) = Wg(V f(x)) · ei⇤ � log

mX

j=1

exp(Wg(V f(x)) · ej)

CompuKng	Gradients

z = g(V f(x))

AcKvaKons	at	
hidden	layer‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logisKc	regression	with	z	as	the	features!

i

j

{

L(x, i⇤) = Wg(V f(x)) · ei⇤ � log

mX

j=1

exp(Wg(V f(x)) · ej)

L(x, i⇤) = Wz · ei⇤ � log

mX

j=1

exp(Wz · ej)

Neural	Networks	for	ClassificaKon

V so^maxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

CompuKng	Gradients:	BackpropagaKon
z = g(V f(x))

AcKvaKons	at	
hidden	layer

‣ Gradient	with	respect	to	V:	apply	the	chain	rule

‣ weights(gold)	-	E[weights(guess)],	like	LR	with	weights	and	features	flipped!

err(root) = ei⇤ � P (y|x)
dim	=	m dim	=	d

‣ Or: @L(x, i⇤)
@z

= err(z) = W>err(root)

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@L(x, i⇤)
@z

= Wi⇤ �
X

j

P (y = j|x)Wj

vector vector

L(x, i⇤) = Wz · ei⇤ � log

mX

j=1

exp(Wz · ej)

BackpropagaKon:	Picture

V so^maxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

z = g(V f(x))

AcKvaKons	at	
hidden	layer

‣ Gradient	with	respect	to	V:	apply	the	chain	rule

a = V f(x)

‣ First	term:	gradient	of	nonlinear	acKvaKon	funcKon	at	a	(depends	on	
current	value)
‣ Second	term:	gradient	of	linear	funcKon

‣ Straighworward	computaKon	once	we	have	err(z)

CompuKng	Gradients:	BackpropagaKon

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log

mX

j=1

exp(Wz · ej)

BackpropagaKon:	Picture

V so^maxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

BackpropagaKon

‣ Step	1:	compute err(root) = ei⇤ � P (y|x)

‣ Step	2:	compute	derivaKves	of	W	using	err(root)

‣ Step	3:	compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step	4:	compute	derivaKves	of	V	using	err(z)

‣ Step	5+:	conKnue	backpropagaKon	(compute	err(f(x))	if	necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)

BackpropagaKon:	Takeaways
‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logisKc	regression	with	hidden	layer	z	as	feature	vector

‣ Can	compute	derivaKve	of	loss	with	respect	to	z	to	form	an	“error	
signal”	for	backpropagaKon

‣ Easy	to	update	parameters	based	on	“error	signal”	from	next	layer,	
keep	pushing	error	signal	back	as	backpropagaKon

‣ Need	to	remember	the	values	from	the	forward	computaKon

ApplicaKons

NLP	with	Feedforward	Networks

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em
b(raises)

‣Word	embeddings	for	each	word	form	input

‣ ~1000	features	here	—	smaller	feature	vector	
than	in	sparse	models,	but	every	feature	fires	on	
every	example

em
b(interest)

em
b(rates)‣Weight	matrix	learns	posiKon-dependent	

processing	of	the	words

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

NLP	with	Feedforward	Networks

‣ Hidden	layer	mixes	these	
different	signals	and	learns	
feature	conjuncKons

Botha	et	al.	(2017)

NLP	with	Feedforward	Networks
‣MulKlingual	tagging	results:

Botha	et	al.	(2017)

‣ Gillick	used	LSTMs;	this	is	smaller,	faster,	and	beker

SenKment	Analysis
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)

SenKment	Analysis

Iyyer	et	al.	(2015)

{
{

Bag-of-words

Tree	RNNs	/	
CNNS	/	LSTMS

Wang	and	
Manning	
(2012)

Kim	(2014)

Coreference	ResoluKon
‣ Feedforward	networks	idenKfy	coreference	arcs

Clark	and	Manning	(2015),	Wiseman	et	al.	(2015)

President	Obama	signed…

He	later	gave	a	speech…

?

Next	Time
‣ How	to	implement	neural	networks	for	NLP

‣ Tensorflow

‣Word	representaKons	/	word	vectors

‣ word2vec,	GloVe

‣ PracKcal	training	techniques

