CS395T: Structured Models for NLP Lecture 2: Machine Learning Review

Greg Durrett

Some slides adapted from Vivek Srikumar, University of Utah

Course enrollment

Lecture slides posted on website

Administrivia

Linear classification fundamentals

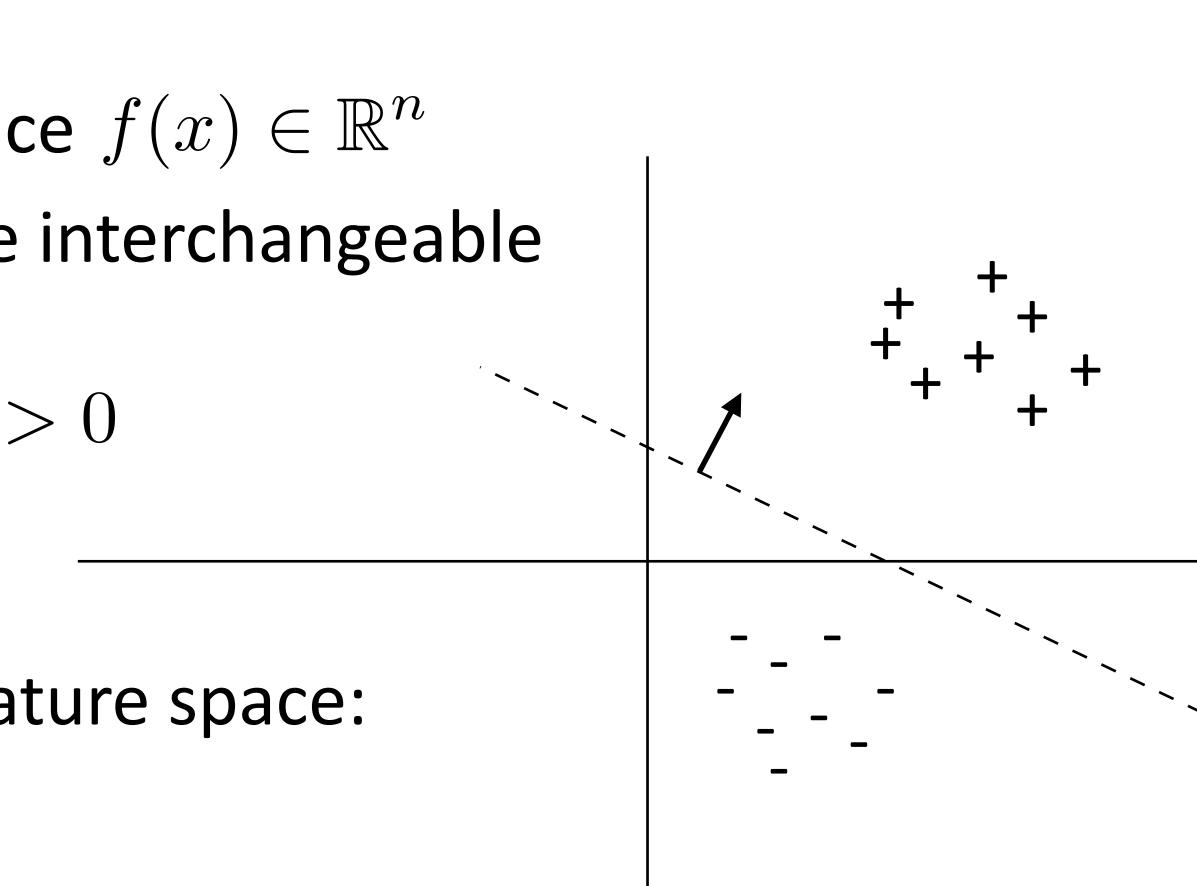
Naive Bayes, maximum likelihood in generative models

Three discriminative models: logistic regression, perceptron, SVM Different motivations but very similar update rules / inference!

This Lecture

- Datapoint x with label $y \in \{0, 1\}$
- For Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$ but in this lecture f(x) and x are interchangeable
- Linear decision rule: $w^{\top}f(x) + b > 0$ $w^{\top}f(x) > 0$
- Can delete bias if we augment feature space: f(x) = [0.5, 1.6, 0.3][0.5, 1.6, 0.3, **1**]

