CS395T: Structured Models for NLP Lecture 17: CNNs

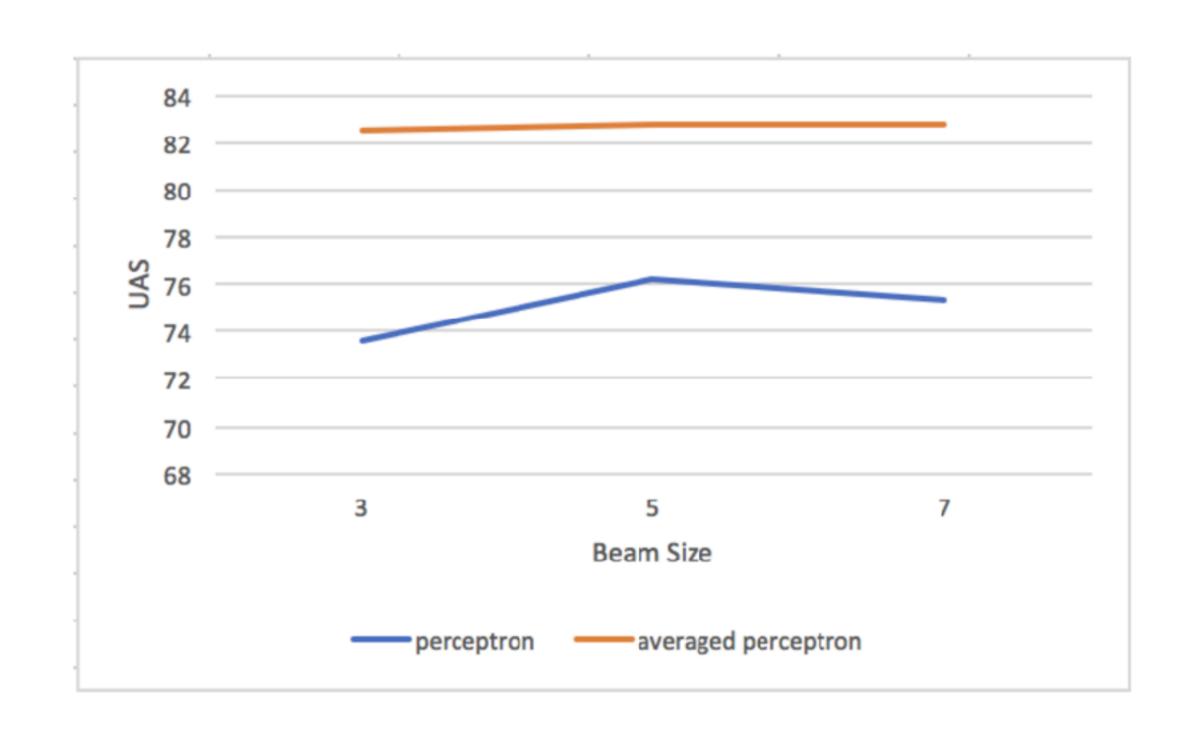
Greg Durrett

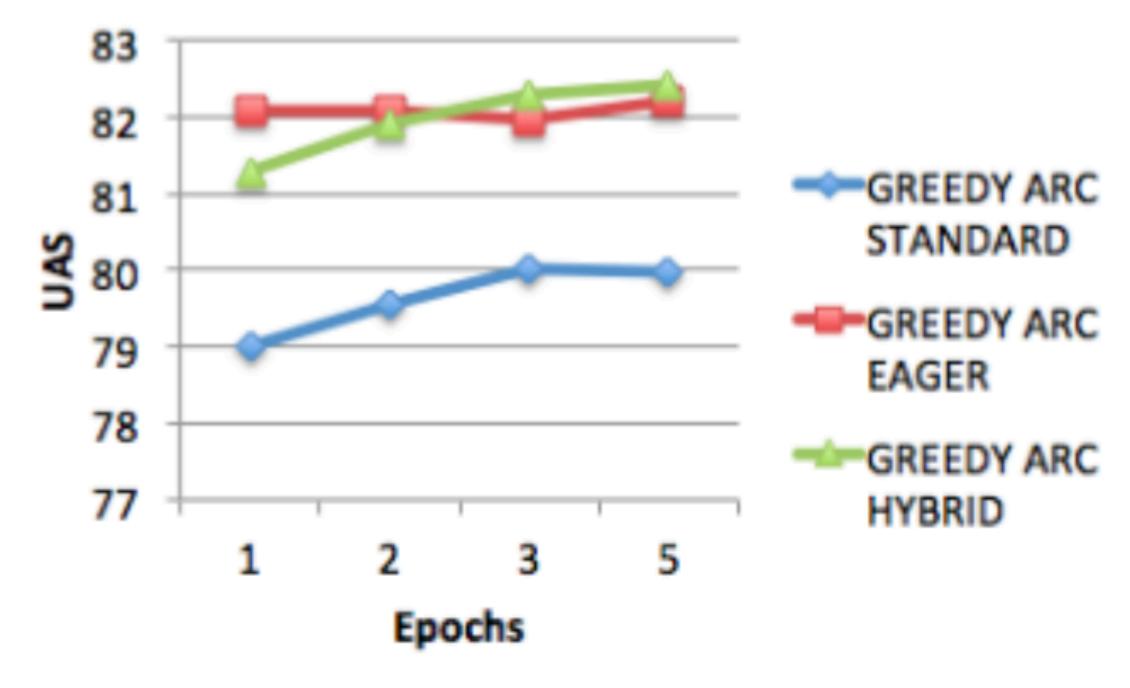
Project 2 Results

Top 3 scores:

- ▶ Su Wang: 90.13 UAS Greedy logistic regression with extended feature set, trained for 30 epochs with Adagrad with a weight decay schedule
- Yasumasa Onoe: 89.58 UAS
 Greedy averaged perceptron, features looking at children + grandchildren on the stack, also three-way conjunctive POS features
- Prateek Shrishail Kolhar: 89.42 UAS Global model with beam size 5 + averaged perceptron, feature engineering with distance, valency, etc.

Project 2 Results





Subham Ghosh

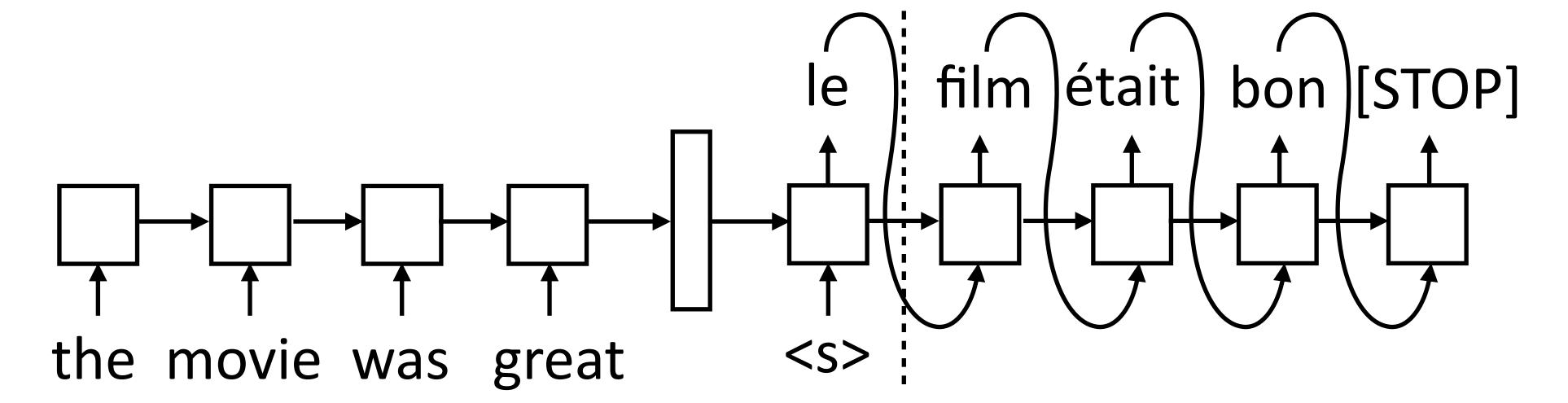
- Model averaging helps a lot
- ▶ LR better than SVM for many students

Tanya Goyal

Other transition systems usually better than arc-standard

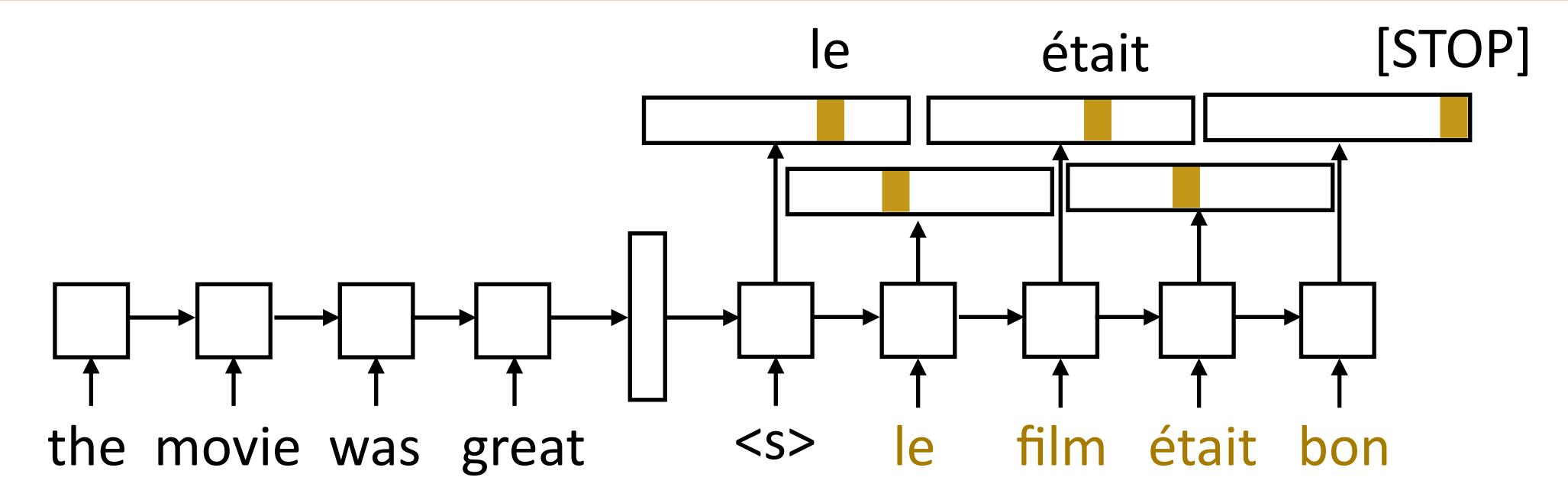
Recall: Seq2seq Models

Generate next word conditioned on previous word as well as hidden state



- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state
- Need to actually evaluate computation graph up to this point to form input for the next state
- Decoder is advanced one state at a time until [STOP] is reached

