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Administrivia	

Project	1	due	one	week	from	today!	



Recall:	EM	for	HMMs	

log

X

y

P (x,y|✓) � Eq(y) logP (x,y|✓) + Entropy[q(y)]

Maximize	lower	bound	of	log	marginal	likelihood:	

EM:	alternaUng	maximizaUon	

E-step:	maximize	w.r.t.	q	
qt = P (y|x, ✓t�1)

M-step:	maximize	w.r.t.	theta	
✓t = argmax✓Eqt logP (x,y|✓)

Supervised	learning	from	fracUonal	annotaUon	



Road	Map	
§  Done:	Sequences:	generaUve,	discriminaUve,	
supervised,	unsupervised	

§  Now:	trees	(parsing)	–	a	li?le	more	linguisUcs...	

§  This	week:	consUtuency	–	lots	of	generaUve	
models	

§  Next	week:	dependency	(Project	2)	–	more	
discriminaUve	models	



This	Lecture	
§  ConsUtuency	formalism	

§  (ProbabilisUc)	Context-free	Grammars	

§  CKY	

§  Refining	grammars	

§  Next	Ume:	finish	consUtuency	+	wriUng	Ups	



Syntax	



Parse	Trees	

The move followed a round of similar increases by other lenders, 
reflecting a continuing decline in that market 



Phrase	Structure	Parsing	
§  Phrase	structure	parsing	

organizes	syntax	into	
cons%tuents	or	brackets	

§  In	general,	this	involves	
nested	trees	

§  Linguists	can,	and	do,	
argue	about	details	

§  Lots	of	ambiguity	

§  Dependency	(next	week)	
makes	more	sense	for	
some	languages	



ConsUtuency	Tests	

§  How	do	we	know	what	nodes	go	in	the	tree?	

§  Classic	consUtuency	tests:	
§  SubsUtuUon	by	proform 	 		
§  Cleaing	(It	was	with	a	spoon...)	
§  Answer	ellipsis	
(What	did	you	eat?)	

§  CoordinaUon	

§  Cross-linguisUc	arguments,	too	



ConflicUng	Tests	
§  ConsUtuency	isn’t	always	clear	

§  Phonological	reducUon:	
§  I	will	go	→	I’ll	go	
§  I	want	to	go	→	I	wanna	go	
§  a	le	centre	→	au	centre	

§  CoordinaUon	
§  He	went	to	and	came	from	the	store.	

La   vélocité  des ondes sismiques 



Classical	NLP:	Parsing	

§  Write	symbolic	or	logical	rules:	

§  Use	deducUon	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon 

ROOT → S 

S → NP VP 

NP → DT NN 

NP → NN NNS 

NN → interest 

NNS → raises 

VBP → interest 

VBZ → raises 

… 

NP → NP PP 

VP → VBP NP 

VP → VBP NP PP 

PP → IN NP 



AmbiguiUes	



AmbiguiUes:	PP	A?achment	



A?achments	

§  I	cleaned	the	dishes	in	my	pajamas	

§  I	cleaned	the	dishes	in	the	sink	



SyntacUc	AmbiguiUes	I	

§  PreposiUonal	phrases:	
They	cooked	the	beans	in	the	pot	on	the	stove	with	handles.		

§  ParUcle	vs.	preposiUon:	
The	puppy	tore	up	the	staircase.		

§  Complement	structures	
The	tourists	objected	to	the	guide	that	they	couldn’t	hear.	
She	knows	you	like	the	back	of	her	hand.		

§  Gerund	vs.	parUcipial	adjecUve	
Visi%ng	rela%ves	can	be	boring.	
Changing	schedules	frequently	confused	passengers.		



SyntacUc	AmbiguiUes	II	
§  Modifier	scope	within	NPs	

imprac%cal	design	requirements	
plas%c	cup	holder		

	
§  CoordinaUon	scope:	

Small	rats	and	mice	can	squeeze	into	holes	or	cracks	in	the	
wall.		