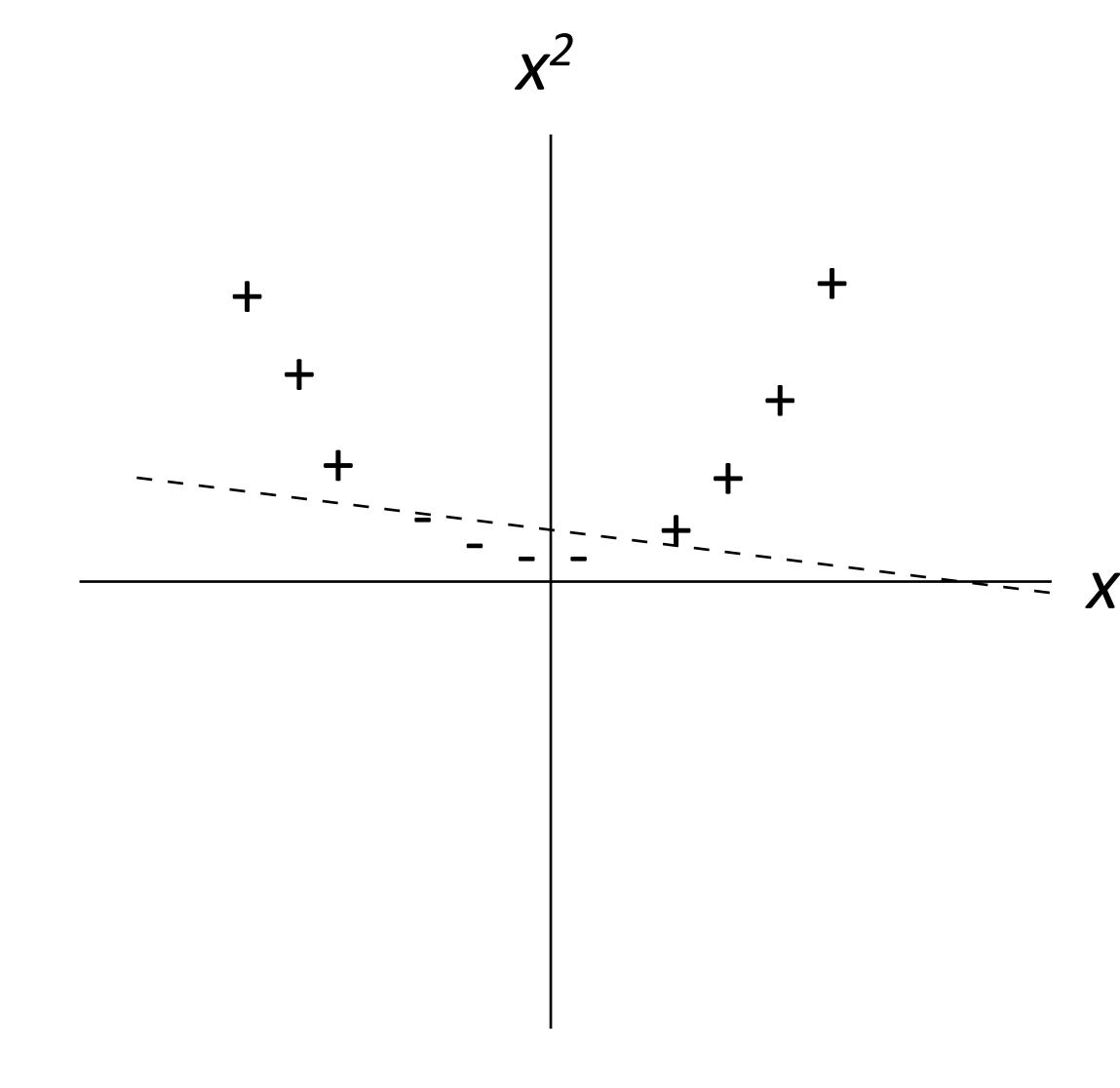
Classification

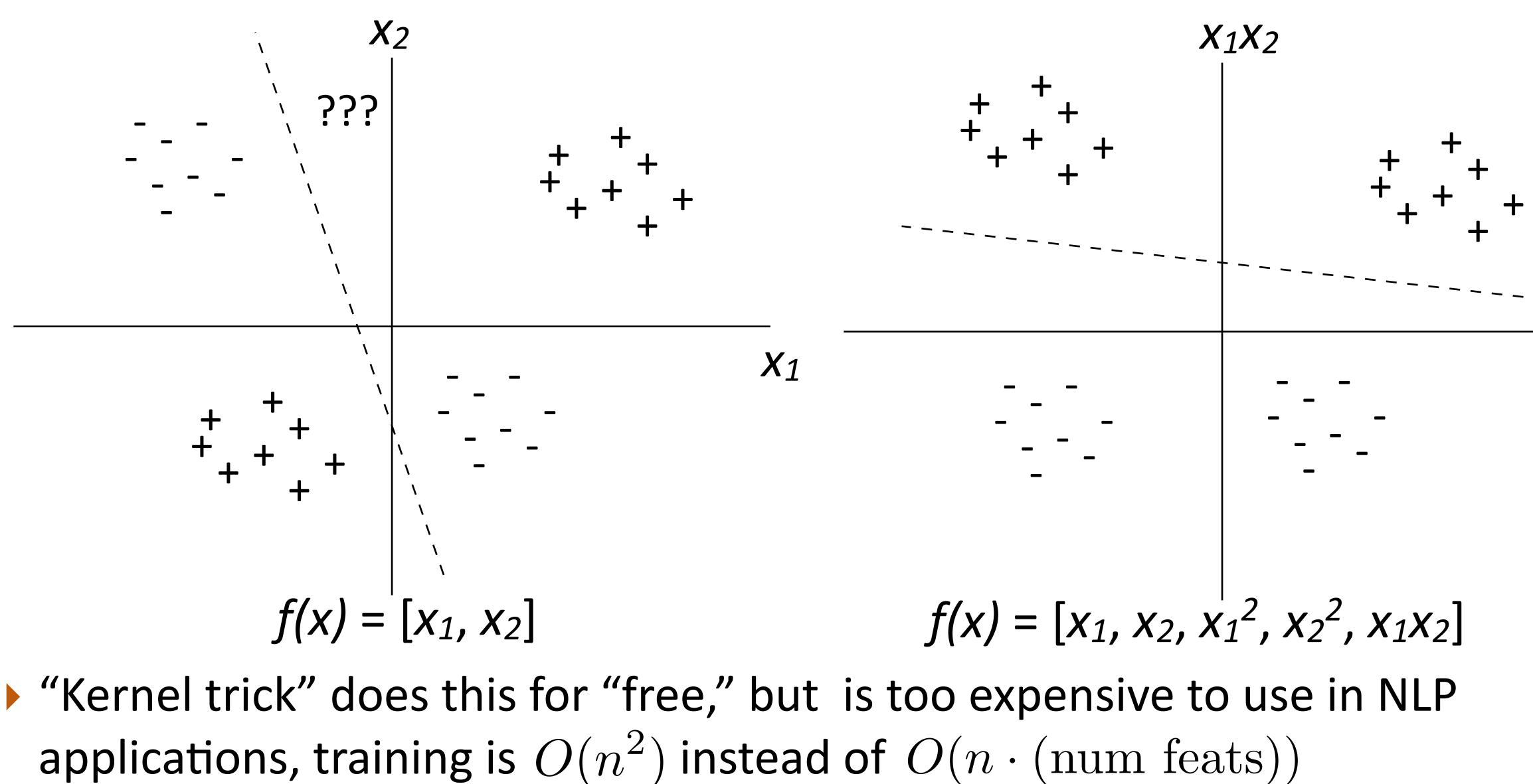


Linear functions are powerful!

X

+++ - - - +++





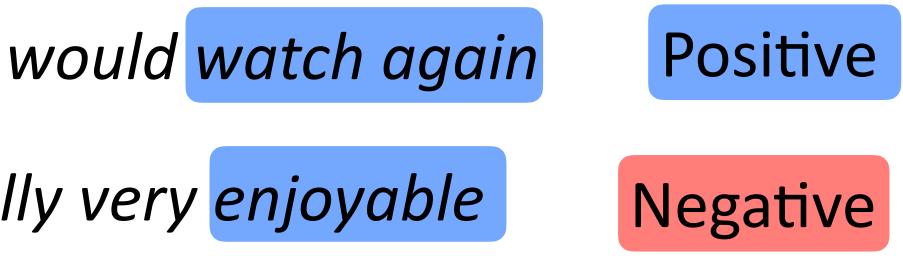
Linear functions are powerful!

Classification: Sentiment Analysis

this movie was great! would watch again

this movie was <mark>not</mark> really very <mark>enjoyable</mark>

Doing well at this is going to require structure, but let's start with simple approaches



- Surface cues can basically tell you what's going on here
- Machine learning is good at this! Lots of data, simple pattern recognition task, hard to write rules by hand

Text Classification: Ham or Spam

hi i have very valuable business proposition for you. you make lots of \$\$\$1 just need you to send a small amount of funds

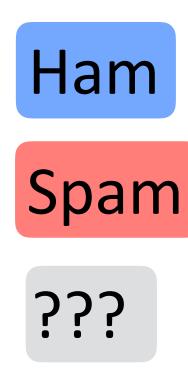
Spam

Why do we think this?

Conditional probabilities (chance of spam given \$\$\$ is high)

Text Classification: Ham or Spam

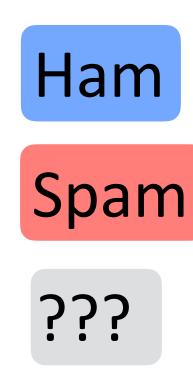
hi i have very valuable business proposition for you. you make lots of \$\$\$ I just need you to send a small amount of funds



- Feature representation: Indicator[doc contains \$\$\$], Indicator[doc contains *training*], Indicator[doc contains *send*]...
- \triangleright Convert a document to a vector: [1, 0, 1, ...] (~50,000 long)
 - Requires indexing the features (mapping them to axes)
- Very high dimensional space! How do we learn feature weights?

