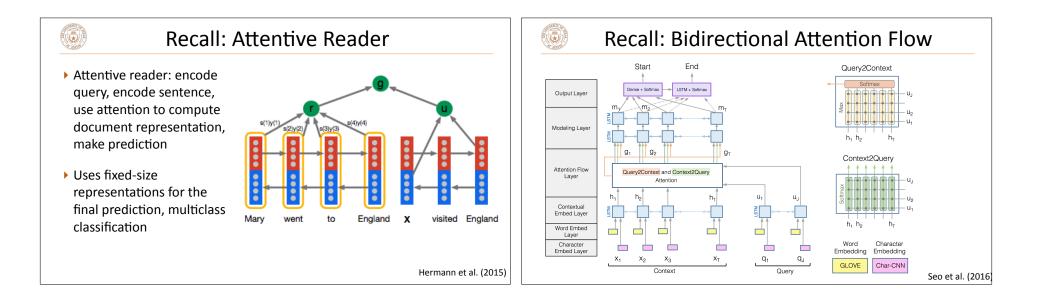
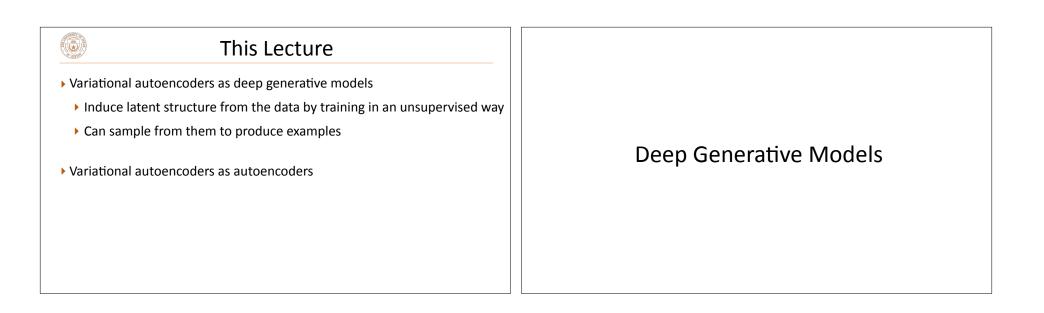
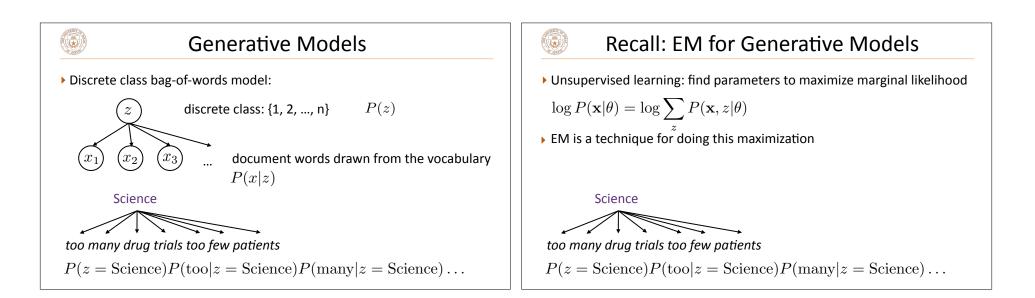


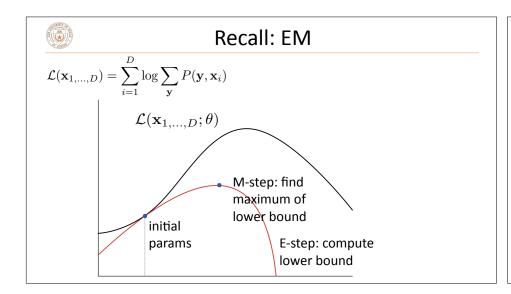
Project 3	Results	٢	Recall: Me	mory Netwo	rks
Aditya Gupta: 81.80	fix vectors and learn LSTM	Memorize	$ \begin{array}{c} $	ectors: a key and a v	alue
BiLSTM with hidden state dim = 32	e, batch = 16, epochs = 10		$ k_3$ v_3	q	Sukhbaatar et al. (202







