
CS395T:	Structured	Models	for	NLP	
Lecture	4:	Sequence	Models	I

Greg	Durrett
Parts	of	this	lecture	adapted	from	Dan	Klein,	UC	Berkeley	

and	Vivek	Srikumar,	University	of	Utah

Administrivia

‣ Project	1	out	today!

‣ This	class	will	cover	what	you	need	to	get	started	on	it,	the	next	1-2	
classes	will	cover	everything	you	need	to	complete	it

‣ Greg’s	Office	Hours	tomorrow:	9am	—	11am	(one-Yme	change)

‣ Viterbi	algorithm,	CRF	NER	system,	extension

‣ Extension	should	be	substanYal:	don’t	just	try	one	addiYonal	feature	
(try	several	features,	do	some	error	analysis,	write	some	moYvaYon)

Recall:	MulYclass	ClassificaYon
‣ LogisYc	regression:

Gradient	(unregularized):

‣ SVM:	defined	by	quadraYc	program	(minimizaYon,	so	gradients	are	flipped)
Loss-augmented	decode	

P (y|x) =
exp

�
w

>
f(x, y)

�
P

y02Y exp (w

>
f(x, y

0
))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

⇠j = max

y2Y
w

>
f(xj , y) + `(y, y

⇤
j)� w

>
f(xj , y

⇤
j)

Subgradient	(unregularized)	on	jth	example = fi(xj , ymax

)� fi(xj , y
⇤
j)

Structured	PredicYon
‣ Four	elements	of	a	structured	machine	learning	method:

‣Model:	probabilisYc,	max-margin,	deep	neural	network

‣ ObjecYve

‣ Inference:	just	maxes	and	simple	expectaYons	so	far,	but	will	get	harder

‣ Training:	gradient	descent

OpYmizaYon

‣ StochasYc	gradient	*ascent*
‣ Very	simple	to	code	up
‣ “First-order”	technique:	only	relies	on	having	gradient

‣ Newton’s	method
‣ Second-order	technique

Inverse	Hessian:	n	x	n	mat,	expensive!
‣ OpYmizes	quadraYc	instantly

‣ Quasi-Newton	methods:	L-BFGS,	etc.

‣ Approximate	inverse	Hessian	with	gradients	over	Yme

‣ Difficult	to	tune	step	size

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

AdaGrad

Duchi	et	al.	(2011)

‣OpYmized	for	problems	with	sparse	features

‣ Sparse	features	are	ohen	heterogeneous:	some	fire	on	every	example,	
some	fire	on	one	example	in	the	corpus	(but	are	sYll	valuable!)

per-parameter	learning	rate	based	
on	sum	of	previous	gradients

‣ Avoids	common	features	geing	large	values	compared	to	rare	features

‣ Other	techniques	for	opYmizing	deep	models	—	more	later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gt,i

‣Usually	works	out-of-the-box	with	lijle	tuning

ImplementaYon	Details
‣ SGD/AdaGrad	have	a	batch	size	parameter

‣ Shuffling:	online	methods	are	sensiYve	to	dataset	order

‣ Large	batches	(>50	examples):	can	parallelize	within	batch

‣…but	bigger	batches	ohen	means	more	epochs	required	because	
you	make	fewer	parameter	updates

‣ Fixed	shuffle:	breaks	correlaYons	between	neighboring	sentences

‣ Per-epoch	shuffle:	lower	final	model	variance

‣ RegularizaYon:	makes	SGD	slower	to	implement	with	sparse	features

‣ Either	don’t	regularize	(might	work	bejer	than	you	think!),	or	do	it	lazily	
(see	adagrad_trainer.py	in	Project	1)

This	Lecture

‣ Sequence	modeling

‣ HMMs	for	POS	tagging

‣ Viterbi	algorithm

‣ HMM	parameter	esYmaYon

LinguisYc	Structures

‣ Language	is	tree-structured

I	ate	the	spaghei	with	chopsYcks I	ate	the	spaghei	with	meatballs

‣ Understanding	syntax	fundamentally	requires	trees	—	the	sentences	
have	the	same	shallow	analysis

