
CS395T:	Structured	Models	for	NLP	
Lecture	7:	Parsing	I	

Greg	Durre?	
Adapted	from	Dan	Klein	–	UC	Berkeley	

	

Administrivia	

Project	1	due	one	week	from	today!	

Recall:	EM	for	HMMs	

log

X

y

P (x,y|✓) � Eq(y) logP (x,y|✓) + Entropy[q(y)]

Maximize	lower	bound	of	log	marginal	likelihood:	

EM:	alternaUng	maximizaUon	

E-step:	maximize	w.r.t.	q	
qt = P (y|x, ✓t�1)

M-step:	maximize	w.r.t.	theta	
✓t = argmax✓Eqt logP (x,y|✓)

Supervised	learning	from	fracUonal	annotaUon	

Road	Map	
§  Done:	Sequences:	generaUve,	discriminaUve,	
supervised,	unsupervised	

§  Now:	trees	(parsing)	–	a	li?le	more	linguisUcs...	

§  This	week:	consUtuency	–	lots	of	generaUve	
models	

§  Next	week:	dependency	(Project	2)	–	more	
discriminaUve	models	

This	Lecture	
§  ConsUtuency	formalism	

§  (ProbabilisUc)	Context-free	Grammars	

§  CKY	

§  Refining	grammars	

§  Next	Ume:	finish	consUtuency	+	wriUng	Ups	

Syntax	

Parse	Trees	

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

Phrase	Structure	Parsing	
§  Phrase	structure	parsing	

organizes	syntax	into	
cons%tuents	or	brackets	

§  In	general,	this	involves	
nested	trees	

§  Linguists	can,	and	do,	
argue	about	details	

§  Lots	of	ambiguity	

§  Dependency	(next	week)	
makes	more	sense	for	
some	languages	

ConsUtuency	Tests	

§  How	do	we	know	what	nodes	go	in	the	tree?	

§  Classic	consUtuency	tests:	
§  SubsUtuUon	by	proform 	 		
§  Cleaing	(It	was	with	a	spoon...)	
§  Answer	ellipsis	
(What	did	you	eat?)	

§  CoordinaUon	

§  Cross-linguisUc	arguments,	too	

ConflicUng	Tests	
§  ConsUtuency	isn’t	always	clear	

§  Phonological	reducUon:	
§  I	will	go	→	I’ll	go	
§  I	want	to	go	→	I	wanna	go	
§  a	le	centre	→	au	centre	

§  CoordinaUon	
§  He	went	to	and	came	from	the	store.	

La vélocité des ondes sismiques

Classical	NLP:	Parsing	

§  Write	symbolic	or	logical	rules:	

§  Use	deducUon	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

AmbiguiUes	

AmbiguiUes:	PP	A?achment	

A?achments	

§  I	cleaned	the	dishes	in	my	pajamas	

§  I	cleaned	the	dishes	in	the	sink	

SyntacUc	AmbiguiUes	I	

§  PreposiUonal	phrases:	
They	cooked	the	beans	in	the	pot	on	the	stove	with	handles.		

§  ParUcle	vs.	preposiUon:	
The	puppy	tore	up	the	staircase.		

§  Complement	structures	
The	tourists	objected	to	the	guide	that	they	couldn’t	hear.	
She	knows	you	like	the	back	of	her	hand.		

§  Gerund	vs.	parUcipial	adjecUve	
Visi%ng	rela%ves	can	be	boring.	
Changing	schedules	frequently	confused	passengers.		

SyntacUc	AmbiguiUes	II	
§  Modifier	scope	within	NPs	

imprac%cal	design	requirements	
plas%c	cup	holder		

	
§  CoordinaUon	scope:	

Small	rats	and	mice	can	squeeze	into	holes	or	cracks	in	the	
wall.		

Dark	AmbiguiUes	

§  Dark	ambigui%es:	most	analyses	are	shockingly	bad	
(meaning,	they	don’t	have	an	interpretaUon	you	can	get	
your	mind	around)	

§  Unknown	words	and	new	usages	
§  SoluUon:	We	need	probabilisUc	techniques	handle	this	
uncertainty	

This	analysis	corresponds	to	
the	correct	parse	of		

“This	will	panic	buyers	!	”	

PCFGs	

ProbabilisUc	Context-Free	Grammars	

§  A	context-free	grammar	is	a	tuple	<N,	T,	S,	R>	
§  N	:	the	set	of	non-terminals	

§  Phrasal	categories:	S,	NP,	VP,	ADJP,	etc.	
§  Parts-of-speech	(pre-terminals):	NN,	JJ,	DT,	VB	