Text Classification: Ham or Spam

hi i have very valuable business proposition for you. you make lots of \$\$\$ I just need you to send a small amount of funds



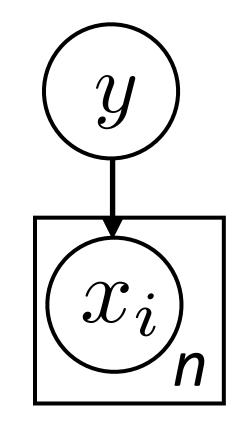
Naive Bayes

- Data point $x = (x_1, ..., x_n)$, label $y \in \{0, 1\}$
- Formulate a probabilistic model that places a distribution P(x, y)
- Compute P(y|x) and then label an example with $\operatorname{argmax}_{u} P(y|x)$
- $P(y|x) = \frac{P(y)P(x|y)}{P(x)}$ Bayes' Rule $P(x) \leftarrow \text{constant: irrelevant}$
 - $\propto P(y)P(x|y)$
 - "Naive" assumption:

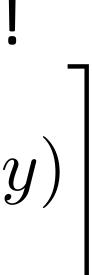
$$= P(y) \prod_{i=1}^{n} P(x_i|y)$$

 $\operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{y} \log P(y|x)$

for finding the max



$$r(x) = \operatorname{argmax}_{y} \left[\log P(y) + \sum_{i=1}^{n} \log P(x_{i}) \right]$$

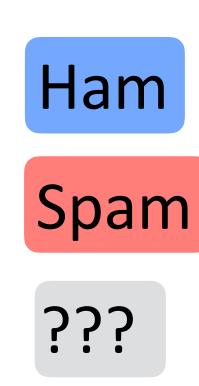


$$\operatorname{argmax}_{y} \log P(y|x) = \operatorname{argmax}_{y} \left[\log P(y) + \sum_{i=1}^{n} \log P(x_{i}|y) \right]$$

Note that this is not P(y|x) — not the probability of ham given the word

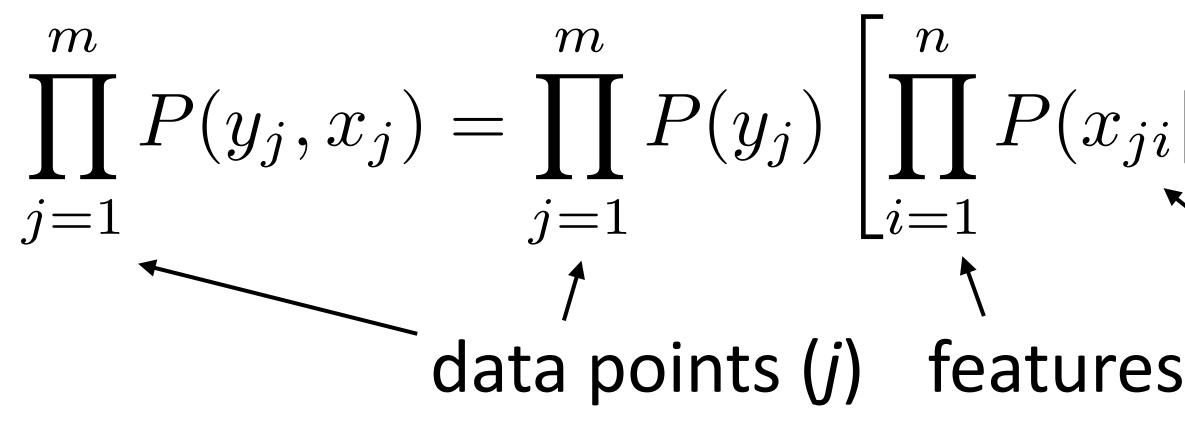
Text Classification: Ham or Spam

hi i have very valuable business proposition for you. you make lots of \$\$\$ I just need you to send a small amount of funds



 $P(x_{\text{funds}} = 0|\text{spam}) = 0.9$ $P(x_{\text{funds}} = 1|\text{spam}) = 0.1$ \checkmark spam gets more points $P(x_{\text{funds}} = 0 | \text{ham}) = 0.99$ $P(x_{\text{funds}} = 1 | \text{ham}) = 0.01$ in the final posterior

- > Data points (x_j, y_j) provided (*j* indexes over examples)
- Find values of P(y), $P(x_i|y)$ that maximize data likelihood (generative):



Equivalent to maximizing logarithm of data likelihood:

$$\sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \left[\log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji} | y_j) \right]$$

Maximum Likelihood Estimation

$$P(x_{ji}|y_j)$$

data points (*j*) features (*i*) *i*th feature of *j*th example

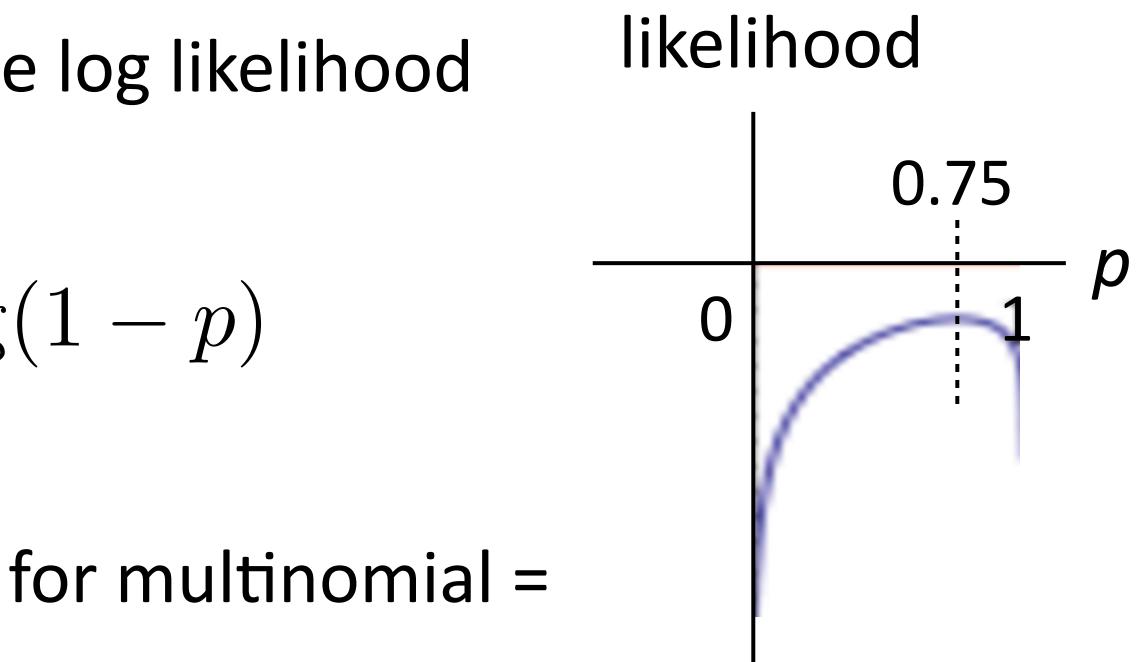
Imagine a coin flip which is heads with probability p

Observe (H, H, H, T) and maximize log likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3\log p + \log p$$

Maximum likelihood parameters for multinomial = read counts off of the data

Maximum Likelihood Estimation



Maximum Likelihood for Naive Bayes

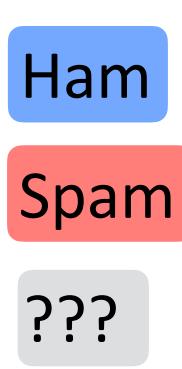
Hi, I just wanted to send over the latest results from training the LSTM model. In the attachment. What do you think of the **performance**?

$$P(y = \text{ham}) = 0.5$$
$$P(x_{\text{funds}} = 1 | \text{spam}) = 1$$

Smoothing: add very small counts for each entry to avoid zeroes (bias-variance tradeoff)

 $P(x_{\rm funds} = 1 | {\rm spam}) = 0.99$

hi i have very valuable business proposition for you. you make lots of \$\$\$ I just need you to send a small amount of funds