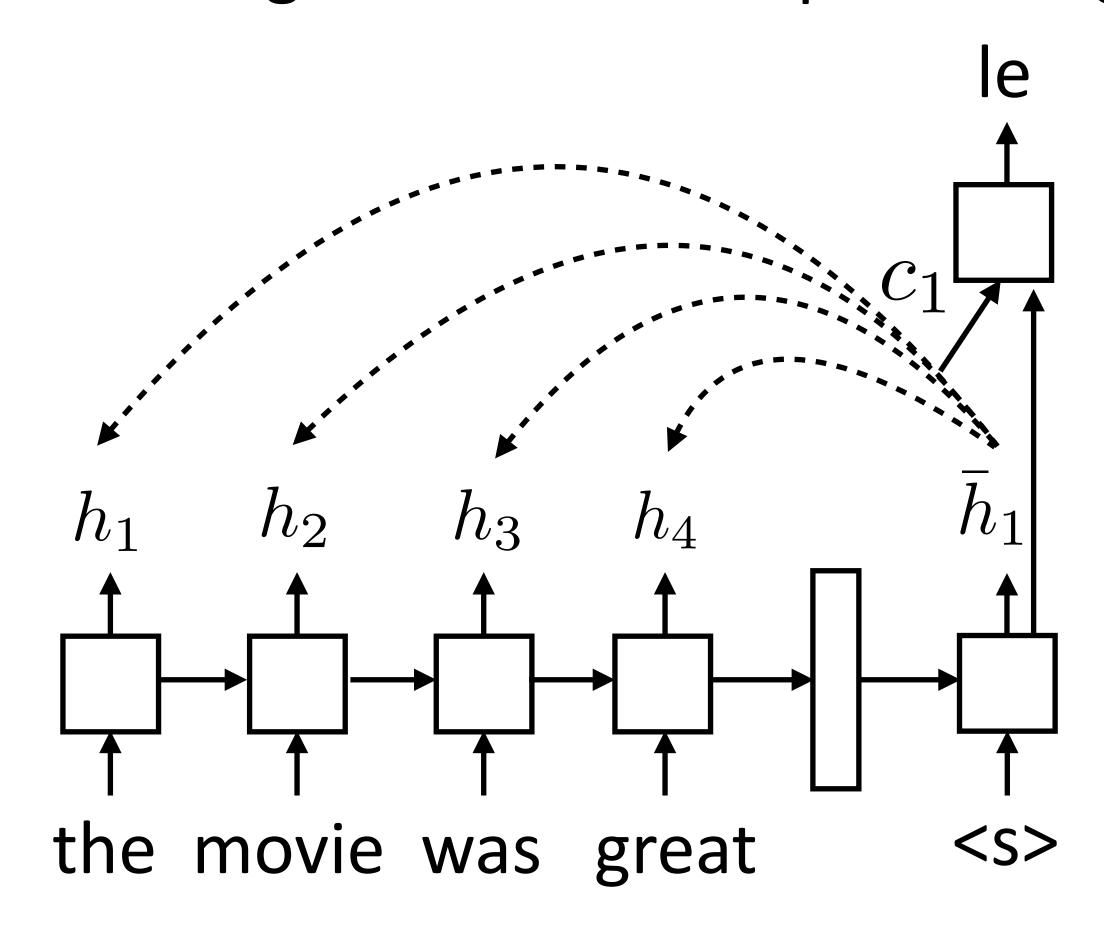
Recall: Seq2seq Training



- Objective: maximize $\log P(w_i^*|\mathbf{x}, w_{i-1}^*)$
- One loss term for each target-sentence word, feed the correct word regardless of model's prediction
- ▶ Length of gold sequence is known, can run the whole encoder-decoder in one computation graph and compute losses

Recall: Attention

For each decoder state, compute a weighted sum of input states reflecting what's most important right now



$$e_{ij} = f(\bar{h}_i, h_j)$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

$$c_i = \sum_j \alpha_{ij} h_i$$

Unnormalized scalar weight

- Normalized scalar weight
- Weighted sum of input hidden states (vector)

This Lecture

Other RNN applications (finish up)

CNNs

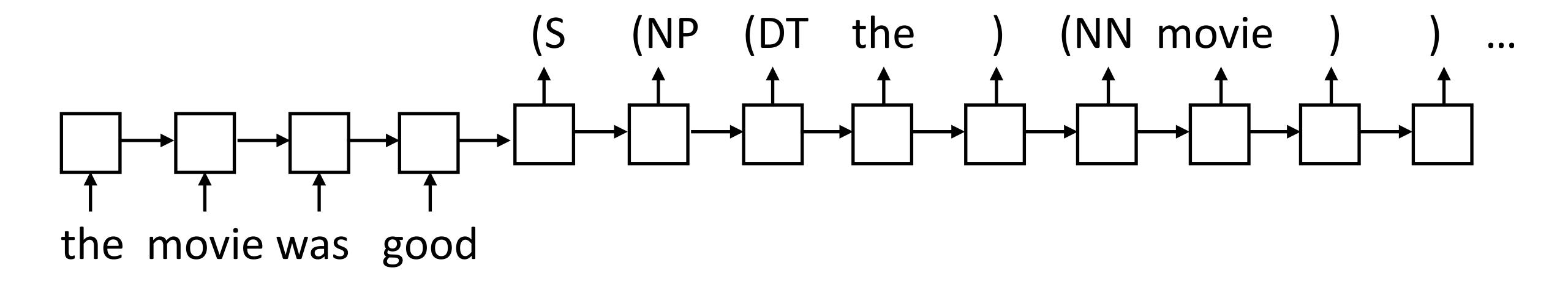
CNNs for Sentiment

Dilated CNNs for MT

Other RNN Applications

Parsing

Parsing: input is a sentence, output is a bracketed sentence

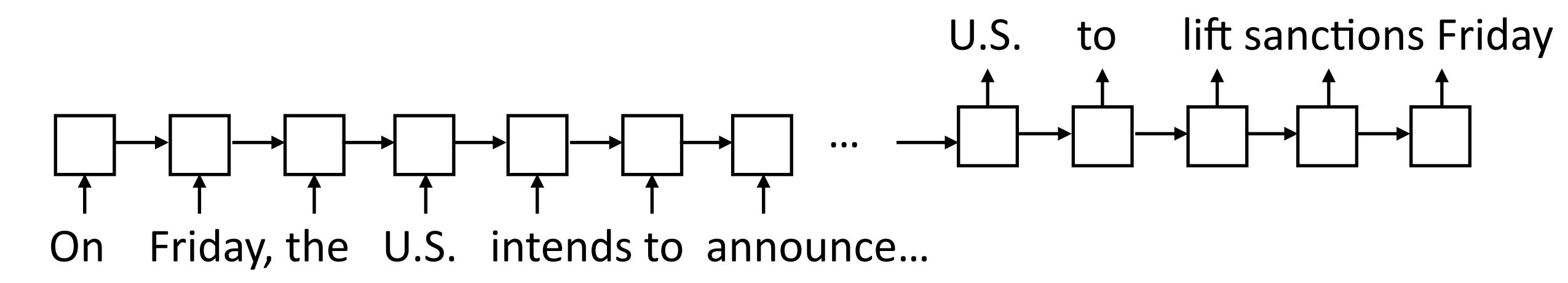


- Attention is essential: <70 F1 without it, 88.3 F1 / 90.5 F1 (ensemble) with it</p>
- ▶ The best parsers still use some structure we'll come back to these

Vinyals et al. (2014)

Summarization

Summarization/compression: input is an article/sentence, output is a summary of the input



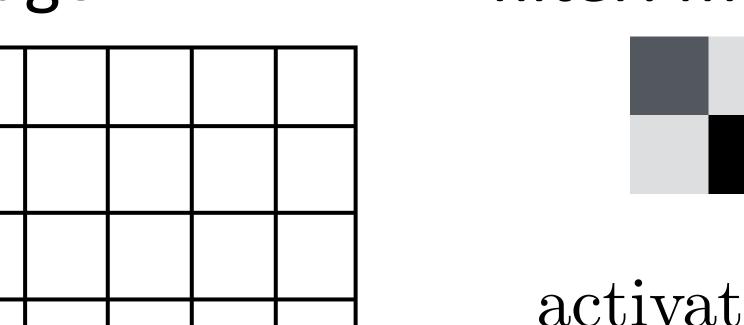
- Long articles, hard to deal with even with attention
- Speech recognition/text-to-speech: neural nets are good at dealing with continuous speech signals!

CNNs

Convolutional Layer

- Applies a filter over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input

image: n x n x k filter: m x m x k



sum over dot products

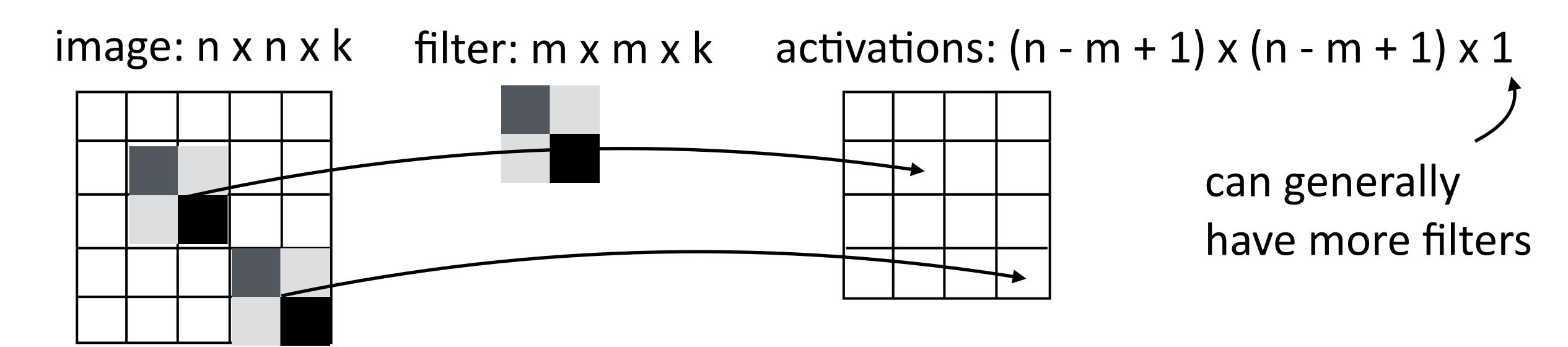
activation_{ij} =
$$\sum_{i_o=0}^{k-1} \sum_{j_o=0}^{k-1} \text{image}(i+i_o, j+j_o) \cdot \text{filter}(i_o, j_o)$$
offsets

Each of these cells is a vector with multiple values

Images: RGB values (3 dim); text: word vector (50+ dim)

Convolutional Layer

- Applies a filter over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input