Recall: EM	Recall: EM
$\log \sum_{z} P(\mathbf{x}, z \theta)$	$\log \sum P(\mathbf{x}, z \theta) \ge \mathbb{E}_{q(z)} \log P(\mathbf{x}, z \theta) + \operatorname{Entropy}[q(z)]$
$= \log \sum_{z} q(z) rac{P(\mathbf{x}, z \theta)}{q(z)} \rightarrow Variational approximation q$, If $q(z) = P(z \mathbf{x}, \theta)$, equality is achieved
$\geq \sum_{z} q(z) \log \frac{P(\mathbf{x}, z \theta)}{q(z)} \text{$$ Jensen's inequality (uses concavity of log) $$}$	\blacktriangleright Expectation-maximization: alternating maximization of the lower bound over q and θ
$= \mathbb{E}_{q(z)} \log P(\mathbf{x}, z \theta) + \text{Entropy}[q(z)]$	• Current timestep = t , have parameters θ^{t-1}
 Can optimize this lower-bound on log likelihood instead of log-likelihood Adapted from Leon Gu 	• E-step: maximize w.r.t. q ; that is, $q^t = P(z \mathbf{x}, \theta^{t-1})$ • M-step: maximize w.r.t. θ ; that is, $\theta^t = \operatorname{argmax}_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, z \theta)$



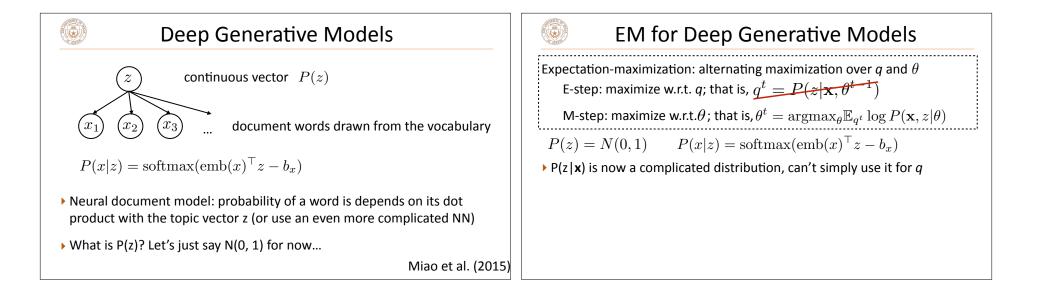
EM for Generative Models

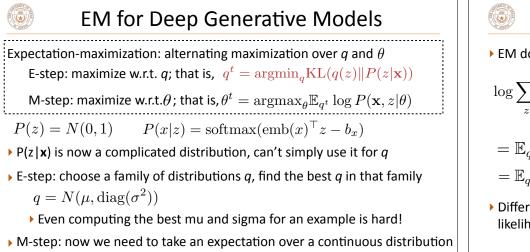
> What form does q take? q is a multinomial, so just a bunch of numbers

$$q(z) = P(z|\mathbf{x}, \theta) \propto P(z) \prod_{i} P(x_i|z)$$

- Easy to compute, easy to represent
- M-step: supervised learning problem with fractional annotation; possible because we can take the expectation: $\theta^t = \operatorname{argmax}_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, z | \theta)$