$P(x_{\text{funds}} = 0 | \text{spam}) = 0$

$$P(x_{\rm funds} = 0 | \text{spam}) = 0.01$$

Naive Bayes: Summary

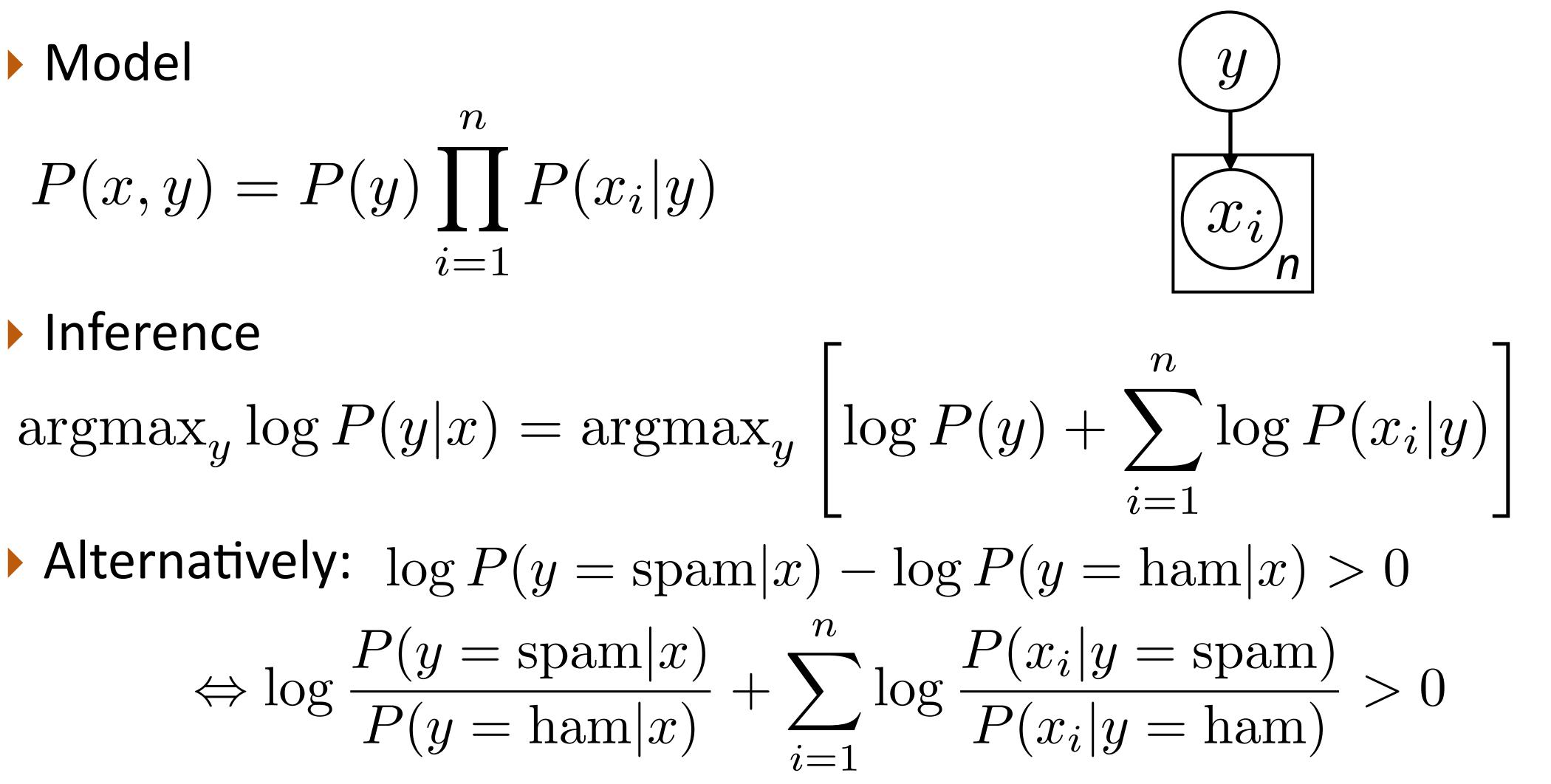
Model

$$P(x, y) = P(y) \prod_{i=1}^{n} P(x_i | y)$$

Inference

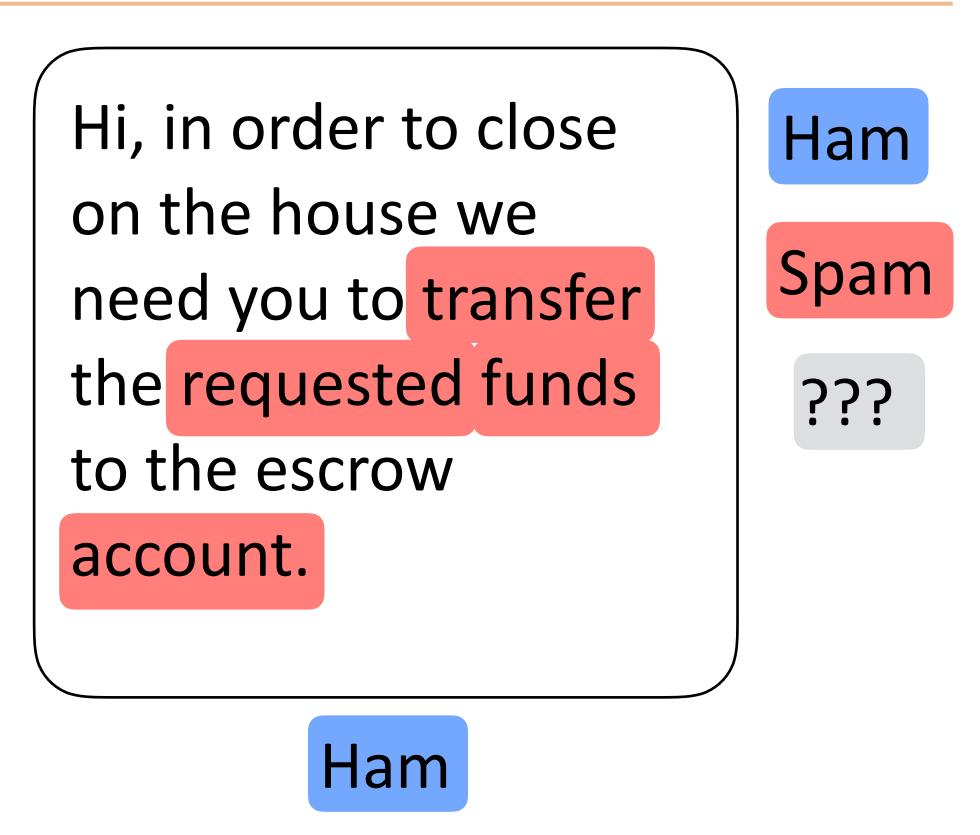
Alternatively: $\log P(y = \operatorname{spam}|x) - \log P(y = \operatorname{ham}|x) > 0$

• Learning: maximize P(x, y) by reading counts off the data



- Features are correlated $P(x_{\rm funds} = 1 | {\rm spam}) = 0.1$
 - $P(x_{\rm funds} = 1 | \text{ham}) = 0.01$
 - $P(x_{\text{transfer}} = 1 | \text{spam}) = 0.1$
 - $P(x_{\text{transfer}} = 1 | \text{ham}) = 0.01$
- This one sentence will make the probability of spam very high!
- than maximizing data likelihood

Problems with Naive Bayes



Bad independence assumption in NB: these words are not independent!

