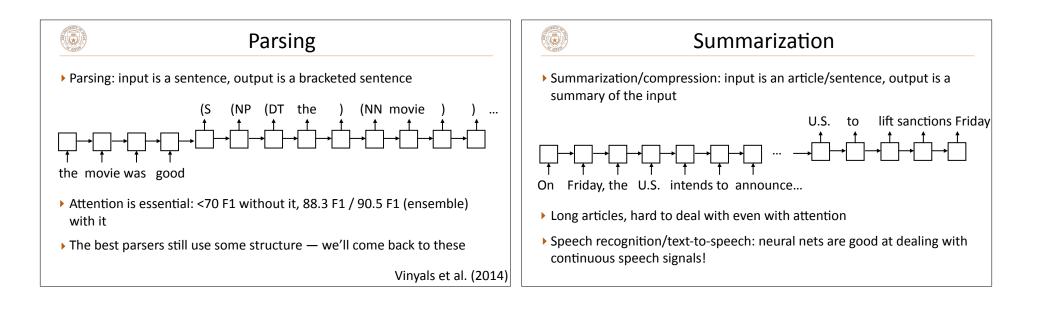
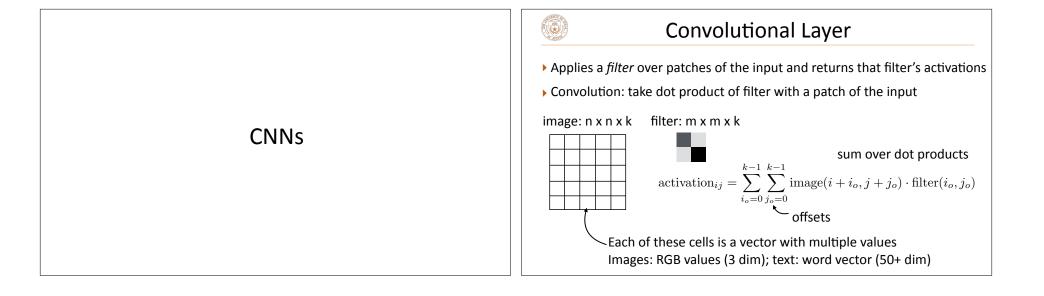
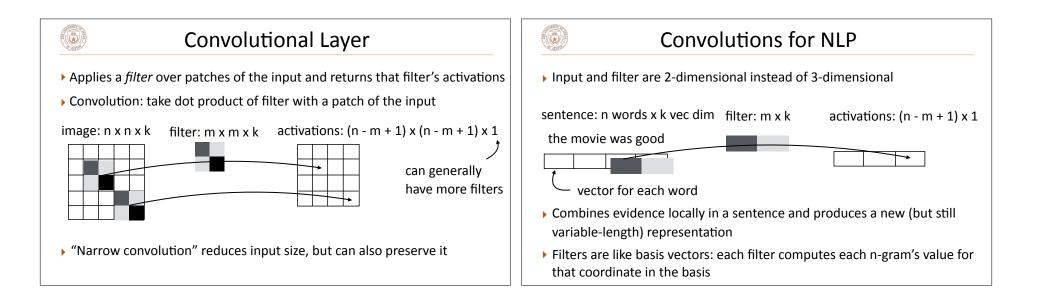


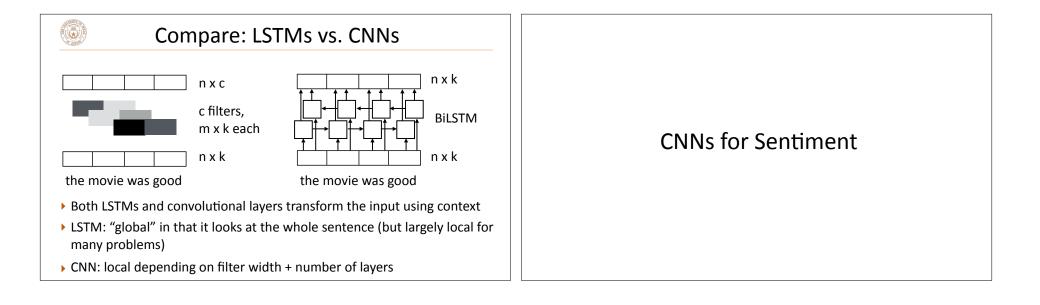
one computation graph and compute losses

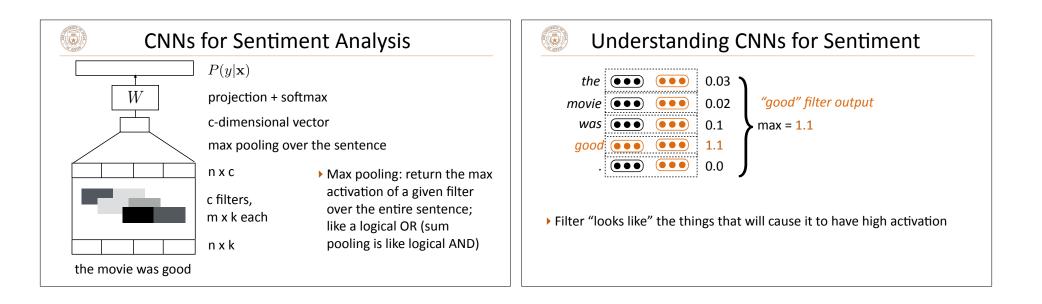
Recall: Attention • For each decoder state, compute a weighted sum of input states reflecting what's most important right now le Unnormalized $e_{ij} = f(\bar{h}_i, h_j)$ scalar weight $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$ Normalized scalar weight Weighted sum $c_i = \sum \alpha_{ij} h_j$ of input hidden <s> the movie was great states (vector)