"Narrow convolution" reduces input size, but can also preserve it

Convolutions for NLP

▶ Input and filter are 2-dimensional instead of 3-dimensional

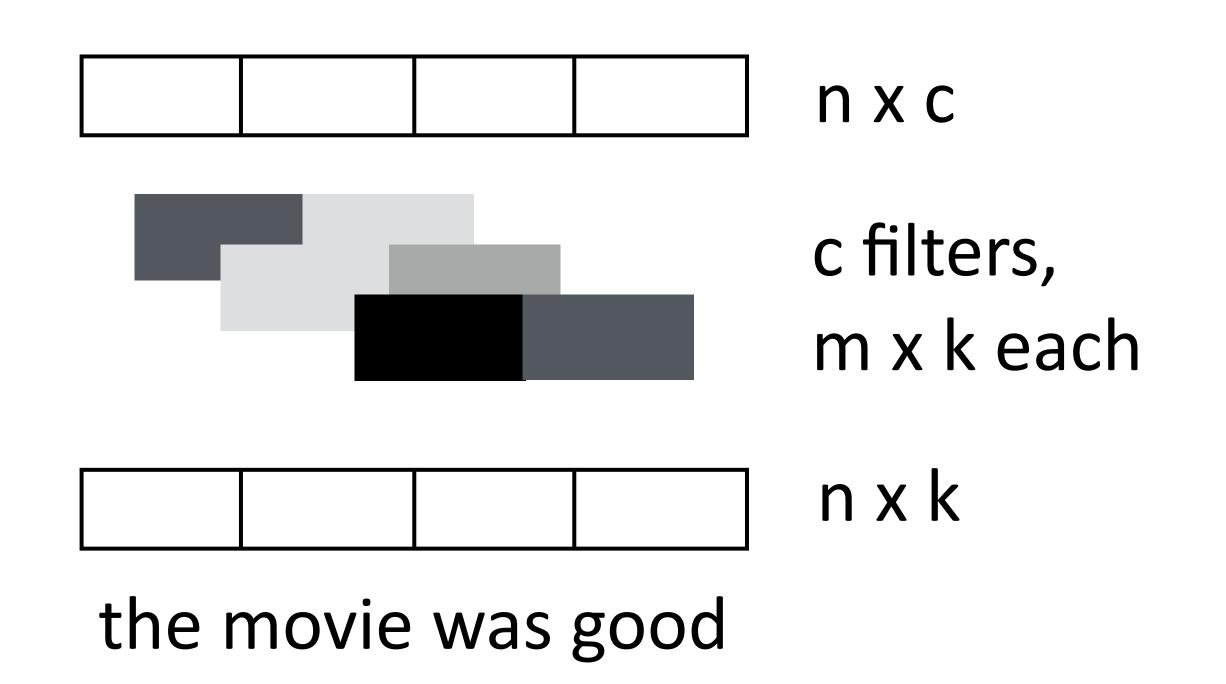
sentence: n words x k vec dim filter: m x k activations: (n - m + 1) x 1

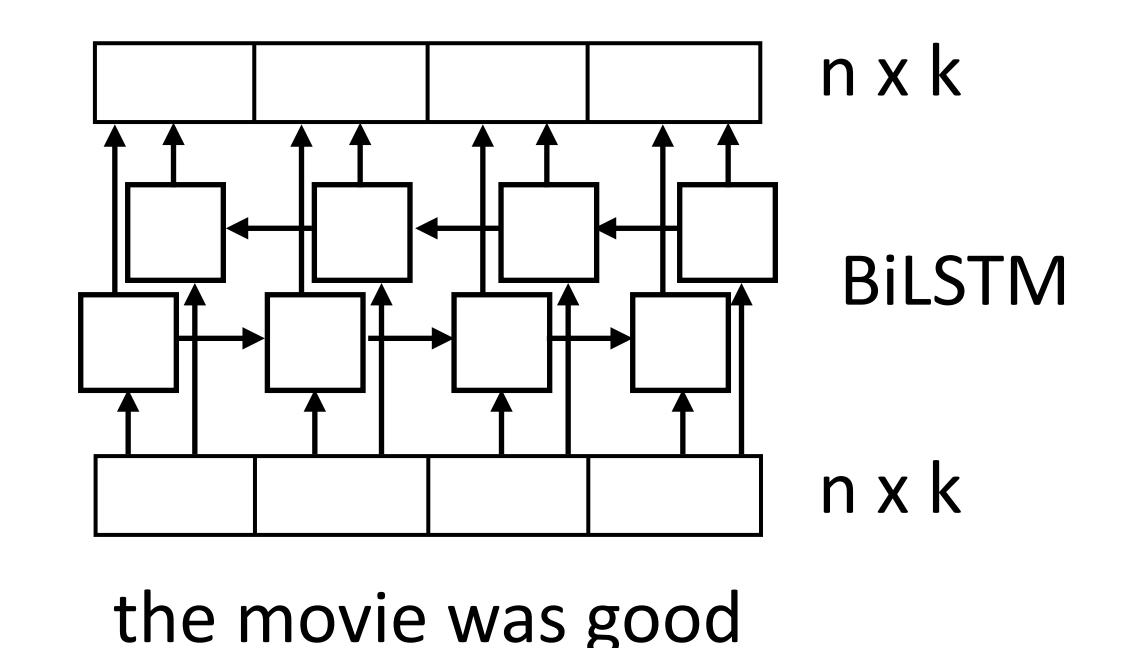
the movie was good

vector for each word

- Combines evidence locally in a sentence and produces a new (but still variable-length) representation
- ▶ Filters are like basis vectors: each filter computes each n-gram's value for that coordinate in the basis

Compare: LSTMs vs. CNNs

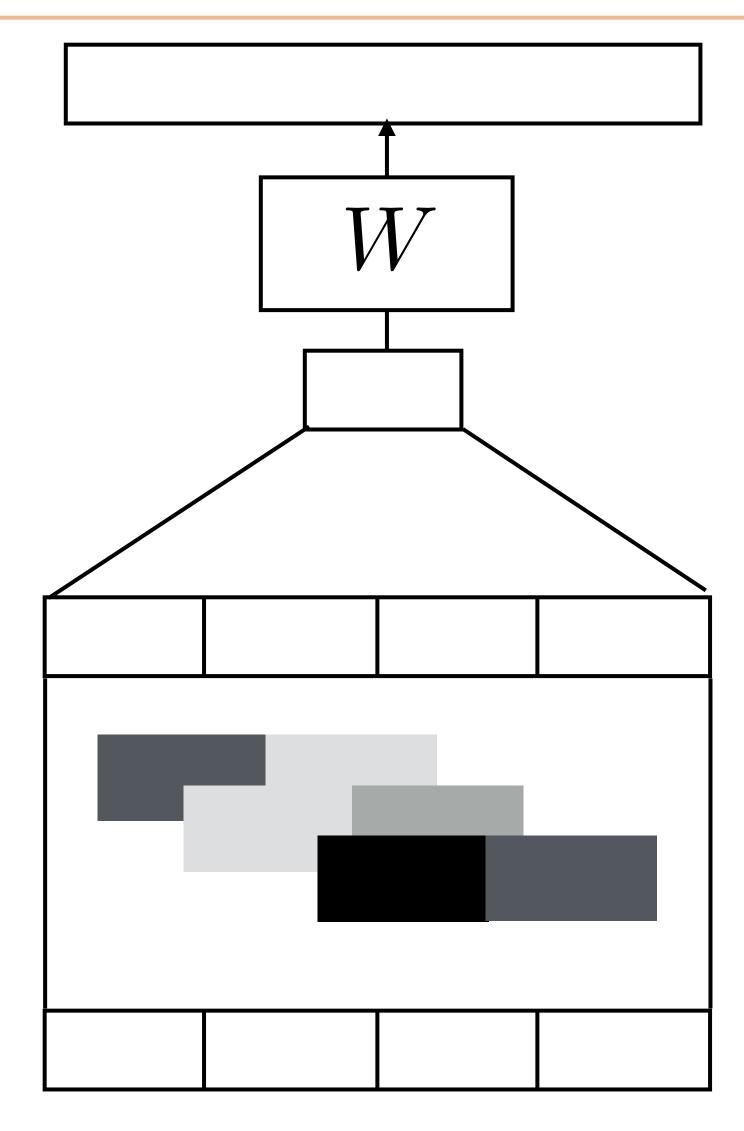




- ▶ Both LSTMs and convolutional layers transform the input using context
- LSTM: "global" in that it looks at the whole sentence (but largely local for many problems)
- ► CNN: local depending on filter width + number of layers