Solution: better model, algorithms that explicitly minimize loss rather

- Generative models: P(x, y)
 - Bayes nets / graphical models
 - prediction uses Bayes rule post-hoc
 - Can sample new instances (x, y)
- **Discriminative models:** P(y|x)
 - SVMs, logistic regression, CRFs, most neural networks
 - Model is trained to be good at prediction, but doesn't model x
- We'll come back to this distinction throughout this class Break!

Generative vs. Discriminative Models

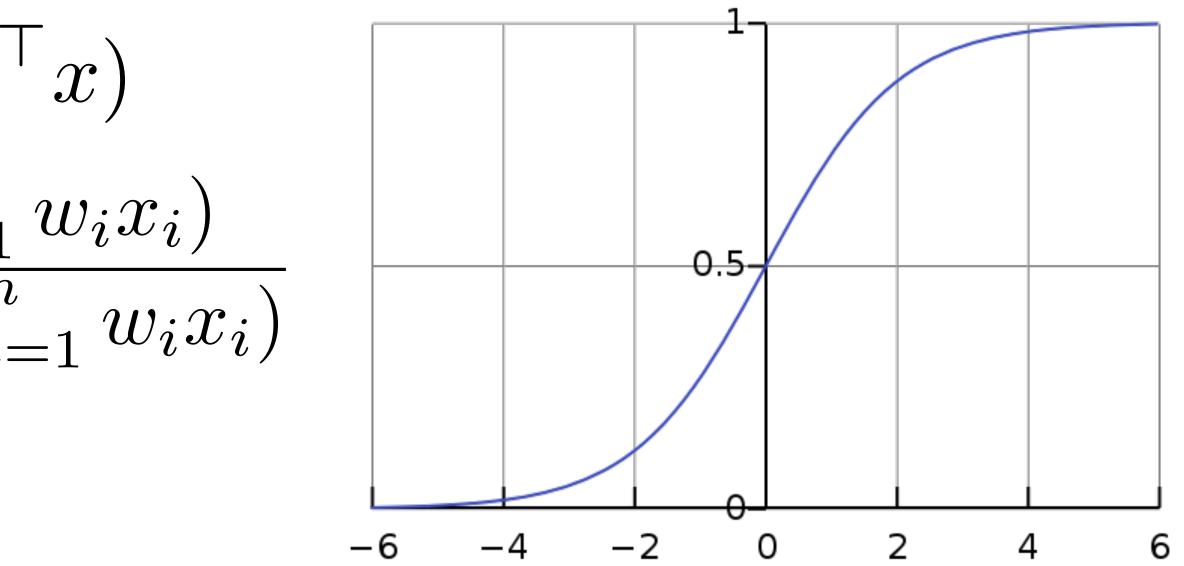
Some of the model capacity goes to explaining the distribution of x;

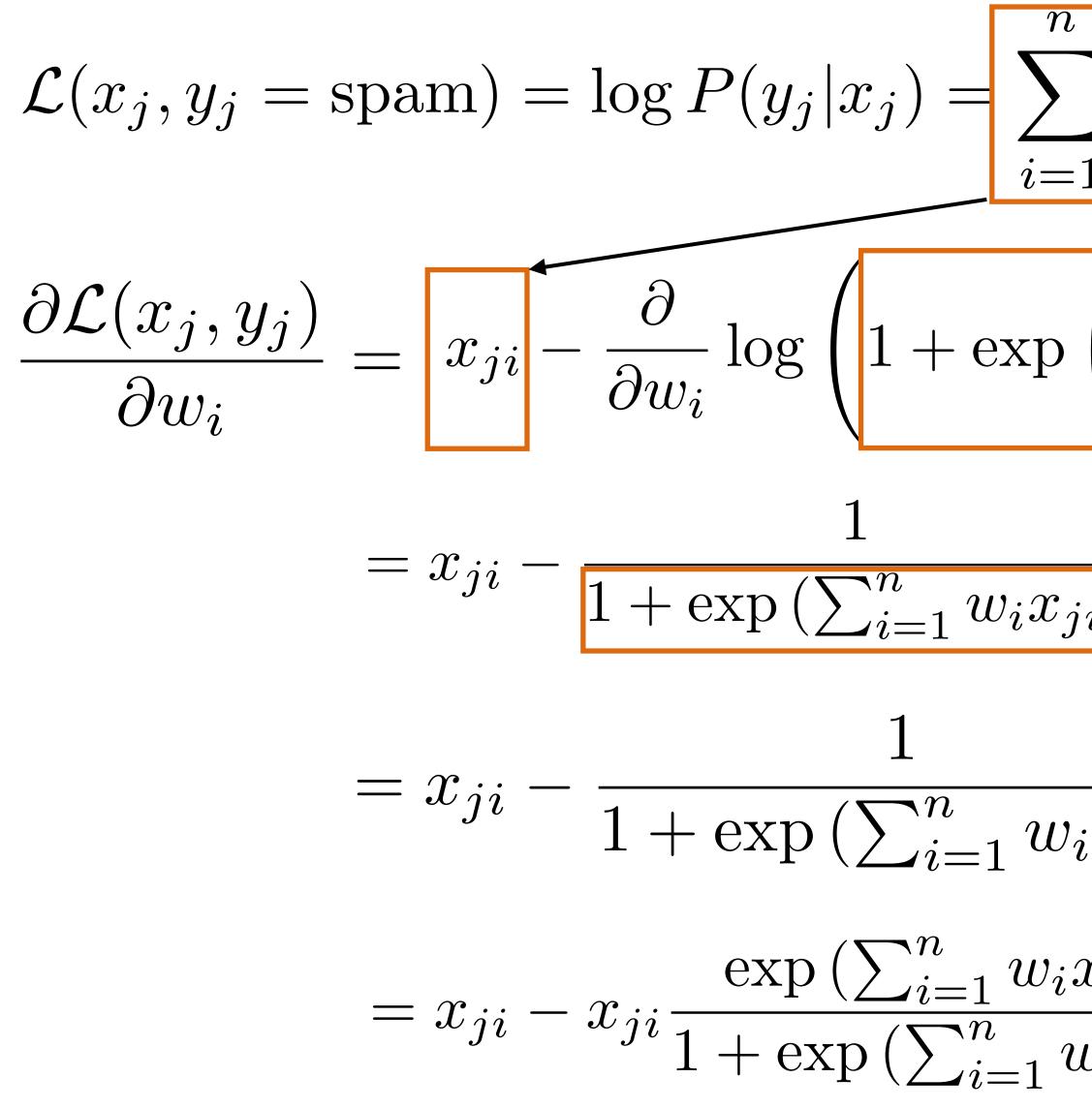
$$P(y = \text{spam}|x) = \text{logistic}(w)$$
$$P(y = \text{spam}|x) = \frac{\exp\left(\sum_{i=1}^{n} \frac{1}{1 + \exp\left(\sum_{i=1}^{n} \frac{1}{$$

- How to set the weights w?
- (Stochastic) gradient ascent to maximize log likelihood

$$\mathcal{L}(x_j, y_j = \text{spam}) = \log P(y_j = \text{spam}|x_j)$$
$$= \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$