Dark	AmbiguiUes	

§  Dark	ambigui%es:	most	analyses	are	shockingly	bad	
(meaning,	they	don’t	have	an	interpretaUon	you	can	get	
your	mind	around)	

§  Unknown	words	and	new	usages	
§  SoluUon:	We	need	probabilisUc	techniques	handle	this	
uncertainty	

This	analysis	corresponds	to	
the	correct	parse	of		

“This	will	panic	buyers	!	”	



PCFGs	



ProbabilisUc	Context-Free	Grammars	

§  A	context-free	grammar	is	a	tuple	<N,	T,	S,	R>	
§  N	:	the	set	of	non-terminals	

§  Phrasal	categories:	S,	NP,	VP,	ADJP,	etc.	
§  Parts-of-speech	(pre-terminals):	NN,	JJ,	DT,	VB	

§  T	:	the	set	of	terminals	(the	words)	
§  S	:	the	start	symbol	

§  Oaen	wri?en	as	ROOT	or	TOP	(not	S	–	not	all	“sentences”	are	sentences)	
§  R	:	the	set	of	rules	

§  Of	the	form	X	→	Y1	Y2	…	Yk,	with	X,	Yi	∈	N	
§  Examples:	S	→	NP	VP,			VP	→	VP	CC	VP	
§  Also	called	rewrites	or	producUons	

§  A	PCFG	adds:	
§  A	top-down	producUon	probability	per	rule	P(Y1	Y2	…	Yk	|	X)	



Treebank	Grammars	

§  Need	a	PCFG	for	broad	coverage	parsing.	
§  Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):	

§  Maximum-likelihood	esUmate:	get	P(NP	->	PRP	|	NP)	by	counUng	+	normalizing	
§  Be?er	results	by	enriching	the	grammar	(lexicalizaUon,	other	techniques)	

ROOT → S   1 

S → NP VP .   1 

NP → PRP   1 

VP → VBD ADJP  1 

….. 



Chomsky	Normal	Form	

§  Chomsky	normal	form:	
§  All	rules	of	the	form	X	→	Y	Z	or	X	→	w	
§  In	principle,	this	is	no	limitaUon	on	the	space	of	(P)CFGs	

§  N-ary	rules	introduce	new	non-terminals	

§  Unaries	/	empUes	are	“promoted”	
§  NOT	equivalent	to	this:	

§  In	pracUce:	binarize	the	grammar,	keep	unaries	

VP 

[VP → VBD NP •] 

VBD            NP PP PP 

[VP → VBD NP PP •] 

VBD   NP   PP   PP 

VP 

VP 

VP 

VBD            NP PP PP 

VP 



CKY	Parsing	



A	Recursive	Parser	

§  max	over	k	and	rule	being	applied	
§  Will	this	parser	work?	

    bestScore(X,i,j,s) 
 if (j = i+1) 
     return tagScore(X,s[i]) 
 else 
     return max score(X->YZ) * 

                      bestScore(Y,i,k,s) * 
                      bestScore(Z,k,j,s) 



§  Can	also	organize	things	bo?om-up	
§  Not	every	tag/nonterminal	can	be	built	over	every	span!	

A	Bo?om-Up	Parser	(CKY)	

    bestScore(s) 
 for (i : [0,n-1]) 
   for (X : tags[s[i]]) 
     score[X][i][i+1] =  

              tagScore(X,s[i]) 
 for (diff : [2,n]) 
   for (i : [0,n-diff]) 
     j = i + diff 
     for (X->YZ : rule) 
       for (k : [i+1, j-1]) 
         score[X][i][j] = max score[X][i][j], 

                                    score(X->YZ) * 
                                    score[Y][i][k] * 
                                    score[Z][k][j] 

Y Z 

X 

i                       k                      j 



Unary	Rules	
§  Unary	rules?	

§  Problem:	dynamic	program	is	self-referenUal!	

    bestScore(X,i,j,s) 
 if (j = i+1) 
     return tagScore(X,s[i]) 
 else 
     return max max score(X->YZ) * 

                          bestScore(Y,i,k,s) * 
                          bestScore(Z,k,j,s) 

          max score(X->Y) * 
         bestScore(Y,i,j,s)  



Unary	Closure	

§  We	need	unaries	to	be	non-cyclic	
§  Can	address	by	pre-calculaUng	the	unary	closure	
§  Rather	than	having	zero	or	more	unaries,	always	have	
exactly	one	

§  Alternate	unary	and	binary	layers	
§  Reconstruct	unary	chains	aaerwards	

NP 

DT NN 

VP 

VBD 
NP 

DT NN 

VP 

VBD NP 

VP 

S 

SBAR 

VP 

SBAR 



AlternaUng	Layers	

    bestScoreU(X,i,j,s) 
 if (j = i+1) 
     return tagScore(X,s[i]) 
 else 
     return max max score(X->Y) * 
         bestScoreB(Y,i,j)  

    bestScoreB(X,i,j,s) 
    return max max score(X->YZ) * 

                          bestScoreU(Y,i,k) * 
                          bestScoreU(Z,k,j) 

   



Analysis	



Time:	Theory	
§  How	much	Ume	will	it	take	to	parse?	