too many drug trials too few patients



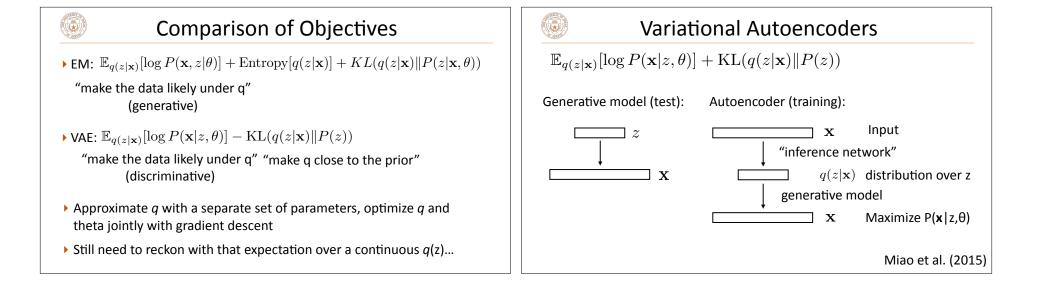


Deep Generative Models

• EM doesn't seem to be helping...let's start over with the objective

$$\begin{split} \log \sum_{z} P(\mathbf{x}, z | \theta) &= \log \sum_{z} q(z) \frac{P(\mathbf{x}, z | \theta)}{q(z)} \geq \sum_{z} q(z) \log \frac{P(\mathbf{x}, z | \theta)}{q(z)} \\ & \text{Jensen} \end{split}$$
$$= \mathbb{E}_{q(z|\mathbf{x})} [-\log q(z|\mathbf{x}) + \log P(\mathbf{x}, z | \theta)] \\ &= \mathbb{E}_{q(z|\mathbf{x})} [\log P(\mathbf{x}|z, \theta)] - \mathrm{KL}(q(z|\mathbf{x}) \| P(z)) \end{split}$$

 Different arrangement of terms: KL between q and prior + conditional likelihood term



Training VAEs

 $\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] + \mathrm{KL}(q(z|\mathbf{x})||P(z))$

Choose q to be Gaussian with parameters that are computed from x

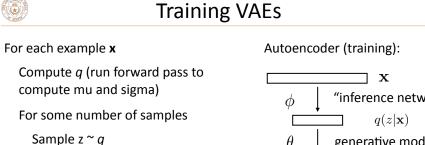
$$q = N(\mu(\mathbf{x}), \operatorname{diag}(\sigma^2(\mathbf{x})))$$

• mu and sigma are computed from onelayer feedforward networks over x, call their parameters ϕ

Autoencoder (training): $\neg \mathbf{X}$ ϕ "inference network" $q(z|\mathbf{x})$ θ generative model \mathbf{X}

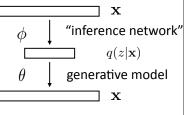
How to handle the expectation? Just sample!

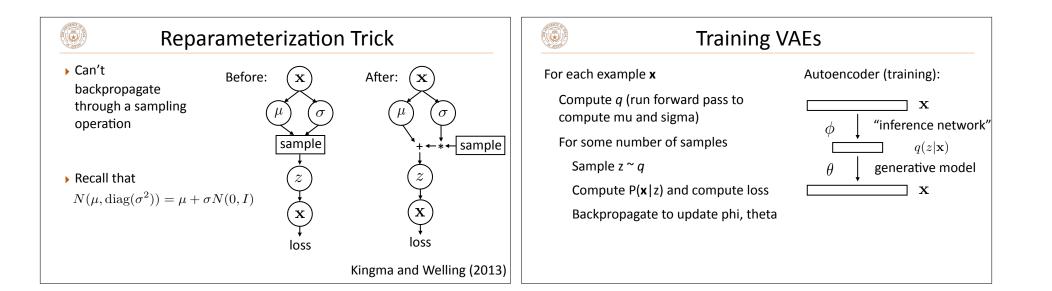
Miao et al. (2015)

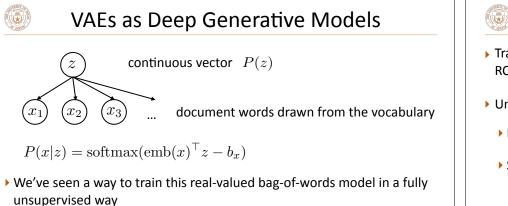


Compute $P(\mathbf{x}|z)$ and compute loss

Backpropagate to update phi, theta







 "Encoder network" looks like the E-step of EM (but has distinct parameters), backpropagate end-to-end through encoder and decoder

Neural Variational Document Model

- Train this generative model on 20NewsGroups (online newsgroups) and RCV1 (newswire)
- Unsupervised learning: how to evaluate?
 - Data likelihood (perplexity)
 - See if interesting latent structure comes out

Miao et al. (2015)