Regression





Logistic Regression

$$\frac{\partial u_{i}}{\partial u_{i}} = \log \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right)$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{\partial u_{i}}{\partial w_{i}} \left(1 + \exp \left(\sum_{i=1}^{n} w_{i} x_{ji} \right) \right) \qquad \text{deriv}$$

$$\frac{w_{ji}}{w_{i}x_{ji}} = x_{ji}(1 - P(y_{j} = \text{spam}|x_{j}))$$

- Gradient of w_i on positive example
 - If P(spam) is close to 1, make very little update
- Gradient of wi on negative example
 - If P(spam) is close to 0, make very little update
- Final gradient: $x_j(y_j P(y_j = 1|x_j))$

Logistic Regression

$$\mathbf{e} = x_{ji}(1 - P(y_j = \operatorname{spam}|x_j))$$

Otherwise make w_i look more like x_{ii} , which will increase P(spam)

$$\mathsf{ble} = x_{ji}(-P(y_j = \mathrm{spam}|x_j))$$

Otherwise make w_i look less like x_{ii} , which will decrease P(spam)

Can end up making extreme updates to fit the training data

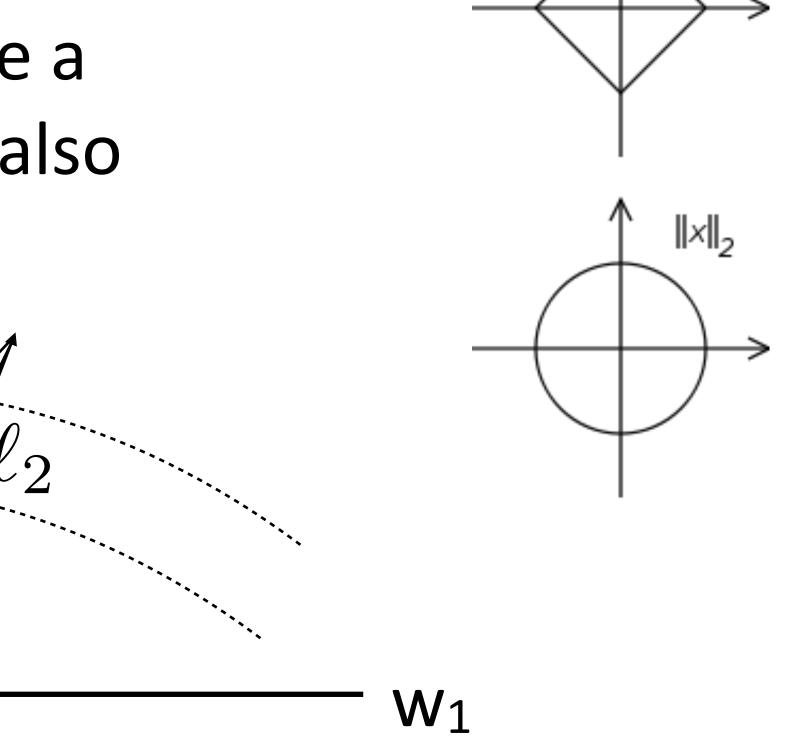
- $W_{funds} = +1000$
- $W_{transfer} = -900$
- $W_{send} = +742$
- $W_{the} = +203$
- All examples have P(correct) > 0.999, but classifier does crazy things on new examples

Regularization

- Can end up making extreme updates to fit the training data
- Rather than optimizing likelihood alone, impose a penalty on the norm of the weight vector (can also view as a Gaussian prior)
- Maximize

$$\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda \|w\|_2^2$$

W₂



∥×∥,

Logistic Regression: Summary

Model

$$P(y = \operatorname{spam}|x) = \frac{\exp\left(\sum_{i=1}^{n} \frac{$$

Inference

 $P(y = 1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$

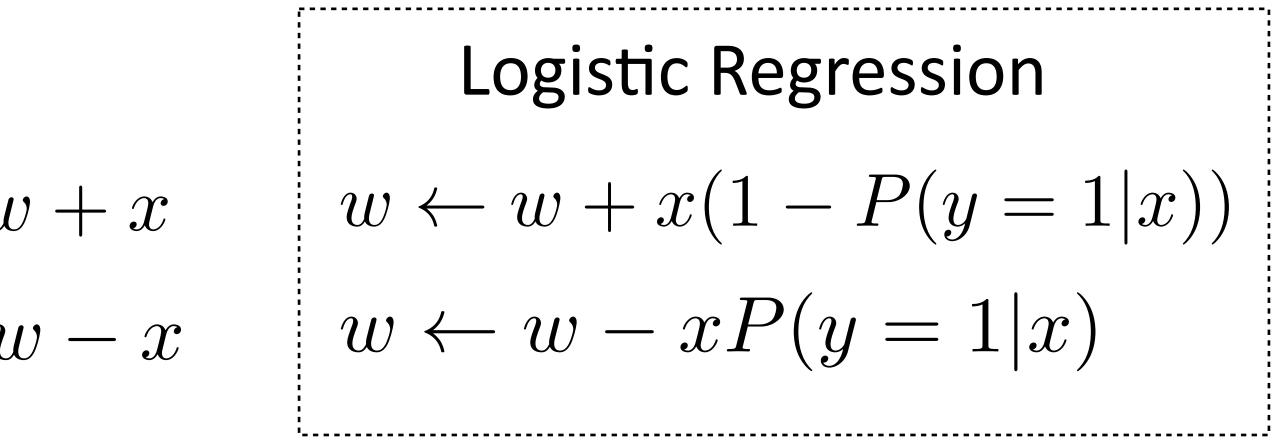
Learning: gradient ascent on the (regularized) discriminative loglikelihood

 $\frac{\sum_{i=1}^{n} w_i x_i}{\left(\sum_{i=1}^{n} w_i x_i\right)}$

$\operatorname{argmax}_{y} P(y|x)$ similar to Naive Bayes, but different model/learning

- Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^{+}f(x) > 0$
 - If incorrect: if positive, $w \leftarrow w + x$ if negative, $w \leftarrow w - x$
- but does it learn a good boundary?