CNNs for Sentiment

CNNs for Sentiment Analysis



$$P(y|\mathbf{x})$$

projection + softmax

c-dimensional vector

max pooling over the sentence

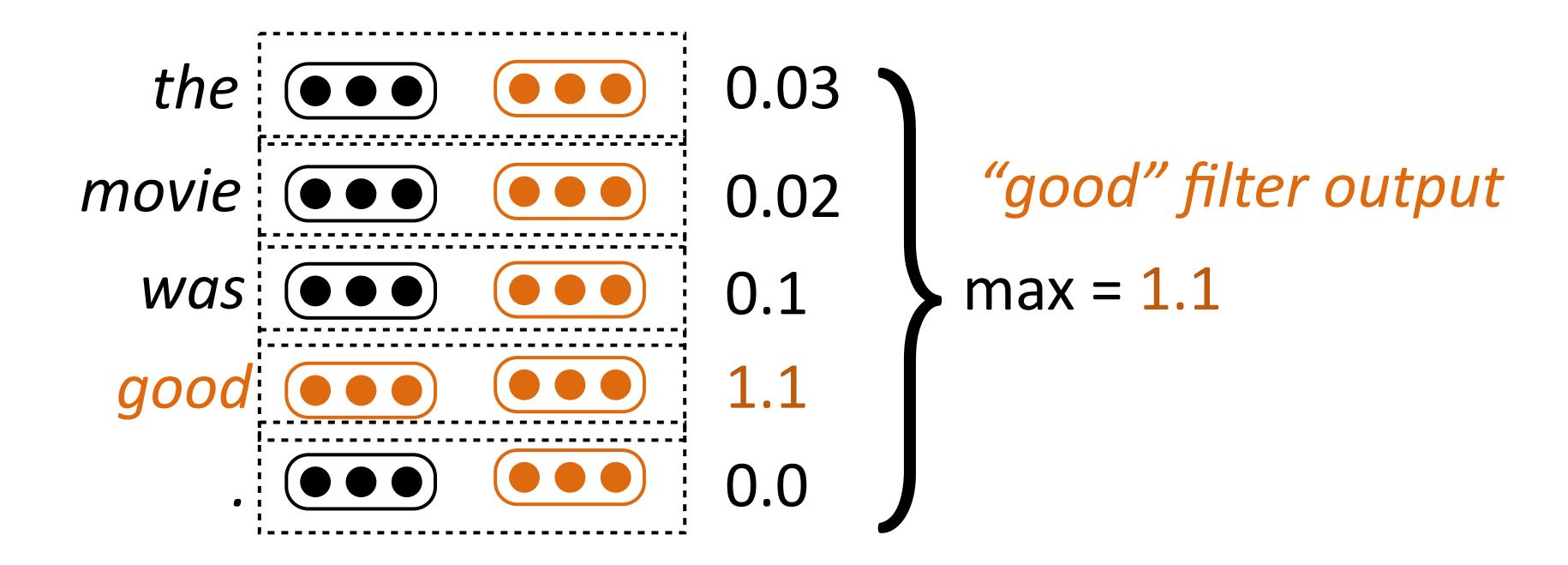
n x c

c filters, m x k each

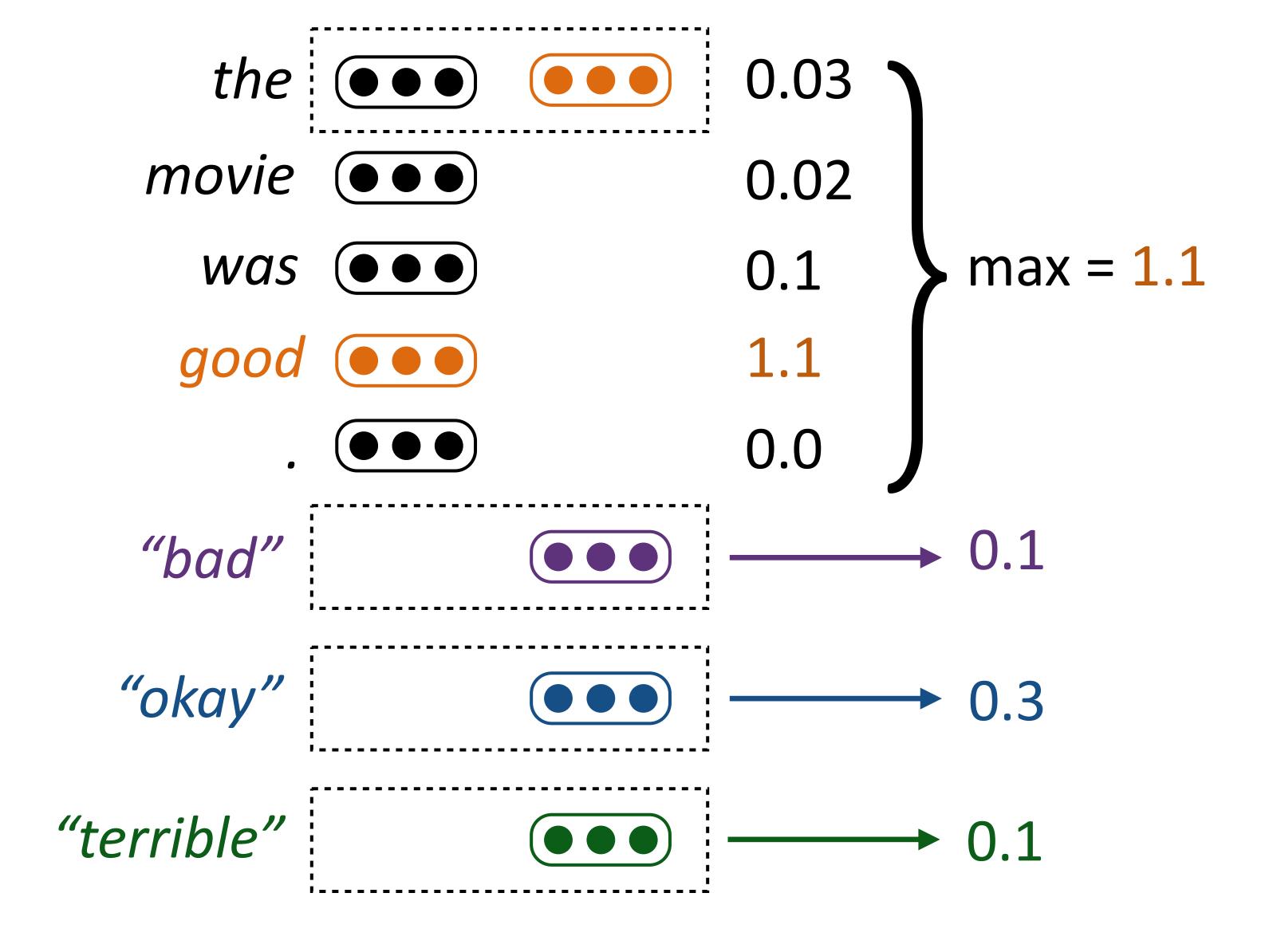
nxk

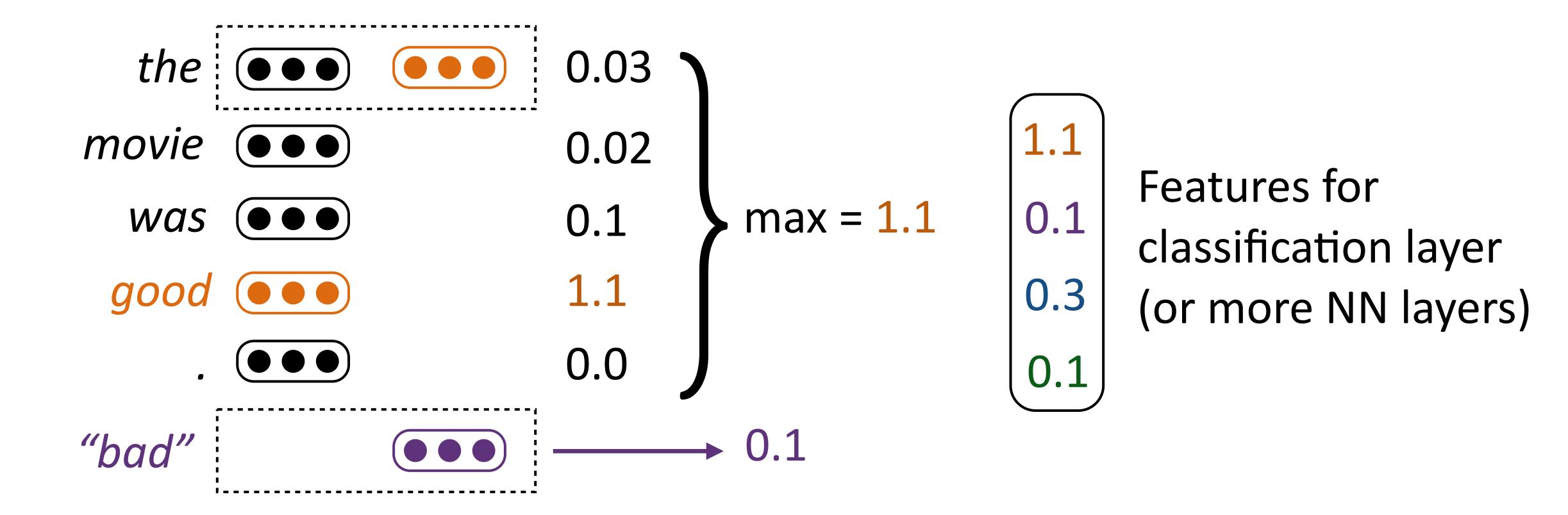
Max pooling: return the max activation of a given filter over the entire sentence; like a logical OR (sum pooling is like logical AND)