I				ate		the	spaghei	with	chopsYcks I					ate		the	spaghei	with	meatballs
PRP	VBZ		DT							NN								IN								NNS		 PRP	VBZ		DT							NN								IN								NNS		

LinguisYc	Structures
‣ Language	is	sequenYally	structured:	interpreted	in	an	online	way

Tanenhaus	et	al.	(1995)

POS	Tagging

Slide	credit:	Dan	Klein

POS	Tagging

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

I’m	0.5%	interested	
in	the	Fed’s	raises!

I	hereby	
increase	interest	
rates	0.5%

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣Other	paths	are	also	plausible	but	even	more	semanYcally	weird…
‣What	governs	the	correct	choice?	Word	+	context
‣ Word	idenYty:	most	words	have	<=2	tags,	many	have	one	(percent,	the)	
‣ Context:	nouns	start	sentences,	nouns	follow	verbs,	etc.

What	is	this	good	for?

‣ Text-to-speech:	record,	lead

‣ Preprocessing	step	for	syntacYc	parsers

‣ Domain-independent	disambiguaYon	for	other	tasks

‣ (Very)	shallow	informaYon	extracYon

Sequence	Models

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

‣ POS	tagging:	x	is	a	sequence	of	words,	y	is	a	sequence	of	tags	(most	of	
the	Yme…)

‣ Today:	generaYve	models	P(x,	y);	discriminaYve	models	next	Yme

Hidden	Markov	Models
y = (y1, ..., yn)Output	‣ Input	x = (x1, ..., xn)

‣Model	the	sequence	of	y	as	a	Markov	process	(dynamics	model)

y1 y2

‣ Markov	property:	future	is	condiYonally	independent	of	the	past	given	
the	present

‣ If	y	are	tags,	this	roughly	corresponds	to	assuming	that	the	next	tag	
only	depends	on	the	current	tag,	not	anything	before

y3 P (y3|y1, y2) = P (y3|y2)

‣ Lots	of	mathemaYcal	theory	about	how	Markov	chains	behave

Hidden	Markov	Models
‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniYal	
distribuYon

TransiYon	
probabiliYes

Emission	
probabiliYes

} }} ‣ P(x|y)	is	a	distribuYon	over	
all	words	in	the	vocabulary	
—	not	a	distribuYon	over	
features

‣ MulYnomials:	tag	x	tag	
transiYons,	tag	x	word	
emissions

‣ ObservaYon	(x)	depends	
only	on	current	state	(y)

TransiYons	in	POS	Tagging

‣Dynamics	model

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ 																											likely	because	start	of	sentence

‣ 																																																likely	because	verb	ohen	follows	noun
‣ 																																										direct	object	follows	verb,	other	verb	rarely	
follows	past	tense	verb	(main	verbs	can	follow	modals	though!)

P (y1 = NNP)

P (y2 = VBZ|y1 = NNP)

P (y3 = NN|y2 = VBZ)

P (y1)
nY

i=2

P (yi|yi�1)

‣ Should	y	be	a	single	tag?

TransiYons	in	POS	Tagging

‣ Trigram	model:	y1	=	(<S>,	NNP),	y2	=	(NNP,	VBZ),	…

‣ P((VBZ,	NN)	|	(NNP,	VBZ))	—	more	context!	Noun-verb-noun	S-V-O

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

‣ Tradeoff	between	model	capacity	and	data	size

EsYmaYng	TransiYons

‣ Similar	to	Naive	Bayes	esYmaYon:	maximum	likelihood	soluYon	=	
normalized	counts	(with	smoothing)	read	off	supervised	data

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

‣ How	to	smooth?