§  T	:	the	set	of	terminals	(the	words)	
§  S	:	the	start	symbol	

§  Oaen	wri?en	as	ROOT	or	TOP	(not	S	–	not	all	“sentences”	are	sentences)	
§  R	:	the	set	of	rules	

§  Of	the	form	X	→	Y1	Y2	…	Yk,	with	X,	Yi	∈	N	
§  Examples:	S	→	NP	VP,			VP	→	VP	CC	VP	
§  Also	called	rewrites	or	producUons	

§  A	PCFG	adds:	
§  A	top-down	producUon	probability	per	rule	P(Y1	Y2	…	Yk	|	X)	

Treebank	Grammars	

§  Need	a	PCFG	for	broad	coverage	parsing.	
§  Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):	

§  Maximum-likelihood	esUmate:	get	P(NP	->	PRP	|	NP)	by	counUng	+	normalizing	
§  Be?er	results	by	enriching	the	grammar	(lexicalizaUon,	other	techniques)	

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Chomsky	Normal	Form	

§  Chomsky	normal	form:	
§  All	rules	of	the	form	X	→	Y	Z	or	X	→	w	
§  In	principle,	this	is	no	limitaUon	on	the	space	of	(P)CFGs	

§  N-ary	rules	introduce	new	non-terminals	

§  Unaries	/	empUes	are	“promoted”	
§  NOT	equivalent	to	this:	

§  In	pracUce:	binarize	the	grammar,	keep	unaries	

VP

[VP → VBD NP •]

VBD NP PP PP

[VP → VBD NP PP •]

VBD NP PP PP

VP

VP

VP

VBD NP PP PP

VP

CKY	Parsing	

A	Recursive	Parser	

§  max	over	k	and	rule	being	applied	
§  Will	this	parser	work?	

 bestScore(X,i,j,s)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return max score(X->YZ) *

 bestScore(Y,i,k,s) *
 bestScore(Z,k,j,s)

§  Can	also	organize	things	bo?om-up	
§  Not	every	tag/nonterminal	can	be	built	over	every	span!	

A	Bo?om-Up	Parser	(CKY)	

 bestScore(s)
 for (i : [0,n-1])
 for (X : tags[s[i]])
 score[X][i][i+1] =

 tagScore(X,s[i])
 for (diff : [2,n])
 for (i : [0,n-diff])
 j = i + diff
 for (X->YZ : rule)
 for (k : [i+1, j-1])
 score[X][i][j] = max score[X][i][j],

 score(X->YZ) *
 score[Y][i][k] *
 score[Z][k][j]

Y Z

X

i k j

Unary	Rules	
§  Unary	rules?	

§  Problem:	dynamic	program	is	self-referenUal!	

 bestScore(X,i,j,s)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return max max score(X->YZ) *

 bestScore(Y,i,k,s) *
 bestScore(Z,k,j,s)

 max score(X->Y) *
 bestScore(Y,i,j,s)

Unary	Closure	

§  We	need	unaries	to	be	non-cyclic	
§  Can	address	by	pre-calculaUng	the	unary	closure	
§  Rather	than	having	zero	or	more	unaries,	always	have	
exactly	one	

§  Alternate	unary	and	binary	layers	
§  Reconstruct	unary	chains	aaerwards	

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

AlternaUng	Layers	

 bestScoreU(X,i,j,s)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return max max score(X->Y) *
 bestScoreB(Y,i,j)

 bestScoreB(X,i,j,s)
 return max max score(X->YZ) *

 bestScoreU(Y,i,k) *
 bestScoreU(Z,k,j)

Analysis	

Time:	Theory	
§  How	much	Ume	will	it	take	to	parse?	

§  For	each	diff	(<=	n)	
§  For	each	i	(<=	n)	

§  For	each	rule	X	→	Y	Z		
§  For	each	split	point	k	
	Do	constant	work	

Y Z

X

i k j

Time:	Theory	
§  How	much	Ume	will	it	take	to	parse?	

§  For	each	diff	(<=	n)	
§  For	each	i	(<=	n)	

§  For	each	rule	X	→	Y	Z		
§  For	each	split	point	k	
	Do	constant	work	

§  Total	Ume:	|rules|*n3	

§  Simple	grammar	takes	0.1	sec	to	parse	a	20-word	
sentence,	bigger	grammars	can	take	10+	seconds	
unopUmized	

Y Z

X

i k j

Time:	PracUce	

§  Parsing	with	the	vanilla	treebank	grammar:	

§  Why’s	it	worse	in	pracUce?	
§  Longer	sentences	“unlock”	more	of	the	grammar	
§  All	kinds	of	systems	issues	don’t	scale	

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

Same-Span	Reachability	

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRC SQ X

PRT

Efficient	CKY	

§  Lots	of	tricks	to	make	CKY	efficient	
§  Some	of	them	are	li?le	engineering	details:	

§  E.g.,	first	choose	k,	then	enumerate	through	the	Y:[i,k]	which	are	
non-zero,	then	loop	through	rules	by	lea	child.	