the movie was good

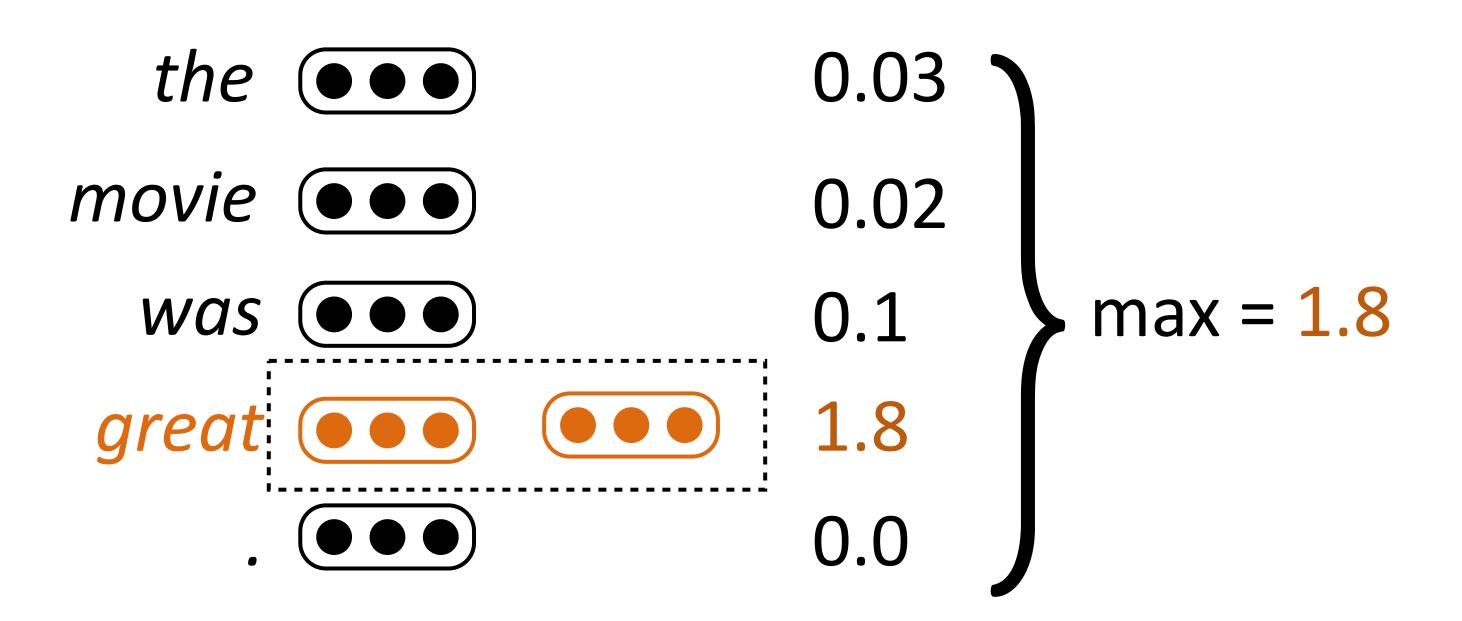


Filter "looks like" the things that will cause it to have high activation

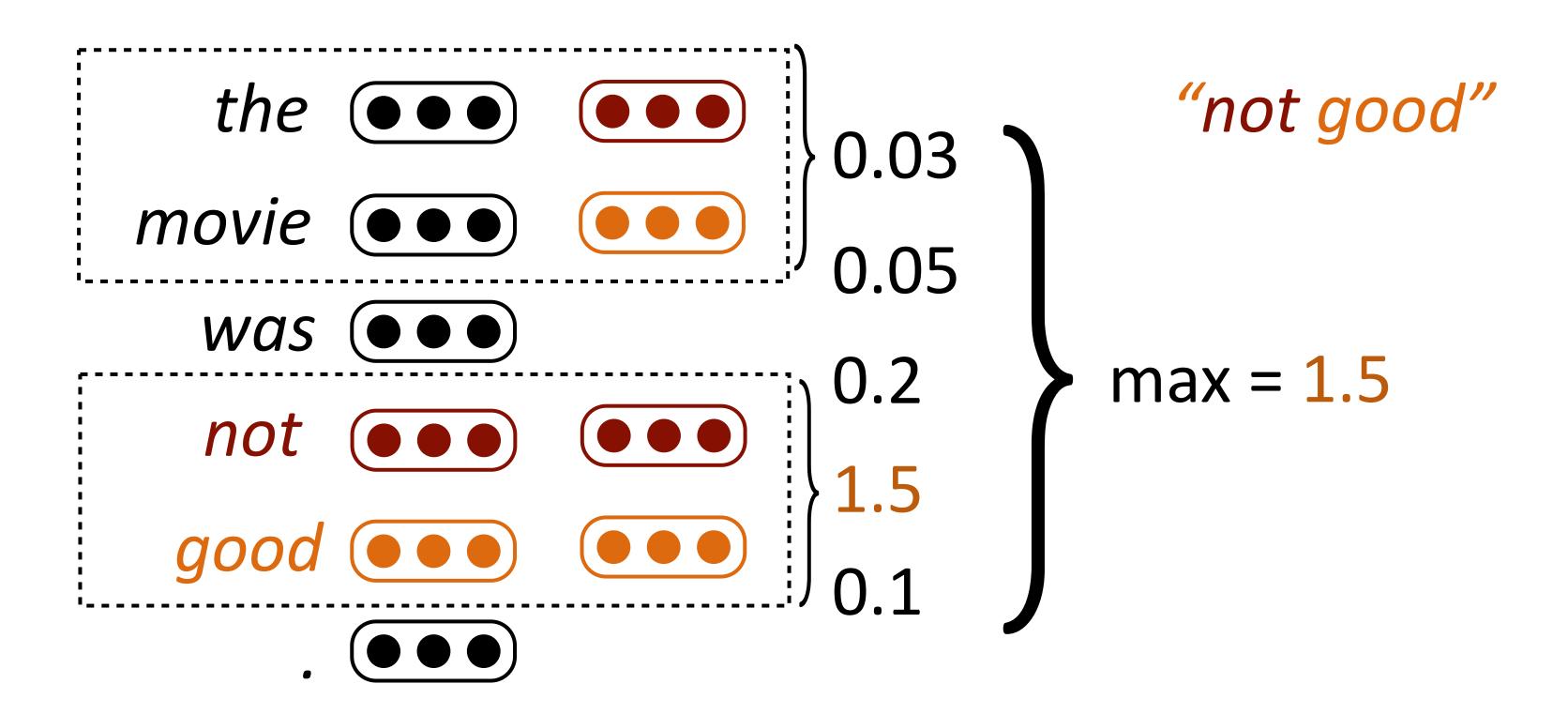




- Takes variable-length input and turns it into fixed-length output
- Filters are initialized randomly and then learned



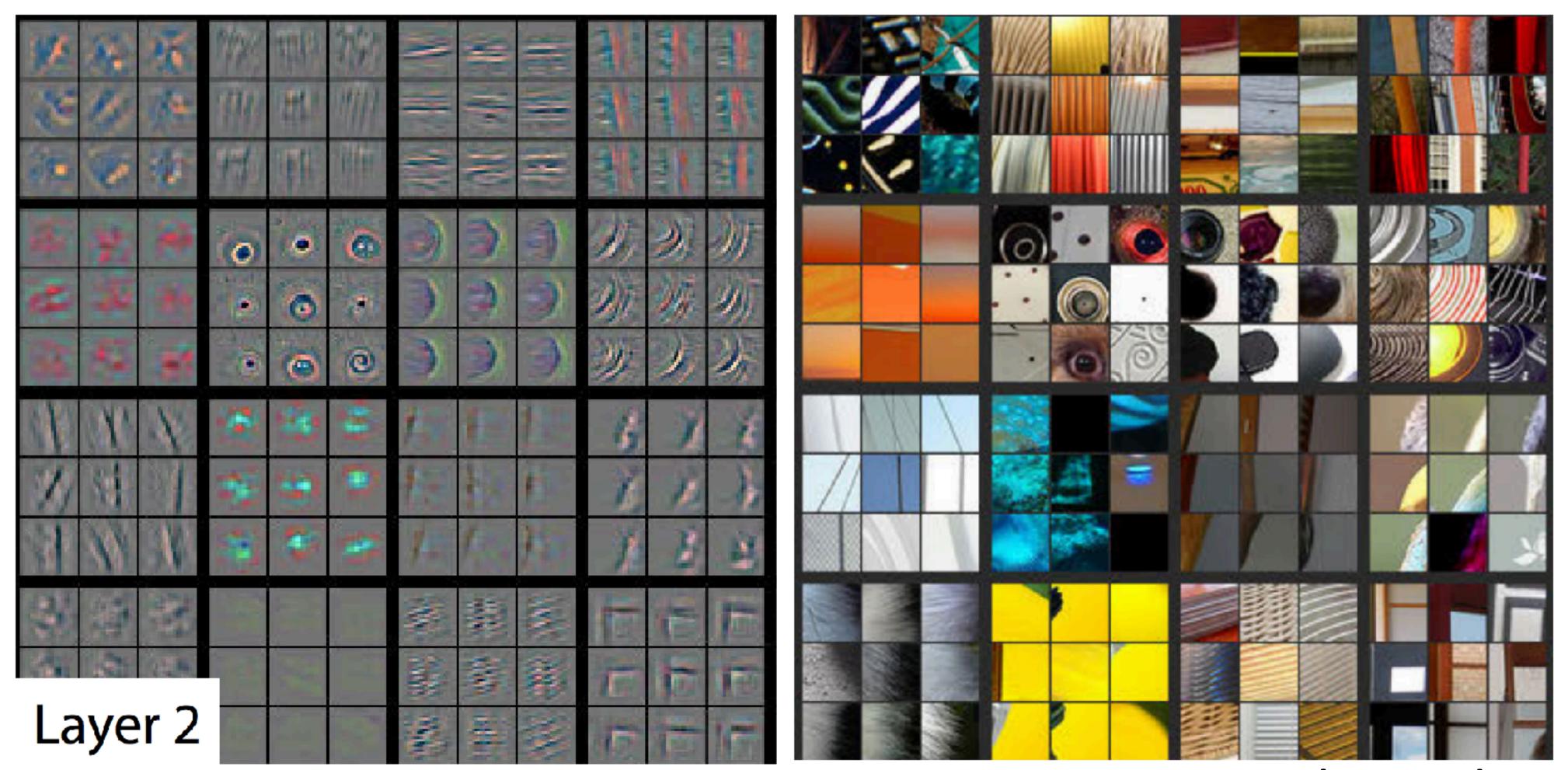
Word vectors for similar words are similar, so convolutional filters will have similar outputs



- Analogous to bigram features in bag-of-words models
- Indicator feature of text containing bigram <-> max pooling of a filter that matches that bigram

Deep Convolutional Networks

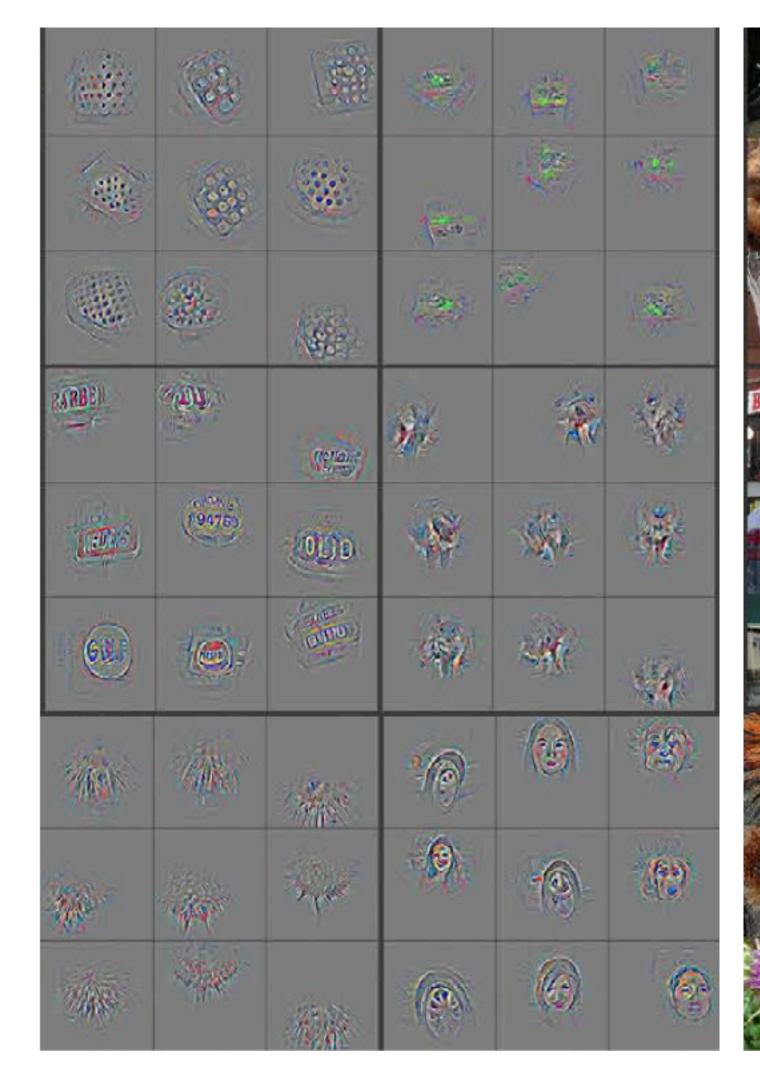
Low-level filters: extract low-level features from the data

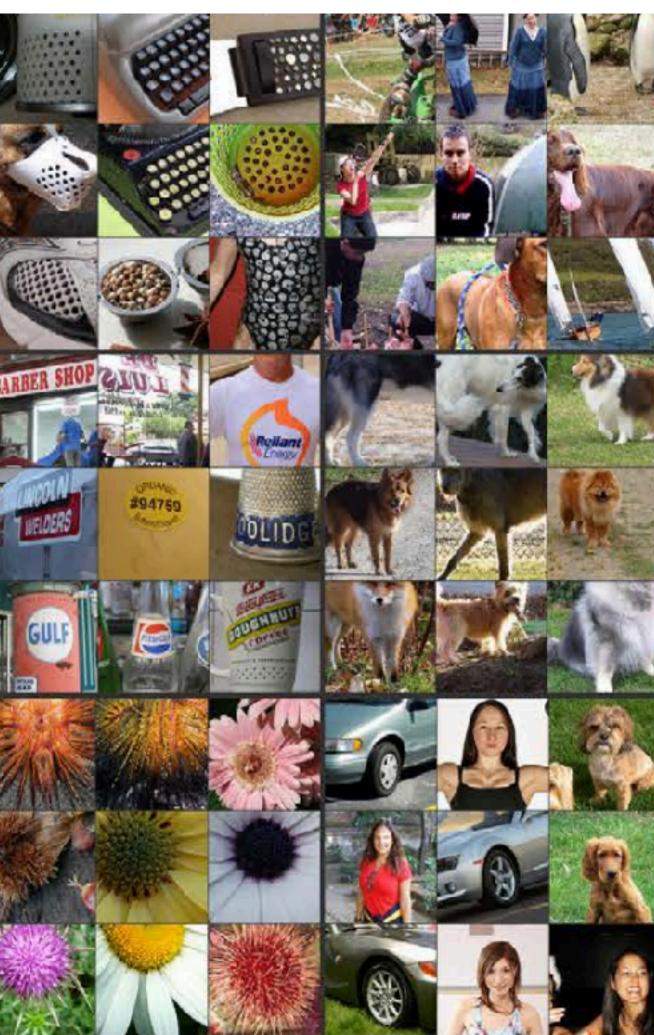


Zeiler and Fergus (2014)