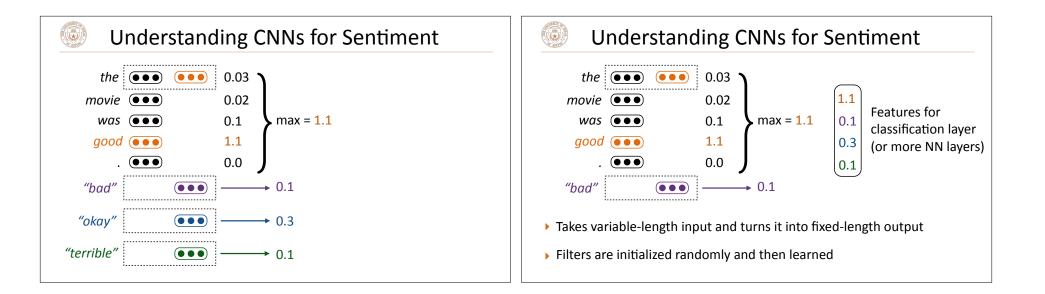


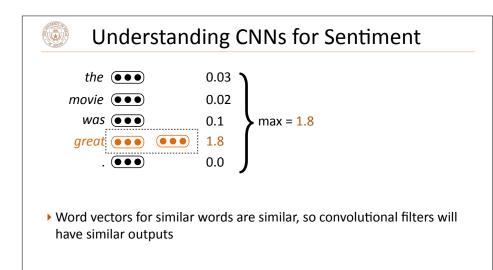




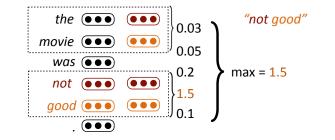




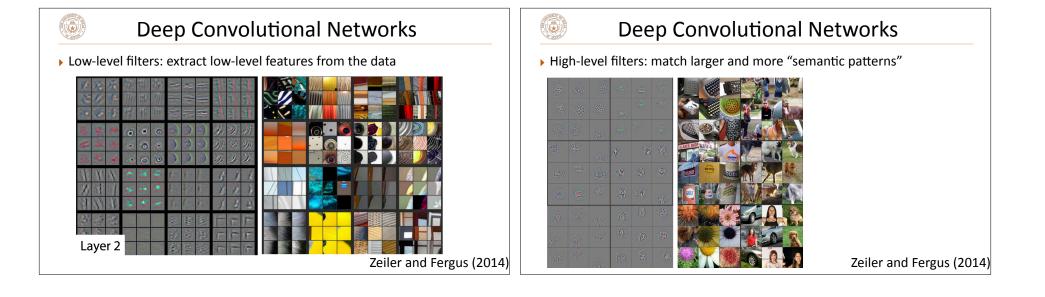




Understanding CNNs for Sentiment



- > Analogous to bigram features in bag-of-words models
- Indicator feature of text containing bigram <-> max pooling of a filter that matches that bigram



CNNs: Implementation

Input is batch_size x n x k matrix, filters are c x m x k matrix (c filters)

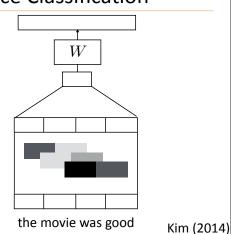
- Typically use filters with m ranging from 1 to 5 or so (multiple filter widths in a single convnet)
- Filters are initialized randomly, need to learn to pick up on appropriate patterns
- > All computation graph libraries support efficient convolution operations