§  OpUmal	layout	of	the	dynamic	program	depends	on	grammar	

§  Some	are	algorithmic	improvements:	
§  Pruning:	rule	out	chunks	of	the	chart	based	on	a	simpler	model	

Learning	PCFGs	

Typical	Experimental	Setup	

§  Corpus:	Penn	Treebank,	WSJ	

§  Accuracy	–	F1:	harmonic	mean	of	per-node	labeled	
precision	and	recall.	

§  Here:	also	size	–	number	of	symbols	in	grammar.	

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23

Treebank	PCFGs	
§  Use	PCFGs	for	broad	coverage	parsing	
§  Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):	

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]

CondiUonal	Independence?	

§  Not	every	NP	expansion	can	fill	every	NP	slot	
§  A	grammar	with	symbols	like	“NP”	won’t	be	context-free	
§  StaUsUcally,	condiUonal	independence	too	strong	

Non-Independence	
§  Independence	assumpUons	are	oaen	too	strong.	

§  Example:	the	expansion	of	an	NP	is	highly	dependent	on	the	
parent	of	the	NP	(i.e.,	subjects	vs.	objects).	

§  Also:	the	subject	and	object	expansions	are	correlated!	

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar	Refinement	

§  Structure	AnnotaUon	[Johnson	’98,	Klein&Manning	’03]	
§  LexicalizaUon	[Collins	’99,	Charniak	’00]	
§  Latent	Variables	[Matsuzaki	et	al.	05,	Petrov	et	al.	’06]	

Structural	AnnotaUon	

The	Game	of	Designing	a	Grammar	

§  AnnotaUon	refines	base	treebank	symbols	to	
improve	staUsUcal	fit	of	the	grammar	
§  Structural	annotaUon	

VerUcal	MarkovizaUon	

§  VerUcal	Markov	
order:	rewrites	
depend	on	past	k	
ancestor	nodes.	
	(cf.	parent	
annotaUon)	

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000

15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

Klein	and	Manning	(2003)	

Horizontal	MarkovizaUon	

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

Order 1 Order ∞

Klein	and	Manning	(2003)	

Tag	Splits	

§  Problem:	Treebank	tags	
are	too	coarse.	

§  Example:	SentenUal,	PP,	
and	other	preposiUons	
are	all	marked	IN.	

§  ParUal	SoluUon:	
§  Subdivide	the	IN	tag.	 Annotation F1 Size

Previous 78.3 8.0K
SPLIT-IN 80.3 8.1K

Klein	and	Manning	(2003)	

A	Fully	Annotated	(Unlex)	Tree	

Some	Test	Set	Results	

§  Beats	“first	generaUon”	lexicalized	parsers.	
§  Baseline:	~72	

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

K+M 2003 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1

Klein	and	Manning	(2003)	

LexicalizaUon	

§  Annotation refines base treebank symbols to improve
statistical fit of the grammar
§  Structural annotation [Johnson ’98, Klein and Manning 03]
§  Head lexicalization [Collins ’99, Charniak ’00]

The	Game	of	Designing	a	Grammar	

Problems	with	PCFGs	

§  If	we	do	no	annotaUon,	these	trees	differ	only	in	one	rule:	
§  VP	→	VP	PP	
§  NP	→	NP	PP	

§  Parse	will	go	one	way	or	the	other,	regardless	of	words	
§  LexicalizaUon	allows	us	to	be	sensiUve	to	specific	words	

Problems	with	PCFGs	

§  What’s	different	between	basic	PCFG	scores	here?	
§  What	(lexical)	correlaUons	need	to	be	scored?	

Lexicalized	Trees	

§  Add	“head	words”	to	
each	phrasal	node	
§  SyntacUc	vs.	semanUc	

heads	
§  Headship	not	in	(most)	

treebanks	
§  Usually	use	head	rules,	

e.g.:	
§  NP:	

§  Take	leamost	NP	
§  Take	rightmost	N*	
§  Take	rightmost	JJ	
§  Take	right	child	

§  VP:	
§  Take	leamost	VB*	
§  Take	leamost	VP	
§  Take	lea	child	

Lexicalized	PCFGs?	
§  Problem:	we	now	have	to	esUmate	probabiliUes	like	

§  Never	going	to	get	these	atomically	off	of	a	treebank	

§  SoluUon:	break	up	derivaUon	into	smaller	steps	

1) 2)

3) 4)

Lexical	DerivaUon	Steps	
§  A	derivaUon	of	a	local	tree	[Collins	99]	

Choose	a	head	tag	and	word	
P(child	symbol	|	parent,	head	word)	

Generate	children	from	head	
sequenUally	

P(child	tag,	child	head	|	parent,	head	
symbol,	head	word)		

Finish	generaUng	the	children;	
each	new	one	condiUons	on	the	
previous	ones	

Lexicalized	CKY	
§  How	big	is	the	state	space?	