Deep Convolutional Networks

▶ High-level filters: match larger and more "semantic patterns"





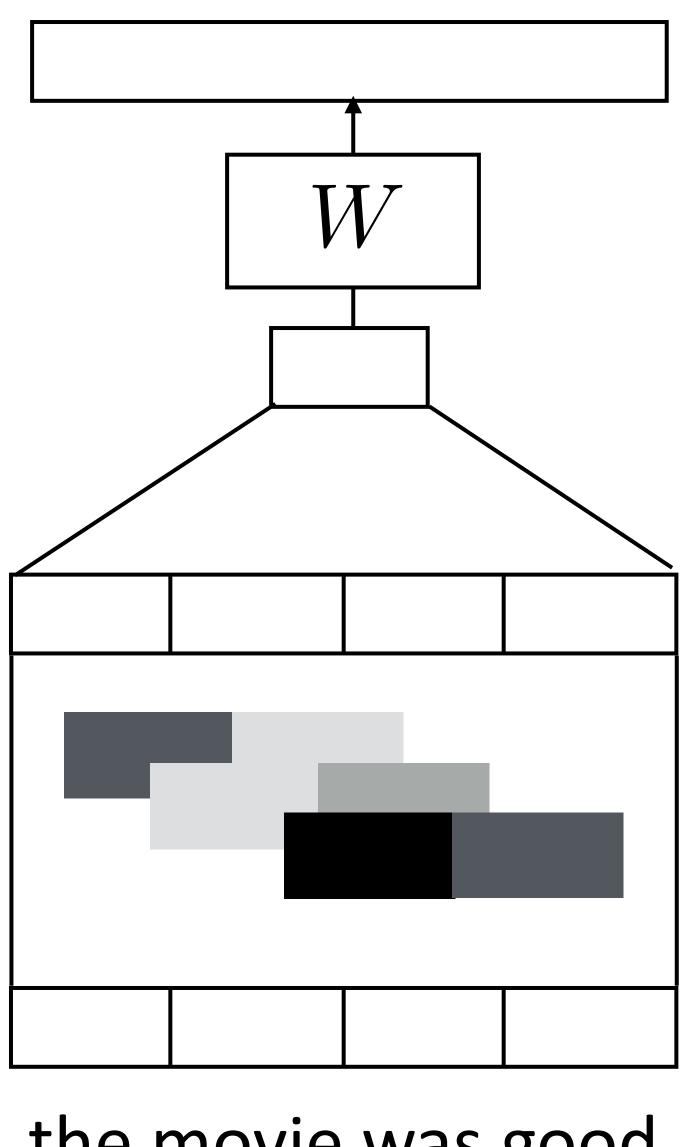
CNNs: Implementation

- ▶ Input is batch_size x n x k matrix, filters are c x m x k matrix (c filters)
- Typically use filters with m ranging from 1 to 5 or so (multiple filter widths in a single convnet)
- Filters are initialized randomly, need to learn to pick up on appropriate patterns
- All computation graph libraries support efficient convolution operations

CNNs for Sentence Classification

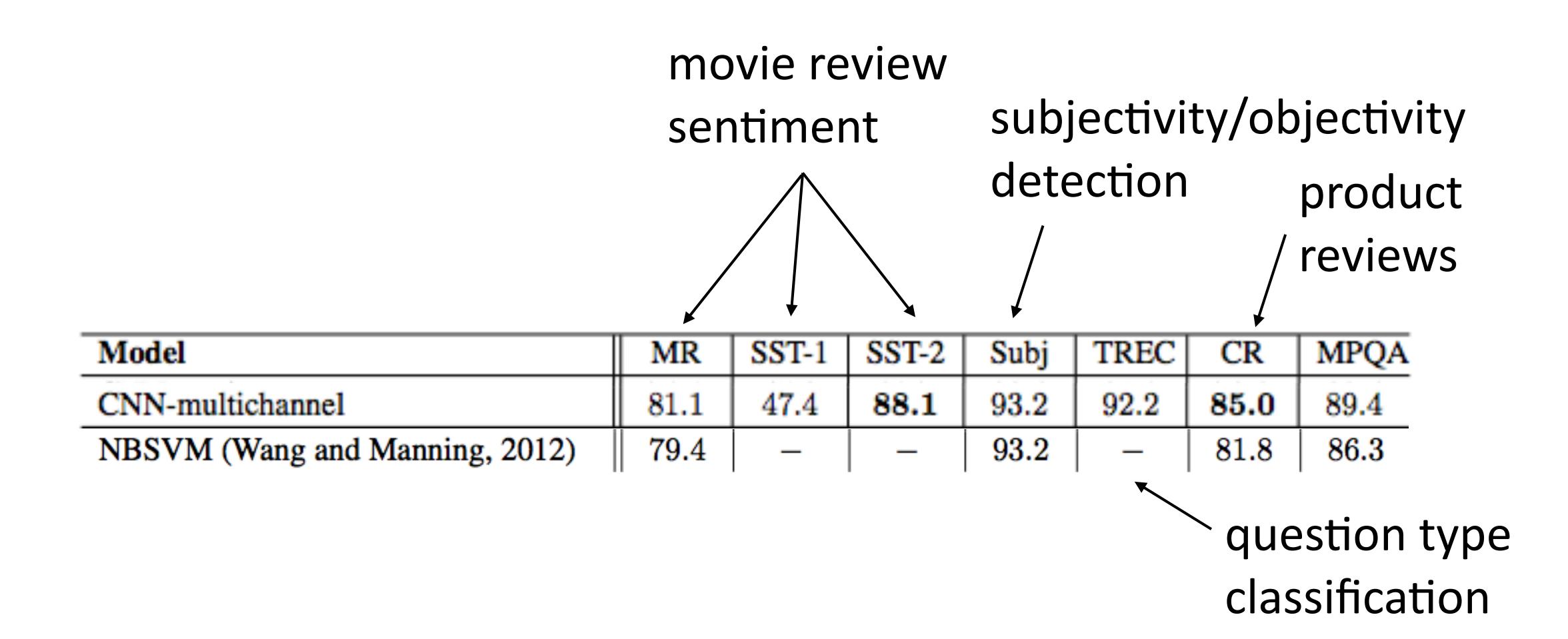
- Question classification, sentiment, etc.
- Conv+pool, then use feedforward layers to classify

 Can use multiple types of input vectors (fixed initializer and learned)



the movie was good

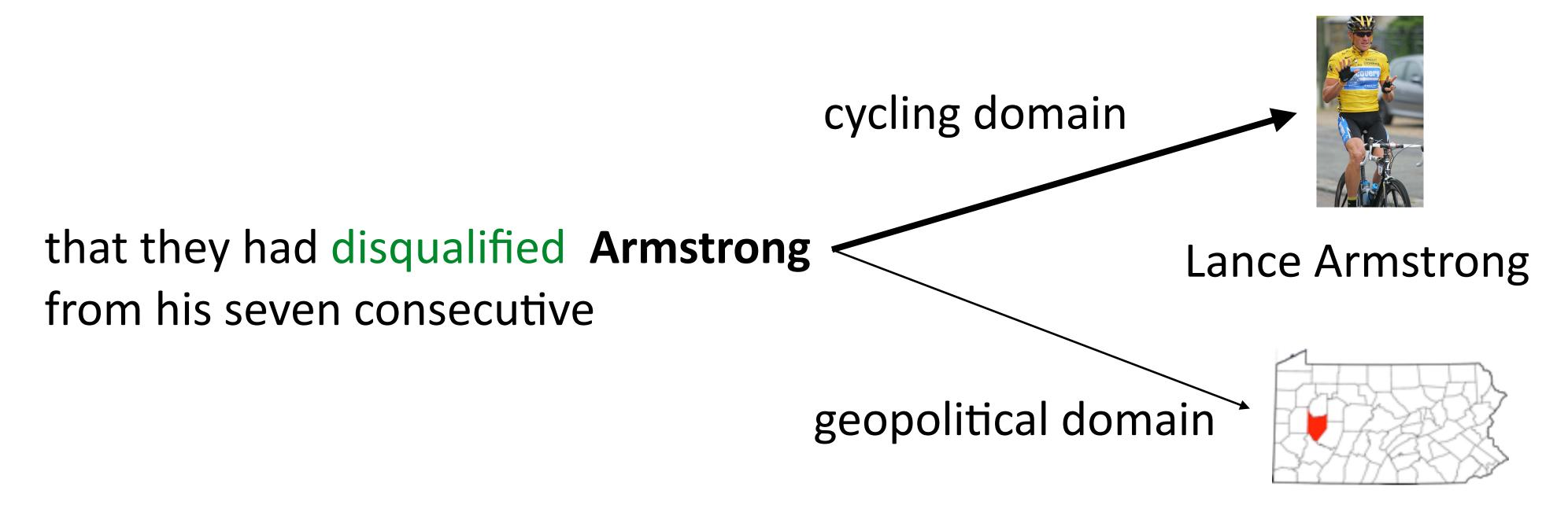
Sentence Classification



Also effective at document-level text classification

Entity Linking

- CNNs can produce good representations of both sentences and documents like typical bag-of-words features
- Can distill topic representations for use in entity linking



Armstrong County

Entity Linking

Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified **Armstrong** from his seven consecutive Tour de France wins from 1999–2005.

Lance Edward Armstrong is an American former professional road cyclist

Armstrong County is a county in Pennsylvania...