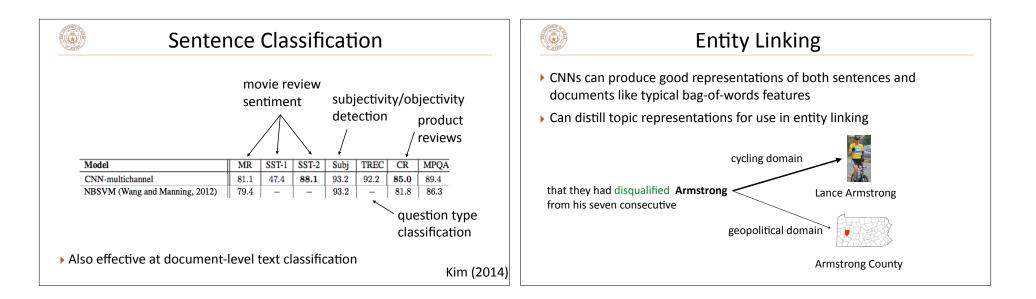
CNNs for Sentence Classification

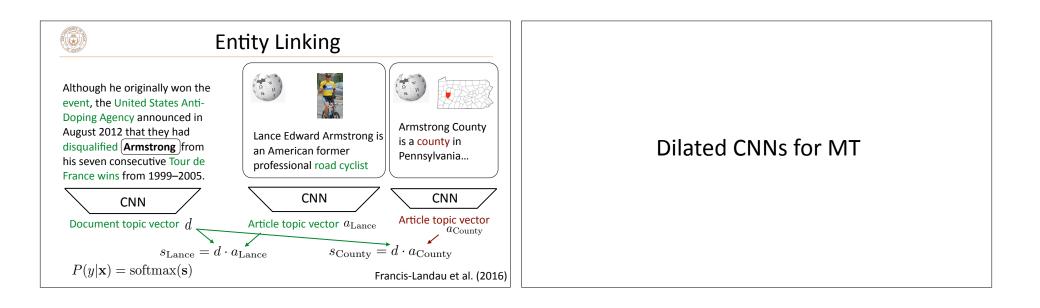
 Question classification, sentiment, etc.

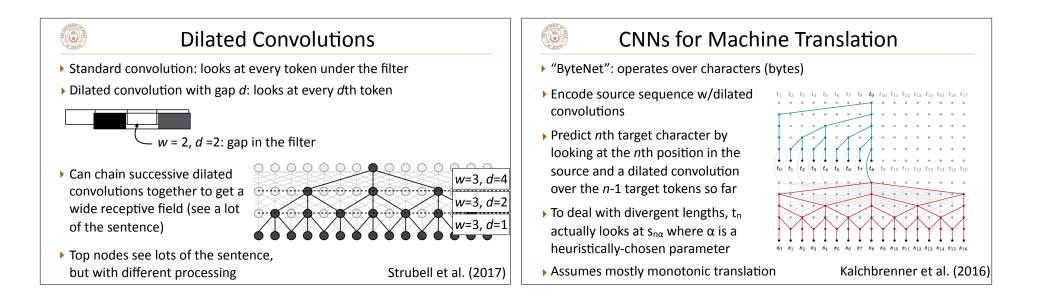
(())

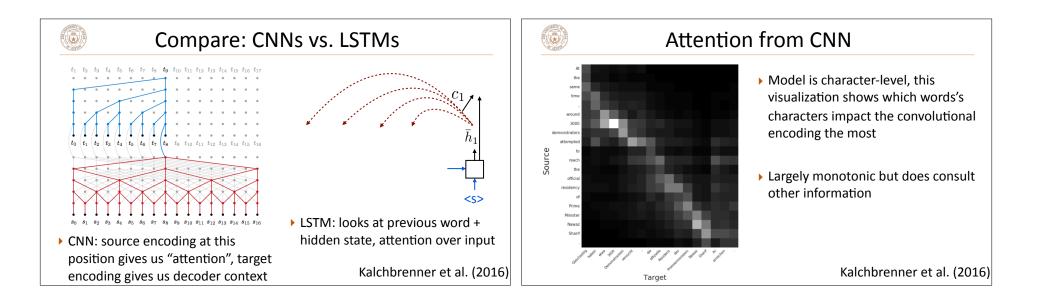
- Conv+pool, then use feedforward layers to classify
- Can use multiple types of input vectors (fixed initializer and learned)

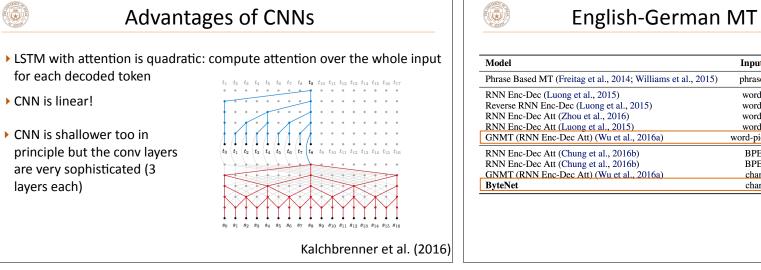












Model	Inputs	Outputs	WMT Test '14
Phrase Based MT (Freitag et al., 2014; Williams et al., 2015)	phrases	phrases	20.7
RNN Enc-Dec (Luong et al., 2015)	words	words	11.3
Reverse RNN Enc-Dec (Luong et al., 2015)	words	words	14.0
RNN Enc-Dec Att (Zhou et al., 2016)	words	words	20.6
RNN Enc-Dec Att (Luong et al., 2015)	words	words	20.9
GNMT (RNN Enc-Dec Att) (Wu et al., 2016a)	word-pieces	word-pieces	24.61
RNN Enc-Dec Att (Chung et al., 2016b)	BPE	BPE	19.98
RNN Enc-Dec Att (Chung et al., 2016b)	BPE	char	21.33
GNMT (RNN Enc-Dec Att) (Wu et al., 2016a)	char	char	22.62
ByteNet	char	char	23.75

Kalchbrenner et al. (2016)

Up Next Next lecture: Ye will talk about using neural networks in lower-resource settings After that: advanced neural network structures Tree-structured RNNs Neural CRFs Memory networks, etc.