§  For	each	diff	(<=	n)	
§  For	each	i	(<=	n)	

§  For	each	rule	X	→	Y	Z		
§  For	each	split	point	k	
	Do	constant	work	

Y Z 

X 

i                       k                      j 



Time:	Theory	
§  How	much	Ume	will	it	take	to	parse?	

§  For	each	diff	(<=	n)	
§  For	each	i	(<=	n)	

§  For	each	rule	X	→	Y	Z		
§  For	each	split	point	k	
	Do	constant	work	

§  Total	Ume:	|rules|*n3	

§  Simple	grammar	takes	0.1	sec	to	parse	a	20-word	
sentence,	bigger	grammars	can	take	10+	seconds	
unopUmized	

Y Z 

X 

i                       k                      j 



Time:	PracUce	

§  Parsing	with	the	vanilla	treebank	grammar:	

§  Why’s	it	worse	in	pracUce?	
§  Longer	sentences	“unlock”	more	of	the	grammar	
§  All	kinds	of	systems	issues	don’t	scale	

~ 20K Rules 

(not an 
optimized 
parser!) 

Observed 
exponent: 

3.6 



Same-Span	Reachability	

ADJP ADVP 
FRAG INTJ NP 
PP PRN QP S 
SBAR UCP VP 

WHNP 

TOP 

LST 

CONJP 

WHADJP 

WHADVP 

WHPP 

NX 

NAC 

SBARQ 

SINV 

RRC SQ X 

PRT 



Efficient	CKY	

§  Lots	of	tricks	to	make	CKY	efficient	
§  Some	of	them	are	li?le	engineering	details:	

§  E.g.,	first	choose	k,	then	enumerate	through	the	Y:[i,k]	which	are	
non-zero,	then	loop	through	rules	by	lea	child.	

§  OpUmal	layout	of	the	dynamic	program	depends	on	grammar	

§  Some	are	algorithmic	improvements:	
§  Pruning:	rule	out	chunks	of	the	chart	based	on	a	simpler	model	



Learning	PCFGs	



Typical	Experimental	Setup	

§  Corpus:	Penn	Treebank,	WSJ	

§  Accuracy	–	F1:	harmonic	mean	of	per-node	labeled	
precision	and	recall.	

§  Here:	also	size	–	number	of	symbols	in	grammar.	

Training: sections 02-21 
Development: section 22 (here, first 20 files) 
Test: section 23 



Treebank	PCFGs	
§  Use	PCFGs	for	broad	coverage	parsing	
§  Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):	

ROOT → S    1 

S → NP VP .    1 

NP → PRP    1 

VP → VBD ADJP   1 

….. 

Model F1 
Baseline 72.0 

[Charniak 96] 



CondiUonal	Independence?	

§  Not	every	NP	expansion	can	fill	every	NP	slot	
§  A	grammar	with	symbols	like	“NP”	won’t	be	context-free	
§  StaUsUcally,	condiUonal	independence	too	strong	



Non-Independence	
§  Independence	assumpUons	are	oaen	too	strong.	

§  Example:	the	expansion	of	an	NP	is	highly	dependent	on	the	
parent	of	the	NP	(i.e.,	subjects	vs.	objects).	

§  Also:	the	subject	and	object	expansions	are	correlated!	