CNN

Document topic vector d

CNN

Article topic vector $\,a_{
m Lance}$

CNN

Article topic vector a_{County}

$$s_{\text{County}} = d \cdot a_{\text{County}}$$

$$P(y|\mathbf{x}) = \text{softmax}(\mathbf{s})$$

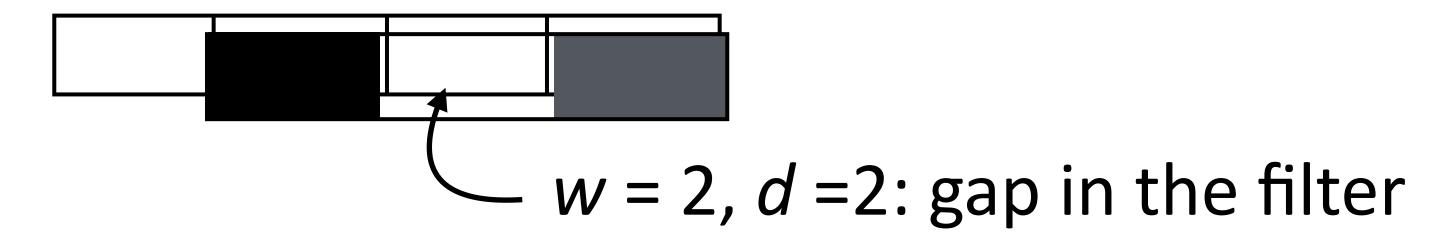
 $s_{\text{Lance}} = d \cdot a_{\text{Lance}}$

Francis-Landau et al. (2016)

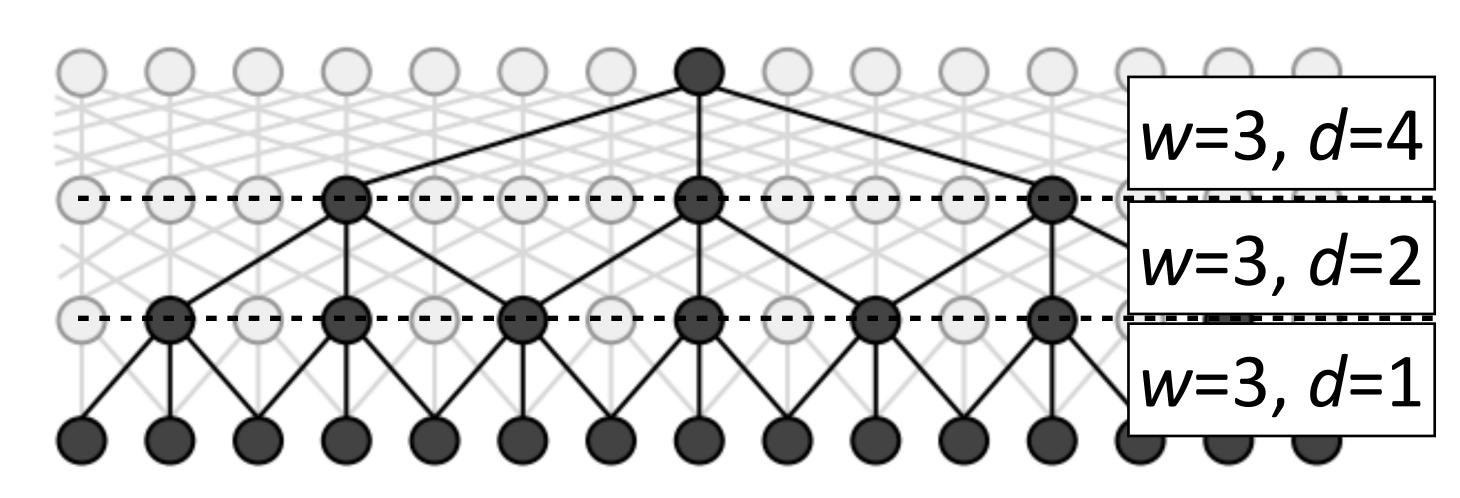
Dilated CNNs for MT

Dilated Convolutions

- Standard convolution: looks at every token under the filter
- Dilated convolution with gap d: looks at every dth token



 Can chain successive dilated convolutions together to get a wide receptive field (see a lot of the sentence)

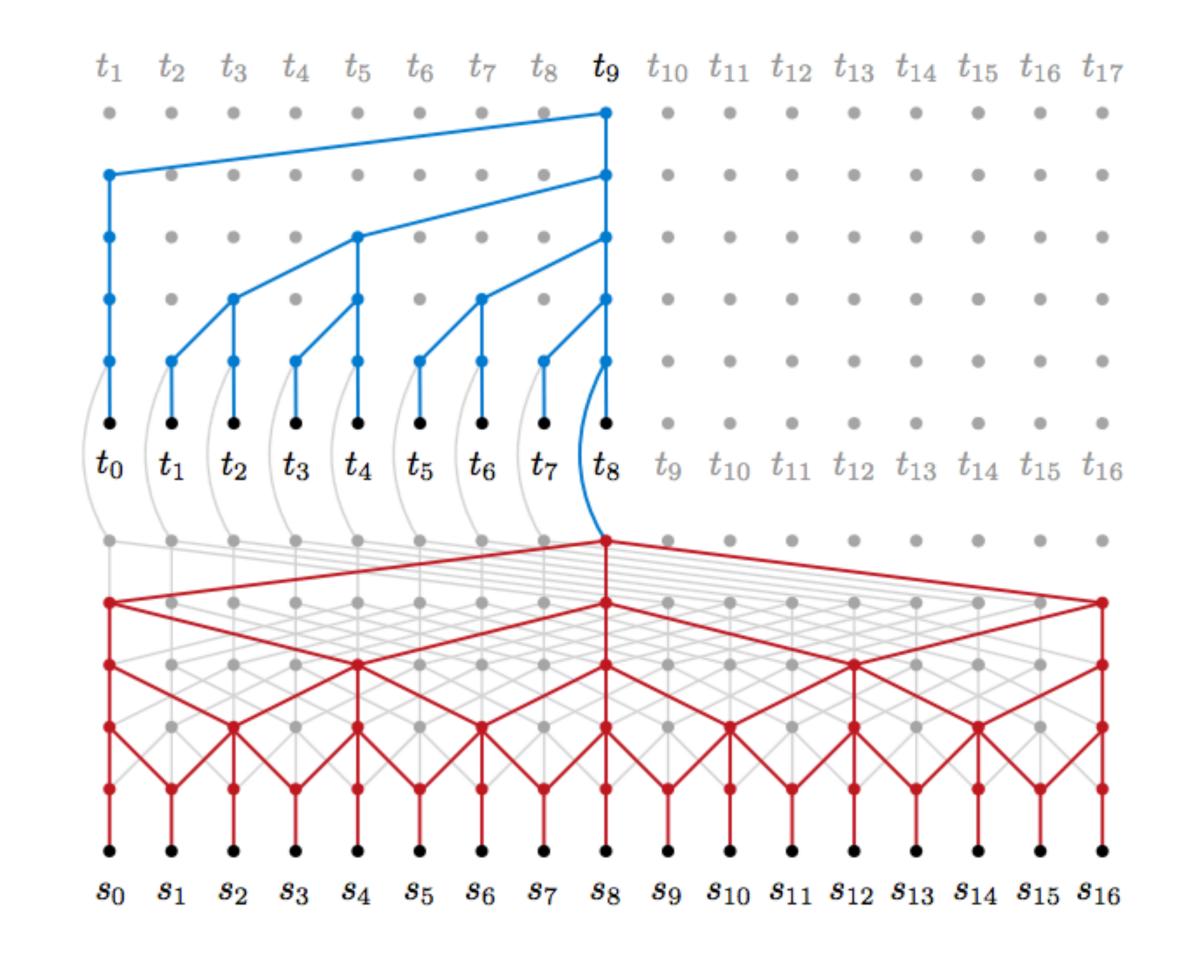


Top nodes see lots of the sentence, but with different processing

Strubell et al. (2017)

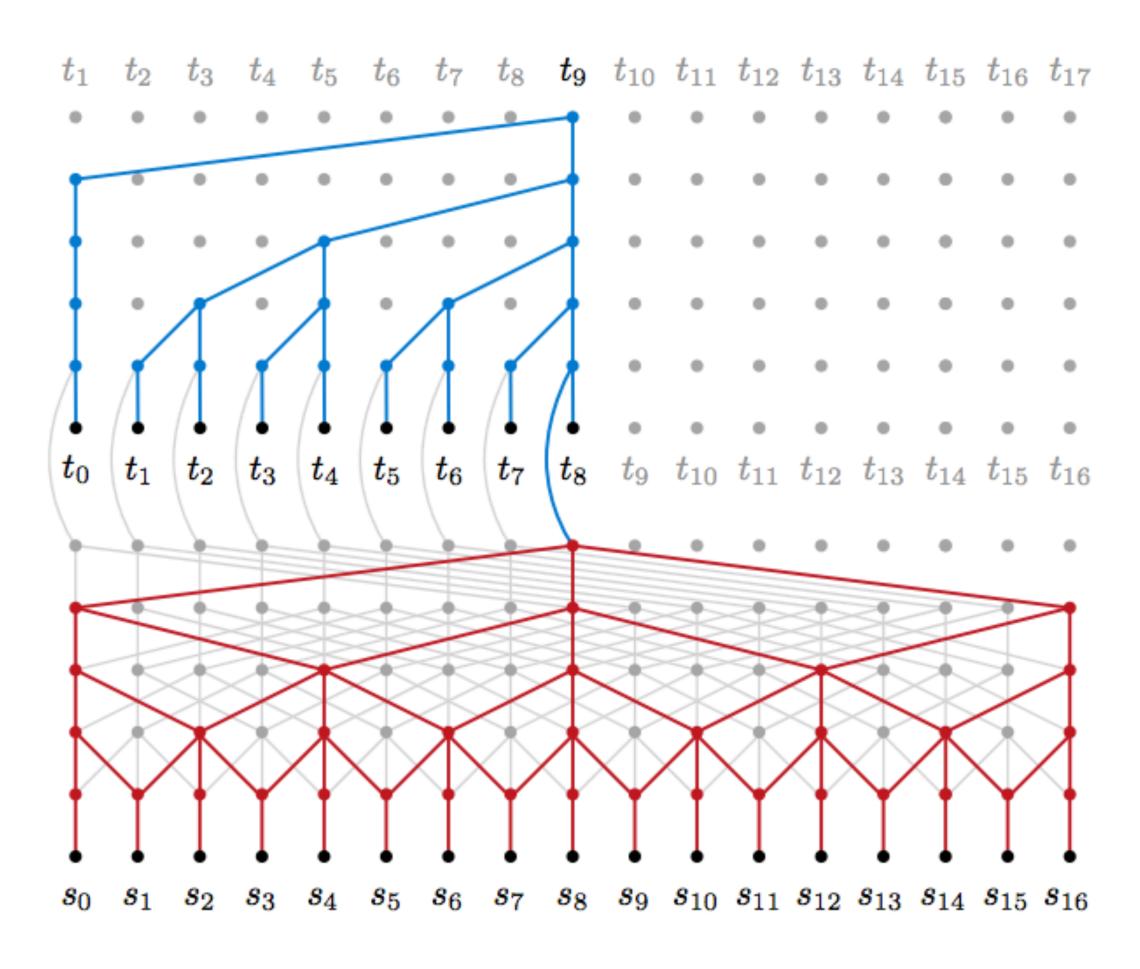
CNNs for Machine Translation

- "ByteNet": operates over characters (bytes)
- Encode source sequence w/dilated convolutions
- ▶ Predict nth target character by looking at the nth position in the source and a dilated convolution over the n-1 target tokens so far
- To deal with divergent lengths, t_n actually looks at $s_{n\alpha}$ where α is a heuristically-chosen parameter