‣ One	method:	smooth	with	unigram	distribuYon	over	tags

‣ P(tag	|	NN)	=	(0.5	</S>,	0.5	NNS)

P (tag|tag�1) = (1� �)P̂ (tag|tag�1) + �P̂ (tag)

=	empirical	distribuYon	(read	off	from	data)P̂

‣ Emissions	P(x	|	y)	capture	the	distribuYon	of	words	occurring	with	a	
given	tag

Emissions	in	POS	Tagging

‣ P(word	|	NN)	=	(0.05	person,	0.04	official,	0.03	government,	0.03	market	…)

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

‣ When	you	compute	the	posterior	for	a	given	word’s	tags,	the	distribuYon	
favors	tags	that	are	more	likely	to	generate	that	word

EsYmaYng	Emissions

‣ P(word	|	NN)	=	(0.5	interest,	0.5	percent)	—	hard	to	smooth!

‣ Fancy	techniques	from	language	modeling,	e.g.	look	at	type	ferYlity	
—	P(tag|word)	is	flajer	for	some	kinds	of	words	than	for	others)

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

P (word|tag) = P (tag|word)P (word)

P (tag)

‣ AlternaYve:	use	Bayes’	rule

‣ Can	interpolate	with	distribuYon	looking	at	word	shape 
P(word	shape	|	tag)	(e.g.,	P(capitalized	word	of	len	>=	8	|	tag))

‣ P(word|tag)	can	be	a	log-linear	model	—	we’ll	see	this	in	a	few	lectures

Inference	in	HMMs

‣ Inference	problem:

‣ ExponenYally	many	possible	y	here!

‣ SoluYon:	dynamic	programming	(possible	because	of	Markov	structure!)

‣ Many	neural	sequence	models	depend	on	enYre	previous	tag	
sequence,	need	to	use	approximaYons	like	beam	search

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…
P (y,x) = P (y1)

nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Forward-Backward	Algorithm
‣ Compute	marginal	distribuYons

‣ Be	careful	not	to	double-count																	when	combining	these!P (x2|y2)

P (y2 = s|x) / forward2(s)backward2(s) i.e.	normalize	by	P(x)

backwardforward

forward2(s)backward2(s) = P (x, y2 = s)

‣ Replace	max	with	+	everywhere,	also	run	backward	pass
P (yi = s|x)

‣ Store	everything	as	log	probabiliYes	to	avoid	underflow

HMM	POS	Tagging
‣ Most	frequent	tag:	~90%	accuracy

‣ Trigram	HMM:	~95%	accuracy	/	55%	on	unknown	words

‣ TnT	tagger	(tuned)	HMM:	96.2%	accuracy	/	86.0%	on	unknown	words

‣ LogisYc	regression	P(t|w):	93.7%	/	82.6%	(*only*	at	current	word)

Slide	credit:	Dan	Klein

‣ State-of-the-art	(BiLSTM-CRFs):	97.5%	/	89%+

Errors

official	knowledge made			up		the	story recently			sold			shares

JJ/NN							NN VBD		RP/IN	DT		NN RB				VBD/VBN	NNS

Slide	credit:	Dan	Klein	/	Toutanova	+	Manning	(2000)

Remaining	Errors

‣ Underspecified	/	unclear,	gold	standard	inconsistent	/	wrong:	58%

‣ Lexicon	gap	(word	not	seen	with	that	tag	in	training)	4.5%
‣ Unknown	word:	4.5%
‣ Could	get	right:	16%	(many	of	these	involve	parsing!)
‣ Difficult	linguisYcs:	20%

They						set							up	absurd	situa3ons,	detached	from	reality
VBD	/	VBP?	(past	or	present?)

a	$	10	million	fourth-quarter	charge	against	discon3nued	opera3ons
adjecYve	or	verbal	parYciple?	JJ	/	VBN?

Manning	2011	“Part-of-Speech	Tagging	from	97%	to	100%:	Is	It	Time	for	Some	LinguisYcs?”

Other	Languages

‣ Universal	POS	tagset	(~12	tags),	cross-lingual	model	works	as	well	as	
tuned	CRF	using	external	resources

Gillick	et	al.	2016

Next	Time
‣ CRFs:	feature-based	discriminaYve	models

‣ Structured	SVM	for	sequences

‣ NER