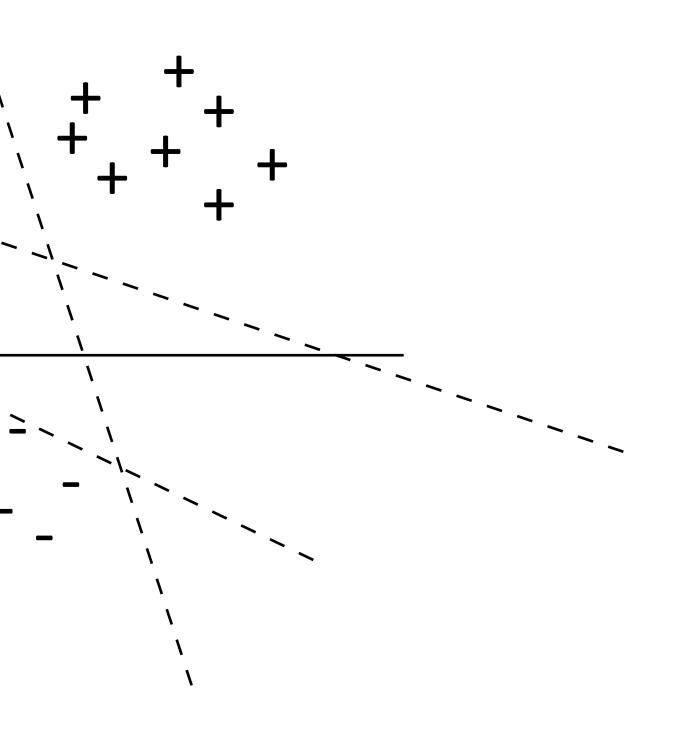
Perceptron



• Guaranteed to eventually separate the data if the data are separable,

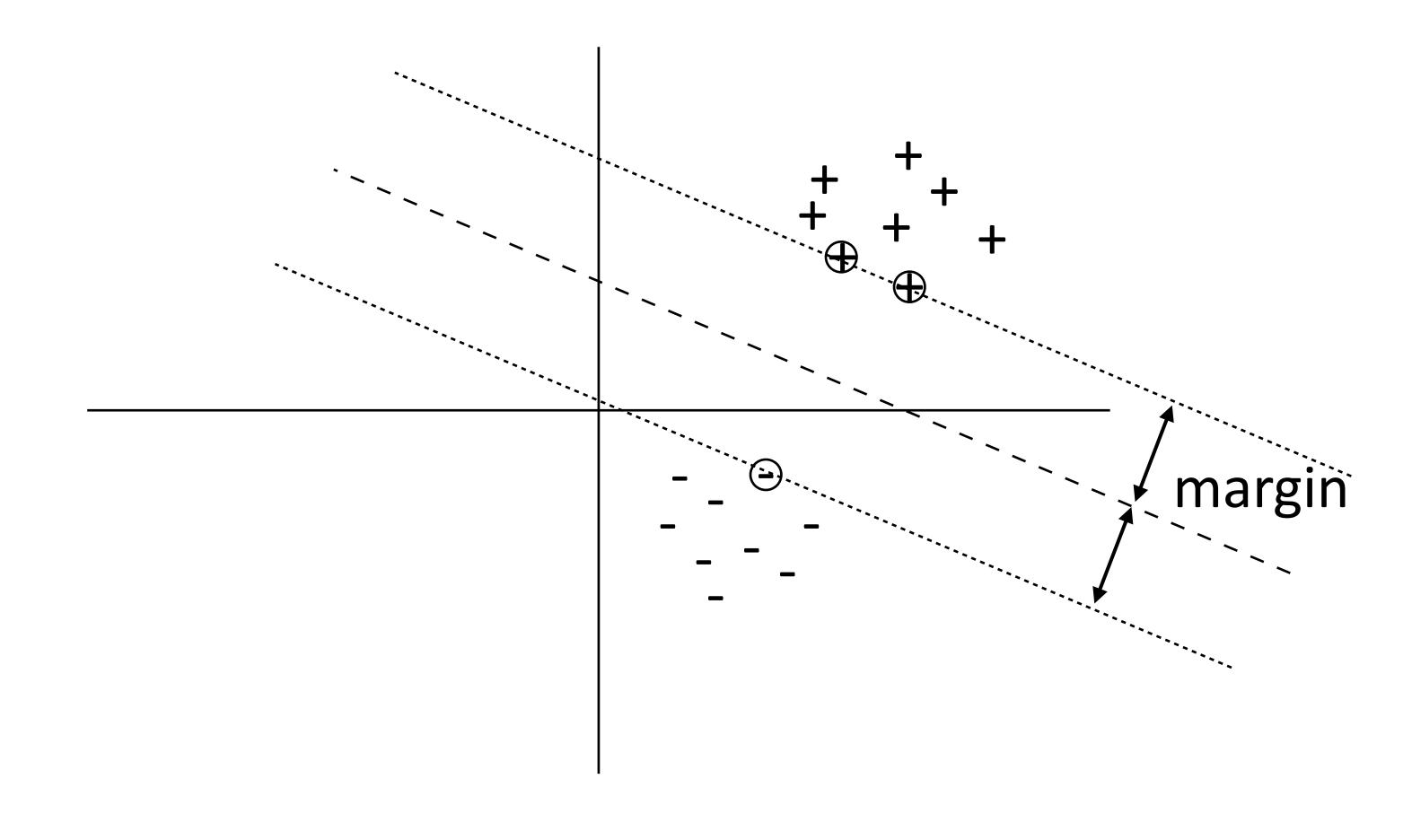
Support Vector Machines

Many separating hyperplanes — is there a best one?



Support Vector Machines

Many separating hyperplanes — is there a best one?



Constraint formulation: find w via following quadratic program:

Minimize $ w _2^2$								
s.t.	$\forall j$	$w^{\top} x_j \ge 1$ if $y_j = 1$						
		$w^{\top} x_j \leq -1$ if $y_j =$						

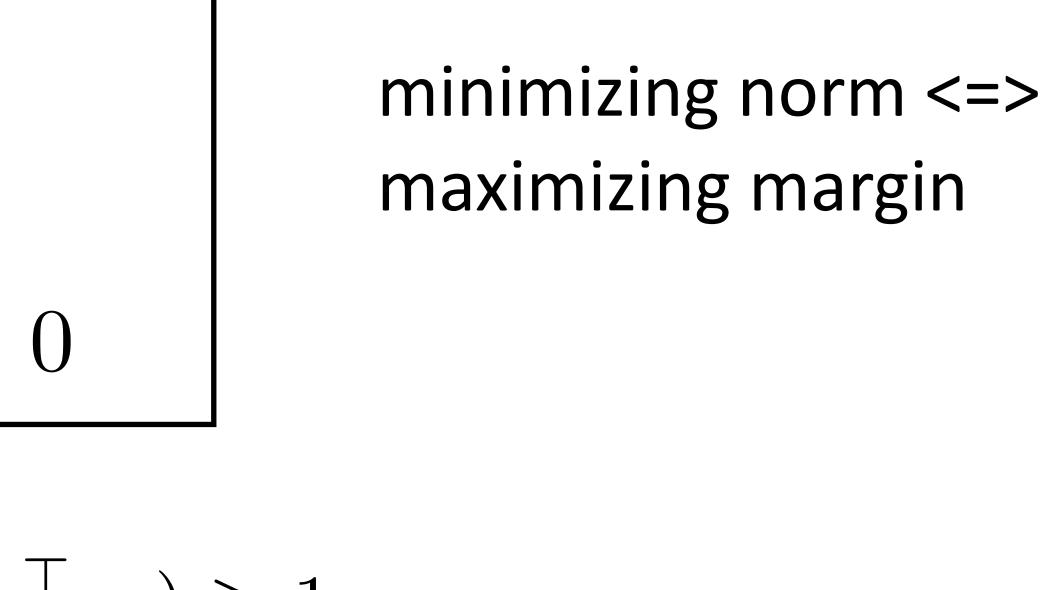
As a single constraint:

 $\forall j \ y_j(w^{\top}x_j) + (1 - y_j)(-w^{\top}x_j) \ge 1$

$$\forall j \ (2y_j - 1)(w^\top x_j) \ge 1$$

What's wrong with this quadratic program for real data? Data is generally non-separable — need slack!