Neural Variational Document Model

Model	Dim	20News	RCV1
LDA	50	1091	1437
LDA	200	1058	1142
RSM	50	953	988
docNADE	50	896	742
SBN	50	909	784
fDARN	50	917	724
fDARN	200		598
NVDM	50	836	563
NVDM	200	852	550

 Randomly sample a dimension of z, see what words score highest along that axis, manually label that dimension

Space	Religion	Encryption	Sport	Policy
orbit	muslims	rsa	goals	bush
lunar	worship	cryptography	pts	resources
solar	belief	crypto	teams	charles
shuttle	genocide	keys	league	austin
moon	jews	pgp	team	bill
launch	islam	license	players	resolution
fuel	christianity	secure	nhl	mr
nasa	atheists	key	stats	misc
satellite	muslim	escrow	min	piece
japanese	religious	trust	buf	marc

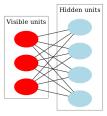
Miao et al. (2015)

History: Restricted Boltzmann Machines

 Neural generative model with hidden (boolean) variables z and observed variables x

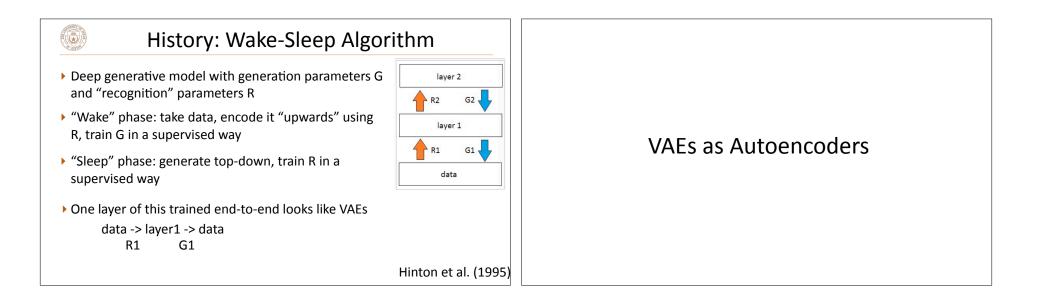
$$P(x,z) = \frac{1}{z} \exp(x^{\top} W z)$$

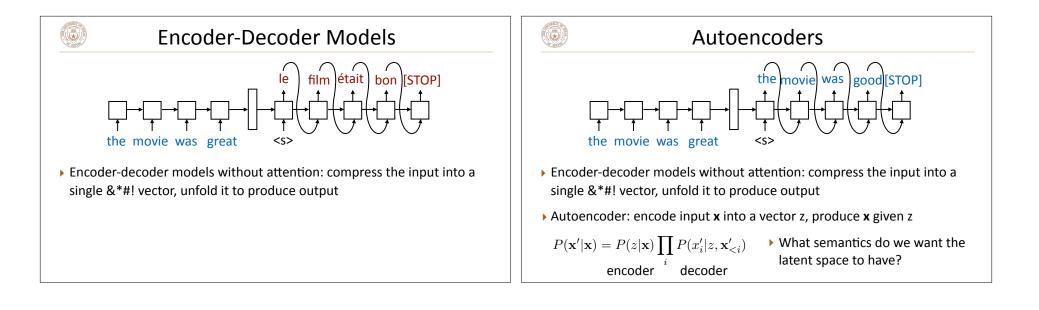
 Contrastive divergence: given x, compute P(z|x), sample z sample x' ~ P(x|z), sample z' ~ P(z'|x) update towards (z, x) away from (z', x')

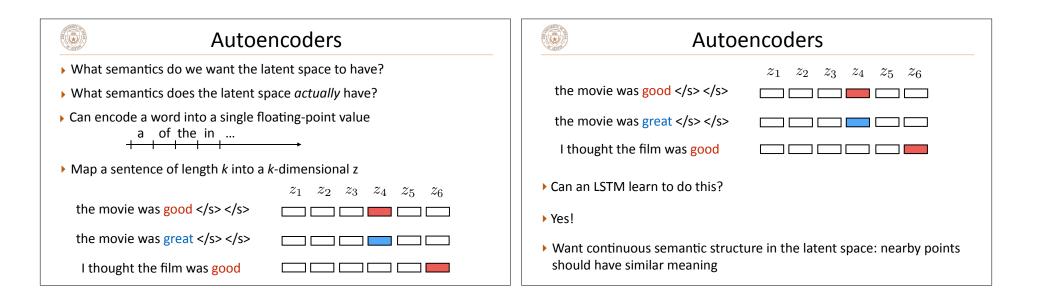


"inference network" "generative network"

