CS395T: Structured Models for NLP Lecture 14: Neural Network Implementation

Greg Durrett

- Project 2 due today
- Project 3 out today
 - of RNNs or CNNs
 - today's lecture

Sentiment analysis using feedforward neural networks plus your choice

Project zip contains sample Tensorflow code demonstrating what's in

Recall: Feedforward NNs

Recall: Backpropagation

Implementation details

Training

Word representations

This Lecture

Implementation Details

- Computing gradients is hard!

$$x = x * x \longrightarrow (x, dx) = codegen$$

computation graph library

Automatic differentiation: instrument code to keep track of derivatives

(x * x, 2 * x * dx)

In practice: need other operations, want more control -> use an external

Computation Graphs

http://tmmse.xyz/content/images/2016/02/theano-computation-graph.png

- Define computation abstractly, in terms of symbols
- Can compute gradients of c with respect to (x, y, z) easily
- Useful abstraction: supports both CPU and GPU implementations
- Disadvantage: higher-level specification, so hard to control memory allocation and low-level implementation details

Tensorflow

http://tmmse.xyz/content/images/2016/02/theano-computation-graph.png

- x = tf.placeholder("x")
- y = tf.placeholder("y")
- z = tf.placeholder("z")
- a = tf.add(x, y)
- b = tf.multiply(a, z)
- c = tf.add(b, a)
- with tf.Session() as sess:

Computation Graph: FFNN

- $$\begin{split} P(\mathbf{y}|\mathbf{x}) &= \operatorname{softmax}(Wg(Vf(\mathbf{x}))) \\ & \text{fx} = \operatorname{tf.placeholder(tf.float32, feat_vec_size)} \\ & \text{V} = \operatorname{tf.get_variable("V", [hidden_size, feat_vec_size])} \\ & z = \operatorname{tf.sigmoid(tf.tensordot(V, fx, 1))} \\ & \text{W} = \operatorname{tf.get_variable("W", [num_classes, hidden_size])} \\ & \text{probs} = \operatorname{tf.nn.softmax(tf.tensordot(W, z, 1))} \end{split}$$
- Placeholder: input to the system; variable: parameter to learn

$P(\mathbf{y} \mathbf{x}) = \operatorname{softmax}(Wg(Vf))$
<pre>fx = tf.placeholder(tf.floa</pre>
<pre>V = tf.get_variable("V", [h</pre>
<pre>z = tf.sigmoid(tf.tensordot</pre>
<pre>W = tf.get_variable("W", [n</pre>
<pre>probs = tf.nn.softmax(tf.te</pre>
<pre>label = tf.placeholder(tf.i</pre>
<pre>loss = tf.negative(tf.log(t</pre>
Tensorflow can compute gradient
Chartaut halpar mathada aviat lik

Shortcut helper methods exist like tf.nn.softmax cross entropy with logits

Computation Graph: FFNN

- $(\mathbf{x})))$
- at32, feat vec size)
- idden size, feat vec size]) :(V, fx, 1))
- num classes, hidden size])
- ensordot(W, z, 1))
- .nt32, num classes)
- f.tensordot(probs, label, 1))
- ts for W and V based on loss

Define a computation graph

- For each epoch:
 - For each example:
 - Evaluate the training operator on the example
- Decode test set

Training a Model

Define an operator that updates the parameters based on an example

- leads to better learning outcomes too
- fx = tf.placeholder(tf.float32, [batch_size, feat vec size])
- V = tf.get variable("V", [hidden size, feat vec size])
- • •
- loss = [sum over losses from batch]

Batching

Batching data gives speedups due to more efficient matrix operations,

Need to make the computation graph process a batch at the same time

z = tf.sigmoid(tf.tensordot(V, fx, [1,1])) # batch size x hidden size

Define a computation graph to process a batch of data

Define an operator that updates the parameters based on a **batch**

For each epoch:

For each **batch**:

Evaluate the training operator on the **batch**

Decode test set in **batches**

Batch Training a Model

Training Tips

Training Basics

- Basic formula: compute gradients on batch, use first-order opt. method
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further

How do we initialize V and W? What consequences does this have?

How does initialization affect learning?