Support Vector Machines



N-Slack SVMs

Minimize
$$\lambda \|w\|_2^2 + \sum_{j=1}^m \xi_j$$

s.t. $\forall j \ (2y_j - 1)(w^\top x_j) \ge 1 - \xi_j \qquad \forall j \ \xi_j \ge 0$

The ξ_j are a "fudge factor" to make all constraints satisfied

(Sub-)gradient descent: focus on second part of objective $\frac{\check{\partial} w_i}{\partial w_i} \xi_j = 0 \text{ if } \xi_j = 0$ ∂

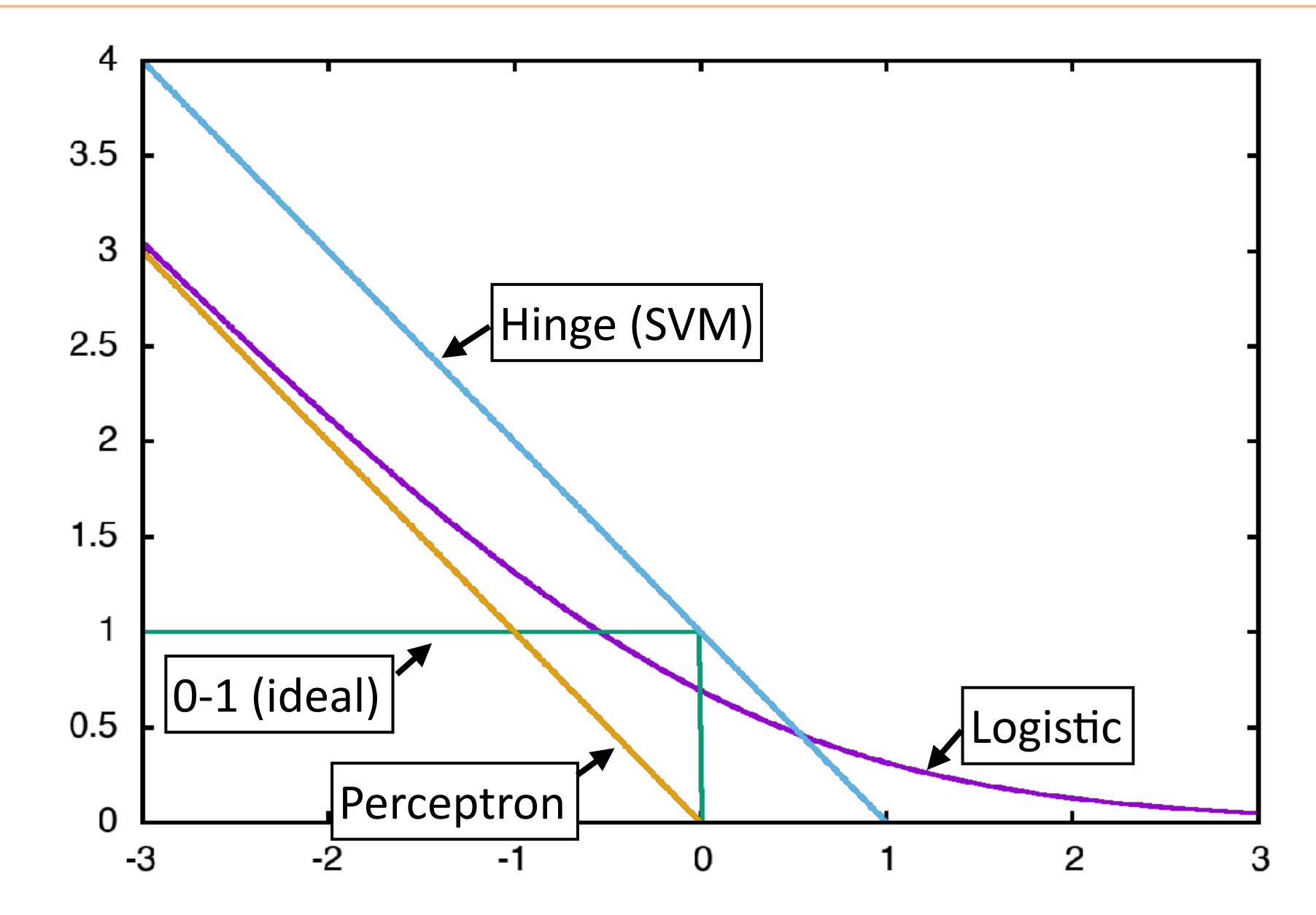
Looks like the perceptron! But updates more frequently

$$\xi_j = (2y_j - 1)x_{ji}$$
 if $\xi_j > 0$

$$= x_{ji}$$
 if $y_j = 1, -x_{ji}$ if $y_j =$

 $\mathbf{\cap}$

Loss Functions



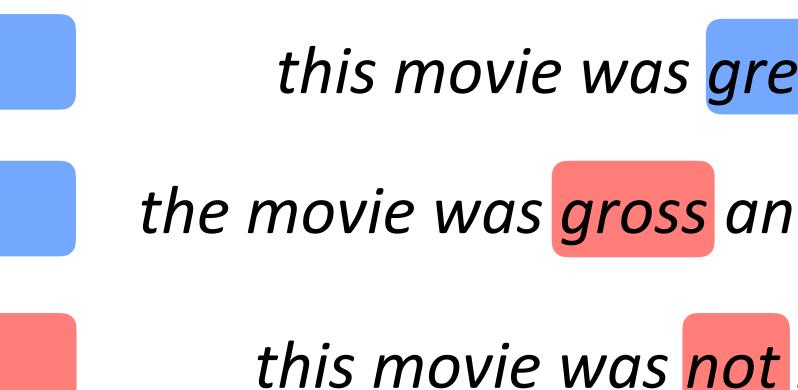
Optimization — next time...

Haven't talked about optimization at all

to more complex methods (can work better)

Range of techniques from simple gradient descent (works pretty well)

Classify sentence as positive or negative sentiment



- Bag-of-words doesn't seem sufficient (discourse structure, negation)
- There are some ways around this: extract bigram feature for "not X" for all X following the *not*

Sentiment Analysis

- this movie was great! would watch again
- the movie was gross and overwrought, but I liked it

- Positive
- Negative

this movie was not really very enjoyable

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Method	RT-s	MPQA	CR	Subj.
MNB-uni	77.9	85.3	79.8	92.6
MNB-bi	79.0	86.3	80.0	<u>93.6</u>
SVM-uni	76.2	86.1	79.0	90.8
SVM-bi	77.7	<u>86.7</u>	80.8	91.7
NBSVM-uni	78. 1	85.3	80.5	92.4
NBSVM-bi	<u>79.4</u>	86.3	<u>81.8</u>	93.2
RAE	76.8	85.7	_	_
RAE-pretrain	77.7	86.4	_	_
Voting-w/Rev.	63.1	81.7	74.2	_
Rule	62.9	81.8	74.3	
BoF-noDic.	75.7	81.8	79.3	_
BoF-w/Rev.	76.4	84.1	81.4	_
Tree-CRF	77.3	86.1	81.4	_
BoWSVM	—	—	_	90.0
	81.5	89.5	◀	

Subj. Wang and Manning (2012) 92.6 <u>93.6</u> Naive Bayes is doing well! 90.8 91.7 92.4 Ng and Jordan (2002) — NB 93.2 can be better for small data

> Before neural nets had taken off results weren't that great

Two years later Kim (2014) with neural networks

Decision rule: $P(y = 1|x) \ge 0.5 \Leftrightarrow w^{\top} x \ge 0$ Gradient (unregularized): x(y - P(y = 1|x))**SVM:** Decision rule: $w^{\top}x > 0$

Recap

• Logistic regression: $P(y = 1|x) = \frac{\exp\left(\sum_{i=1}^{n} w_i x_i\right)}{(1 + \exp\left(\sum_{i=1}^{n} w_i x_i\right))}$

(Sub)gradient (unregularized): 0 if correct with margin of 1, else x(2y-1)

Logistic regression, SVM, and perceptron are closely related

SVM and perceptron inference require taking maxes, logistic regression has a similar update but is "softer" due to its probabilistic nature

All gradient updates: "make it look more like the right thing and less like the wrong thing"