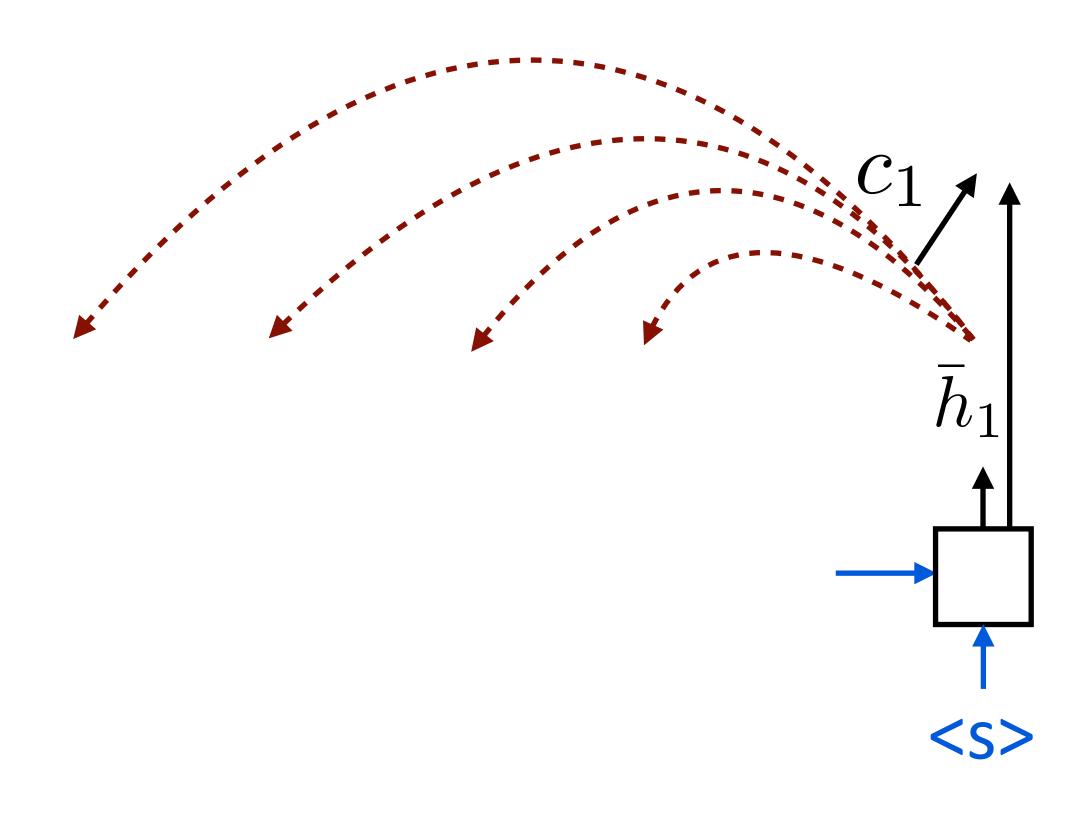


Assumes mostly monotonic translation

Compare: CNNs vs. LSTMs

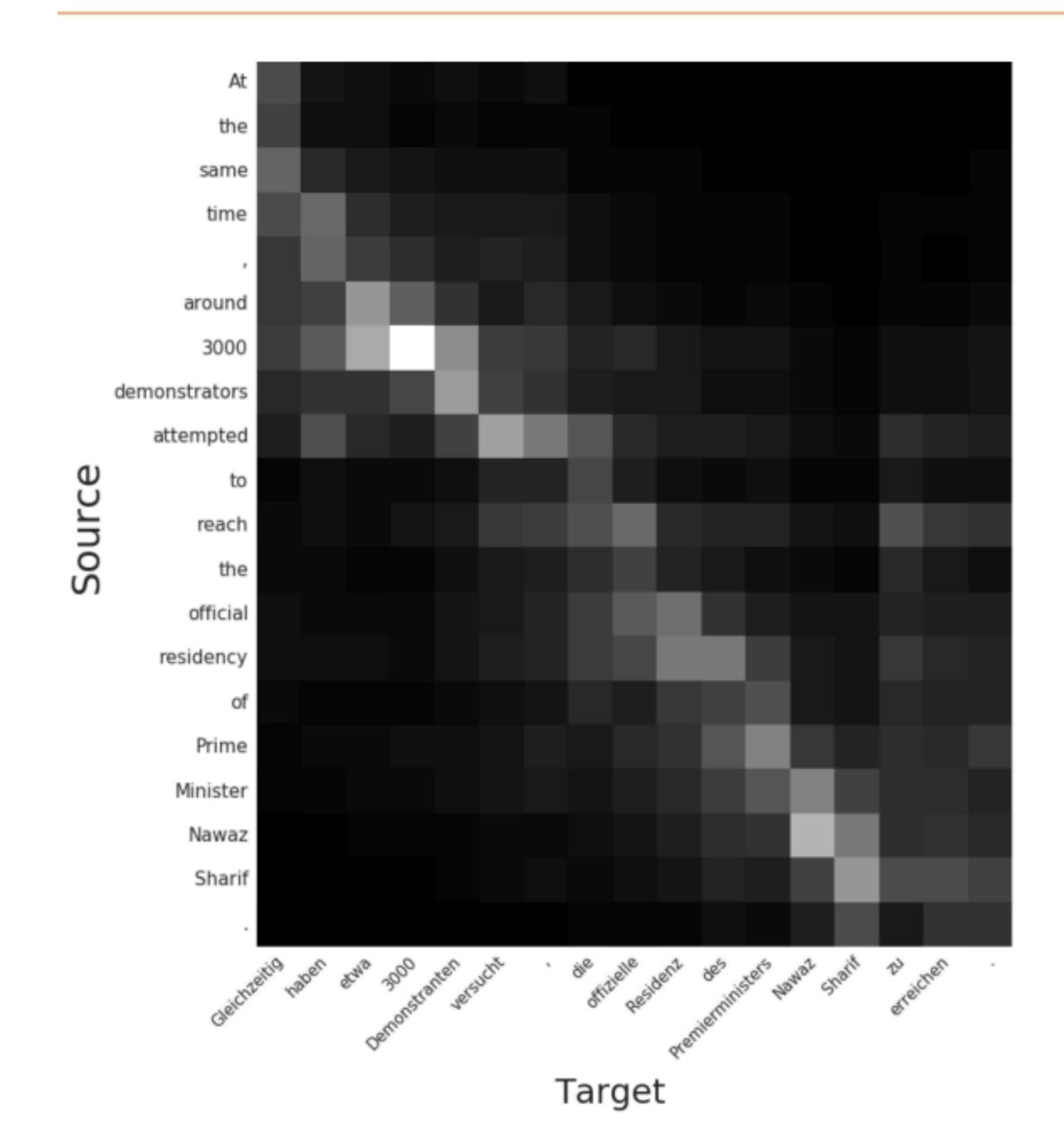


CNN: source encoding at this position gives us "attention", target encoding gives us decoder context



LSTM: looks at previous word + hidden state, attention over input

Attention from CNN



Model is character-level, this visualization shows which words's characters impact the convolutional encoding the most

Largely monotonic but does consult other information

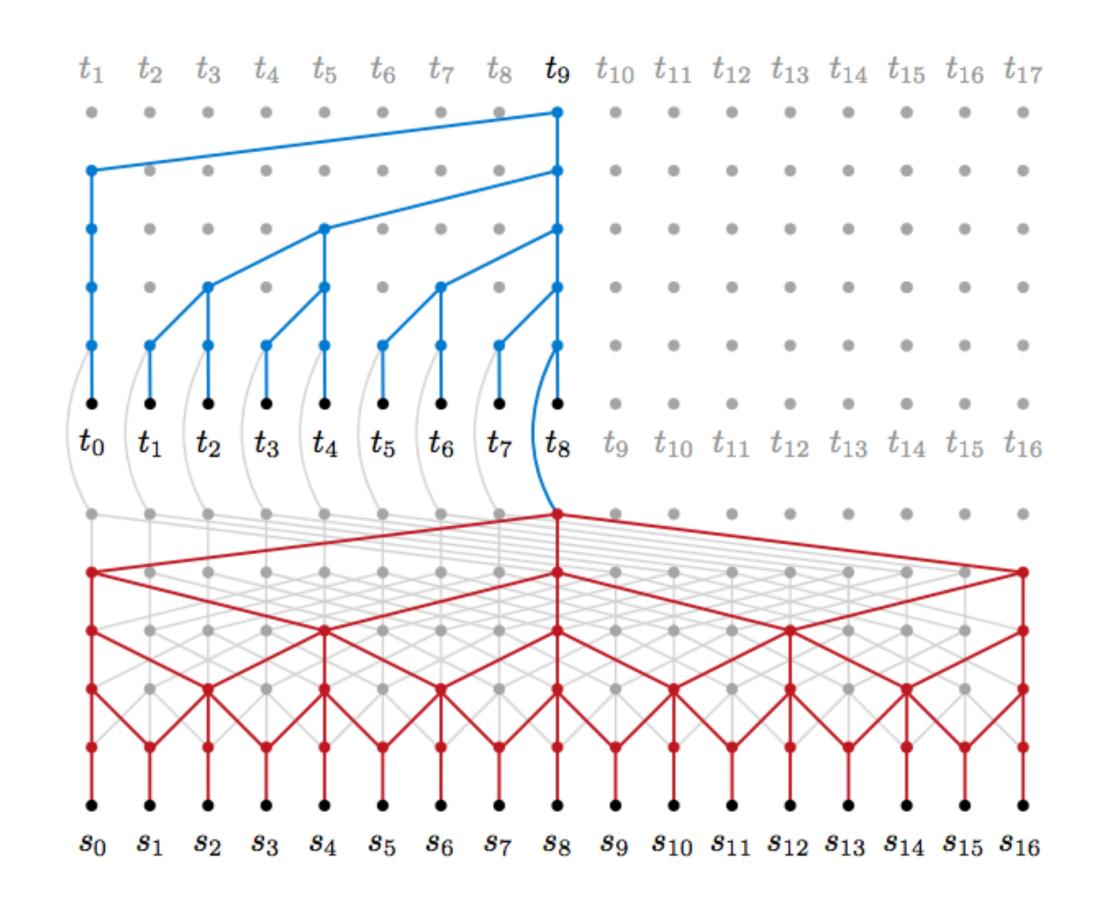
Advantages of CNNs

LSTM with attention is quadratic: compute attention over the whole input

for each decoded token

CNN is linear!

CNN is shallower too in principle but the conv layers are very sophisticated (3 layers each)



English-German MT Results

Model	Inputs	Outputs	WMT Test '14
Phrase Based MT (Freitag et al., 2014; Williams et al., 2015)	phrases	phrases	20.7
RNN Enc-Dec (Luong et al., 2015)	words	words	11.3
Reverse RNN Enc-Dec (Luong et al., 2015)	words	words	14.0
RNN Enc-Dec Att (Zhou et al., 2016)	words	words	20.6
RNN Enc-Dec Att (Luong et al., 2015)	words	words	20.9
GNMT (RNN Enc-Dec Att) (Wu et al., 2016a)	word-pieces	word-pieces	24.61
RNN Enc-Dec Att (Chung et al., 2016b)	BPE	BPE	19.98
RNN Enc-Dec Att (Chung et al., 2016b)	BPE	char	21.33
GNMT (RNN Enc-Dec Att) (Wu et al., 2016a)	char	char	22.62
ByteNet	char	char	23.75

Up Next

- Next lecture: Ye will talk about using neural networks in lower-resource settings
- After that: advanced neural network structures
 - ► Tree-structured RNNs
 - Neural CRFs
 - Memory networks, etc.