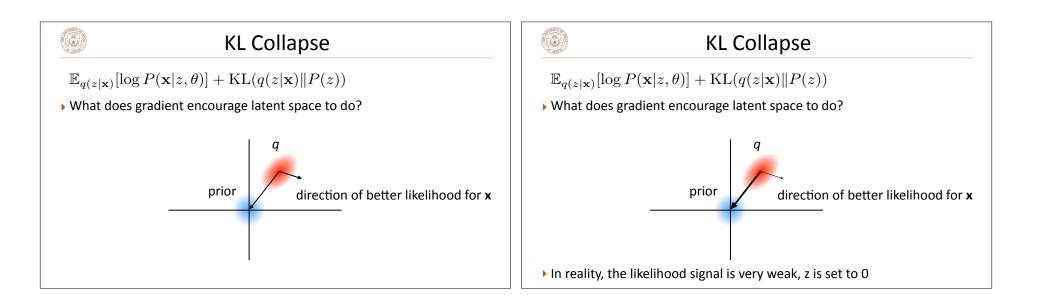
Smolensky (1986), Carreira-Perpiñán and Hinton (2005)

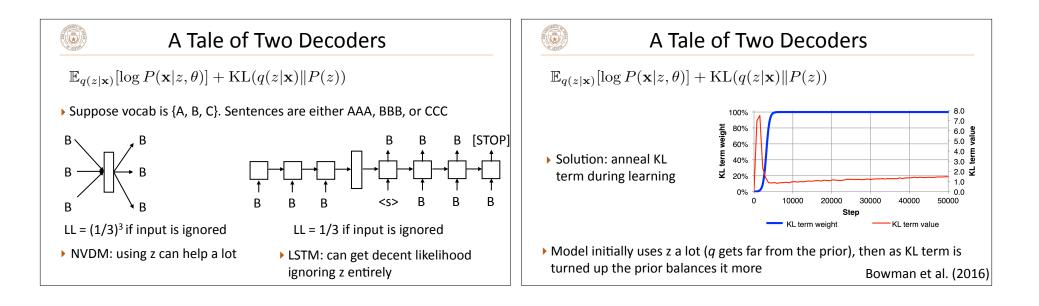












Results				Re	sults	
 Train autoencoder on the Penn Treebank (pretty language modeling purposes) 	small corpus for	MEAN SAMP. 1 SAMP. 2	we looked out at the set they were laughing at the ill see you in the early mo i looked up at the blue sky it was down on the dance	same time . prning . 1 .	i went to the kitchen . i went to the kitchen . i went to my apartment . i looked around the room . i turned back to the table .	how are you doing? what are you doing? " are you sure? what are you doing? what are you doing?
	t NLL Test PPL			•	enerate from those s	0 0
$\begin{tabular}{cccc} \mathbf{RNNLM} & 100 & - & 95 & 100 \\ \mathbf{VAE} & 98 (2)$ & 100 & 101$ \\ \hline \end{tabular}$ Doesn't really improve perplexities over RNNLM	(2) 119	"i want to "i do n't u i do n't wa	to talk to you . " be with you . " ant to be with you . " int to be with you . ' t want to be with him .	▶ Encode	e two samples, gener	rate from points
pretty good at modeling the space		he was sile	a pause .		lated between the t	•
	Bowman et al. (2016)				I	Bowman et al. (201

	Takeaways
VAE is a frameworl	or training deep generative models
	s either a principled variational method motivated by a nply an ad-hoc trick to make latent spaces more
Some tricks to get	these models to train well
•	ve ensures that the latent space z has interesting and s; lets us sample from z and generate instances from