§  Nonterminals	=	Num	symbols	x	vocab	size	–	
way	too	large!	

§  Can’t	use	standard	CKY	

Lexicalized	CKY	
§  Track	index	h	of	head	in	DP:	O(n5)	
§  Be?er	algorithms	next	lecture!	

bestScore(X,i,j,h,s)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return
 max max score(X[h]->Y[h] Z[h’]) *
 bestScore(Y,i,k,h,s) *
 bestScore(Z,k,j,h’,s)
 max score(X[h]->Y[h’] Z[h]) *
 bestScore(Y,i,k,h’,s) *
 bestScore(Z,k,j,h,s)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

k,h’,X->YZ

Results	

§  Some	results	
§  Collins	99	–	88.6	F1	(generaUve	lexical)	
§  Charniak	and	Johnson	05	–	89.7	/	91.3	F1	(generaUve	
lexical	/	reranked)	

§  McClosky	et	al	06	–	92.1	F1	(gen	+	rerank	+	self-train)	
§  92.1	was	SOTA	for	around	8	years!	

Latent	Variable	PCFGs	

§  AnnotaUon	refines	base	treebank	symbols	to	improve	
staUsUcal	fit	of	the	grammar	
§  Parent	annotaUon	[Johnson	’98]	
§  Head	lexicalizaUon	[Collins	’99,	Charniak	’00]	
§  AutomaUc	clustering?	

The	Game	of	Designing	a	Grammar	

Latent	Variable	Grammars	

Parse Tree
Sentence Parameters

...

Derivations

Forward	

Learning	Latent	AnnotaUons	

EM	algorithm:	
		

	 X1

X2
X7 X4

X5 X6 X3

He was right

.

§  Brackets are known
§  Base categories are known
§  Only induce subcategories

Just	like	Forward-Backward	for	HMMs.	
Learn	label	refinements,	base	labels	are	known!	 Backward	

Refinement	of	the	DT	tag	

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical	refinement	

Hierarchical	EsUmaUon	Results	

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700

Total Number of grammar symbols

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

Model F1
Flat Training 87.3
Hierarchical Training 88.4

Refinement	of	the	,	tag	
§  Spli~ng	all	categories	equally	is	wasteful:	

Adaptive Splitting

§  Want	to	split	complex	categories	more	
§  Idea:	split	everything,	roll	back	splits	which	were	
least	useful	

AdapUve	Spli~ng	Results	

Model F1
Previous 88.4
With 50% Merging 89.5

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP S

AD
JP

SB
AR Q

P

W
H

N
P

PR
N

N
X

SI
N

V

PR
T

W
H

PP SQ

C
O

N
JP

FR
AG

N
AC U
C

P

W
H

AD
VP IN
TJ

SB
AR

Q

R
R

C

W
H

AD
JP X

R
O

O
T

LS
T

Number	of	Phrasal	Subcategories	

Number	of	Lexical	Subcategories	

0

10

20

30

40

50

60

70

NN
P JJ

NN
S NN VB
N RB

VB
G VB VB
D CD IN

VB
Z

VB
P DT

NN
PS CC JJ

R
JJ

S :
PR

P
PR

P$ M
D

RB
R

W
P

PO
S

PD
T

W
RB

-L
RB

- .
EX

W
P$

W
DT

-R
RB

- ''
FW RB

S TO
$

UH
, ``

SY
M RP LS #

Learned	Splits	

§  Proper Nouns (NNP):
NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

Learned	Splits	

§  Proper Nouns (NNP):

§  Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

§  Cardinal	Numbers	(CD):	

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned	Splits	

Hierarchical	Pruning	

… QP NP VP … coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 … split in four:

split in eight: … … … … … … … … … … … … … … … … …

Bracket	Posteriors	

Speedup	

§  100x	speedup	if	you	use	the	full	coarse-to-fine	
hierarchy	vs.	just	parsing	with	the	finest	grammar	

§  Parse	the	test	set	in	15	minutes	–	2	sentences/
second	

Final	Results	(Accuracy)	

≤ 40 words
F1

all
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Ensemble of split-merge parsers = best cross-lingual parser for ~7 years!