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP 



Grammar	Refinement	

§  Structure	AnnotaUon	[Johnson	’98,	Klein&Manning	’03]	
§  LexicalizaUon	[Collins	’99,	Charniak	’00]	
§  Latent	Variables	[Matsuzaki	et	al.	05,	Petrov	et	al.	’06]	



Structural	AnnotaUon	



The	Game	of	Designing	a	Grammar	

§  AnnotaUon	refines	base	treebank	symbols	to	
improve	staUsUcal	fit	of	the	grammar	
§  Structural	annotaUon	



VerUcal	MarkovizaUon	

§  VerUcal	Markov	
order:	rewrites	
depend	on	past	k	
ancestor	nodes.	
	(cf.	parent	
annotaUon)	

Order 1 Order 2 

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000

15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order
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m
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Klein	and	Manning	(2003)	



Horizontal	MarkovizaUon	

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order
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m
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Order 1 Order ∞ 

Klein	and	Manning	(2003)	



Tag	Splits	

§  Problem:	Treebank	tags	
are	too	coarse.	

§  Example:	SentenUal,	PP,	
and	other	preposiUons	
are	all	marked	IN.	

§  ParUal	SoluUon:	
§  Subdivide	the	IN	tag.	 Annotation F1 Size 

Previous 78.3 8.0K 
SPLIT-IN 80.3 8.1K 

Klein	and	Manning	(2003)	



A	Fully	Annotated	(Unlex)	Tree	



Some	Test	Set	Results	

§  Beats	“first	generaUon”	lexicalized	parsers.	
§  Baseline:	~72	

Parser LP LR F1 CB 0 CB 

Magerman 95 84.9 84.6 84.7 1.26 56.6 

Collins 96 86.3 85.8 86.0 1.14 59.9 

K+M 2003 86.9 85.7 86.3 1.10 60.3 

Charniak 97 87.4 87.5 87.4 1.00 62.1 

Collins 99 88.7 88.6 88.6 0.90 67.1 

Klein	and	Manning	(2003)	



LexicalizaUon	



§  Annotation refines base treebank symbols to improve 
statistical fit of the grammar 
§  Structural annotation [Johnson ’98, Klein and Manning 03] 
§  Head lexicalization [Collins ’99, Charniak ’00] 

The	Game	of	Designing	a	Grammar	



Problems	with	PCFGs	

§  If	we	do	no	annotaUon,	these	trees	differ	only	in	one	rule:	
§  VP	→	VP	PP	
§  NP	→	NP	PP	

§  Parse	will	go	one	way	or	the	other,	regardless	of	words	
§  LexicalizaUon	allows	us	to	be	sensiUve	to	specific	words	



Problems	with	PCFGs	

§  What’s	different	between	basic	PCFG	scores	here?	
§  What	(lexical)	correlaUons	need	to	be	scored?	



Lexicalized	Trees	

§  Add	“head	words”	to	
each	phrasal	node	
§  SyntacUc	vs.	semanUc	

heads	
§  Headship	not	in	(most)	

treebanks	
§  Usually	use	head	rules,	

e.g.:	
§  NP:	

§  Take	leamost	NP	
§  Take	rightmost	N*	
§  Take	rightmost	JJ	
§  Take	right	child	

§  VP:	
§  Take	leamost	VB*	
§  Take	leamost	VP	
§  Take	lea	child	



Lexicalized	PCFGs?	
§  Problem:	we	now	have	to	esUmate	probabiliUes	like	

§  Never	going	to	get	these	atomically	off	of	a	treebank	

§  SoluUon:	break	up	derivaUon	into	smaller	steps	

1) 2) 

3) 4) 



Lexical	DerivaUon	Steps	
§  A	derivaUon	of	a	local	tree	[Collins	99]	

Choose	a	head	tag	and	word	
P(child	symbol	|	parent,	head	word)	

Generate	children	from	head	
sequenUally	

P(child	tag,	child	head	|	parent,	head	
symbol,	head	word)		

Finish	generaUng	the	children;	
each	new	one	condiUons	on	the	
previous	ones	



Lexicalized	CKY	
§  How	big	is	the	state	space?	

§  Nonterminals	=	Num	symbols	x	vocab	size	–	
way	too	large!	