How does initialization affect learning?

- If cell activations are too large in absolute value, gradients are small too
- big values, can break down if everything is too negative

ReLU: larger dynamic range (all positive numbers), but can produce

Initialization

- 1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change 2) Initialize too large and cells are saturated
- Can do random uniform / normal initialization with appropriate scale Glorot initializer: $U = \sqrt{\frac{1}{\text{fan-in}}}$
 - Want variance of inputs and gradients for each layer to be the same
- Batch normalization (Ioffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

$$\frac{6}{+ \text{ fan-out}}, +\sqrt{\frac{6}{\text{ fan-in + fan-out}}}$$

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Srivastava et al. (2014)

In tensorflow: implemented as an additional layer in a network

hidden dropped out = tf.nn.dropout(hidden, dropout keep prob)

Often use low dropout (keep a value with probability 0.8) at the input and moderate dropout (keep with probability 0.5) internally in feedforward networks (not in RNNs)

Adam (Kingma and Ba, ICLR 2015) is very widely used Adaptive step size like Adagrad, incorporates momentum

Optimizer

- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- Check dev set periodically, decrease learning rate if not making progress

(e) Generative Parsing (Training Set)

Optimizer

(f) Generative Parsing (Development Set)

Visualization with Tensorboard

Visualize the computation graph and logs of the objective over time

- Four elements of a structured machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network
- Inference: define the network, Tensorflow takes care of it (mostly...)
- Training: lots of choices for optimization/hyperparameters

Structured Prediction

Word Representations

Word Representations

- Continuous model <-> expects continuous semantics from input
- Neural networks work very well at continuous data, but words are discrete

Part-of-speech tagging with FFNNs

<u>?</u>?

Fed raises interest rates in order to ...

Word embeddings for each word form input

Word Embeddings

the movie was great

 \approx

the movie was good

Word Embeddings

Want a vector space where similar words have similar embeddings

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input
- "Can tell a word by the company it keeps" Firth 1957

	theore	sidentso		
(president	the of		
1	president	the said		
	governor	the of		
	governor	the app		
	said	sources		
	said	president		
	reported	sources		

[Finch and Chater 92, Shuetze 93, many others]

Continuous Bag-of-Words

Predict word from context

Predict one word of context from word

Another training example: bit -> the Parameters: d x |V| vectors, |V| x d output parameters (W)

Skip-Gram

Mikolov et al. (2013)

- Problem: want to train on 1B+ words, the dog bit the man multiplying by |V| x d matrix for each is too expensive
- Solution: take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling
 - (bit, the) => +1(bit, a) => -1words in similar (bit, fish) => -1contexts select for similar c vectors
 - (*bit, dog*) => +1
- $P(\mathrm{pos}|w,c) = \frac{e^{w \cdot c}}{e^{w \cdot c} + 1}$

 $\mathbf{V} = d \times |\mathbf{V}|$ vectors, $d \times |\mathbf{V}|$ context vectors (same # of params as before) Mikolov et al. (2013)

Skip-Gram with Negative Sampling

(king - man) + woman = queen

king + (woman - man) = queen

- Why would this be?
- woman man captures the difference in the contexts that these occur in
- Dominant change: more "he" with man and "she" with woman — similar to difference between king and queen

Regularities in Vector Space

Word co-occurrences are what matter directly

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9 × 10 ⁻⁴	6.6 × 10 ⁻⁵	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Weighted least-squares problem to directly predict word co-occurrence matrix (like matrix factorization)

Pennington et al. (2014)

Using Word Embeddings

Indexed sentence of length sent len, e.g.: [12, 36, 47, 8] input words = tf.placeholder(tf.int32, [sent len]) encoder = tf.get variable("embed", [voc size, embedding_size]) # embedded input words: sent len x embedding size tensor

- Approach 1: learn embeddings as parameters from your data
- Approach 2: initialize using GloVe/CBOW/SGNS, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe/CBOW/SGNS, fine-tune
 - Typically works best

embedded input words = tf.nn.embedding lookup(encoder, input words)

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: various choices of pre-trained vectors work well as initializers
- Next time: RNNs / LSTMs / GRUs

Takeaways