§  Can’t	use	standard	CKY	



Lexicalized	CKY	
§  Track	index	h	of	head	in	DP:	O(n5)	
§  Be?er	algorithms	next	lecture!	

bestScore(X,i,j,h,s) 
  if (j = i+1) 
    return tagScore(X,s[i]) 
  else 
    return  
      max max score(X[h]->Y[h] Z[h’]) * 
              bestScore(Y,i,k,h,s) * 
              bestScore(Z,k,j,h’,s) 
          max score(X[h]->Y[h’] Z[h]) * 
              bestScore(Y,i,k,h’,s) * 
              bestScore(Z,k,j,h,s) 

Y[h] Z[h’] 

X[h] 

i           h          k         h’          j 

k,h’,X->YZ 

k,h’,X->YZ 



Results	

§  Some	results	
§  Collins	99	–	88.6	F1	(generaUve	lexical)	
§  Charniak	and	Johnson	05	–	89.7	/	91.3	F1	(generaUve	
lexical	/	reranked)	

§  McClosky	et	al	06	–	92.1	F1	(gen	+	rerank	+	self-train)	
§  92.1	was	SOTA	for	around	8	years!	



Latent	Variable	PCFGs	



§  AnnotaUon	refines	base	treebank	symbols	to	improve	
staUsUcal	fit	of	the	grammar	
§  Parent	annotaUon	[Johnson	’98]	
§  Head	lexicalizaUon	[Collins	’99,	Charniak	’00]	
§  AutomaUc	clustering?	

The	Game	of	Designing	a	Grammar	



Latent	Variable	Grammars	

Parse Tree  
Sentence Parameters  

... 

Derivations 



Forward	

Learning	Latent	AnnotaUons	

EM	algorithm:	
		

	 X1 

X2 
X7 X4 

X5 X6 X3 

He was right 

. 

§  Brackets are known 
§  Base categories are known 
§  Only induce subcategories 

Just	like	Forward-Backward	for	HMMs.	
Learn	label	refinements,	base	labels	are	known!	 Backward	



Refinement	of	the	DT	tag	

DT 

DT-1 DT-2 DT-3 DT-4 



Hierarchical	refinement	



Hierarchical	EsUmaUon	Results	
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78

80

82

84

86
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100 300 500 700 900 1100 1300 1500 1700

Total Number of grammar symbols
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(F

1)

Model F1 
Flat Training 87.3 
Hierarchical Training 88.4 



Refinement	of	the	,	tag	
§  Spli~ng	all	categories	equally	is	wasteful:	



Adaptive Splitting 

§  Want	to	split	complex	categories	more	
§  Idea:	split	everything,	roll	back	splits	which	were	
least	useful	



AdapUve	Spli~ng	Results	

Model F1 
Previous 88.4 
With 50% Merging 89.5 
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Number	of	Phrasal	Subcategories	



Number	of	Lexical	Subcategories	
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Learned	Splits	

§  Proper Nouns (NNP): 
NNP-14 Oct. Nov. Sept. 
NNP-12 John Robert James 
NNP-2 J. E. L. 
NNP-1 Bush Noriega Peters 

NNP-15 New San Wall 
NNP-3 York Francisco Street 



Learned	Splits	

§  Proper Nouns (NNP): 

§  Personal pronouns (PRP): 

NNP-14 Oct. Nov. Sept. 
NNP-12 John Robert James 
NNP-2 J. E. L. 
NNP-1 Bush Noriega Peters 

NNP-15 New San Wall 
NNP-3 York Francisco Street 

PRP-0 It He I 
PRP-1 it he they 
PRP-2 it them him 



§  Cardinal	Numbers	(CD):	

CD-7 one two Three 
CD-4 1989 1990 1988 
CD-11 million billion trillion 
CD-0 1 50 100 
CD-3 1 30 31 
CD-9 78 58 34 

Learned	Splits	



Hierarchical	Pruning	

… QP NP VP … coarse: 

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 … 

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 … split in four:   

  

  

  

  

split in eight: … … … … … … … … … … … … … … … … … 



Bracket	Posteriors	



Speedup	

§  100x	speedup	if	you	use	the	full	coarse-to-fine	
hierarchy	vs.	just	parsing	with	the	finest	grammar	

§  Parse	the	test	set	in	15	minutes	–	2	sentences/
second	



Final	Results	(Accuracy)	

≤ 40 words 
F1 

all  
F1 

EN
G

 

Charniak&Johnson ‘05 (generative) 90.1 89.6 

Split / Merge 90.6 90.1 

G
ER

 

Dubey ‘05 76.3 - 

Split / Merge 80.8 80.1 

C
H

N
 

Chiang et al. ‘02 80.0 76.6 

Split / Merge 86.3 83.4 

Ensemble of split-merge parsers = best cross-lingual parser for ~7 years! 


