CS395T: Structured Models for NLP Lecture 7: Parsing I

Greg Durrett

Adapted from Dan Klein – UC Berkeley

Project 1 due one week from today!

Maximize lower bound of log marginal likelihood:

$$\log \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y} | \theta) \ge \mathbb{E}_{q(\mathbf{y})} \log P(\mathbf{x}, \mathbf{y} | \theta) + \text{Entropy}[q(\mathbf{y})]$$

EM: alternating maximization

E-step: maximize w.r.t. q $q^t = P(\mathbf{y} | \mathbf{x}, \theta^{t-1})$

M-step: maximize w.r.t. theta $\theta^t = \operatorname{argmax}_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, \mathbf{y} | \theta)$

Supervised learning from fractional annotation

- Done: Sequences: generative, discriminative, supervised, unsupervised
- Now: trees (parsing) a little more linguistics...
- This week: constituency lots of generative models
- Next week: dependency (Project 2) more discriminative models

- Constituency formalism
- Probabilistic) Context-free Grammars
- CKY
- Refining grammars
- Next time: finish constituency + writing tips

Syntax

Parse Trees

The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into *constituents* or *brackets*
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Dependency (next week) makes more sense for some languages

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - Clefting (It was with a spoon...)
 - Answer ellipsis (What did you eat?)
 - Coordination

Cross-linguistic arguments, too

Conflicting Tests

Constituency isn't always clear

- Phonological reduction:
 - I will go \rightarrow I'll go
 - I want to go → I wanna go
 - a le centre → au centre

La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

Write symbolic or logical rules:

Grammar (CFG)		Lexicon
ROOT → S	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \rightarrow NP VP$	$VP \rightarrow VBP NP$	NNS → raises
$NP \rightarrow DT NN$	$VP \rightarrow VBP NP PP$	VBP → interest
$NP \rightarrow NN NNS$	$PP \rightarrow IN NP$	$VBZ \rightarrow raises$

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguities

Ambiguities: PP Attachment

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] [for \$27 a share] [at its monthly meeting].

I cleaned the dishes in my pajamas

I cleaned the dishes in the sink

- Prepositional phrases: They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective Visiting relatives can be boring. Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Coordination scope:

Small rats and mice can squeeze into holes or cracks in the wall.

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers !"

- Unknown words and new usages
- Solution: We need probabilistic techniques handle this uncertainty

PCFGs

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <*N*, *T*, *S*, *R*>
 - *N* : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T: the set of terminals (the words)
 - *S* : the start symbol
 - Often written as ROOT or TOP (not S not all "sentences" are sentences)
 - *R* : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP VP, VP \rightarrow VP CC VP$
 - Also called rewrites or productions

• A PCFG adds:

A top-down production probability per rule P(Y₁ Y₂ ... Y_k | X)

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Maximum-likelihood estimate: get P(NP -> PRP | NP) by counting + normalizing
- Better results by enriching the grammar (lexicalization, other techniques)

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

In practice: *binarize* the grammar, keep unaries

CKY Parsing

A Recursive Parser

```
bestScore(X,i,j,s)
if (j = i+1)
    return tagScore(X,s[i])
else
    return max score(X->YZ) *
        bestScore(Y,i,k,s) *
        bestScore(Z,k,j,s)
```

- max over k and rule being applied
- Will this parser work?

A Bottom-Up Parser (CKY)

- Can also organize things bottom-up
- Not every tag/nonterminal can be built over every span!

```
bestScore(s)
                                               Х
  for (i : [0, n-1])
     for (X : tags[s[i]])
       score[X][i][i+1] =
          tagScore(X,s[i])
   for (diff : [2,n])
                                               k
     for (i : [0,n-diff])
       j = i + diff
       for (X->YZ : rule)
         for (k : [i+1, j-1])
           score[X][i][j] = max score[X][i][j],
                                  score(X->YZ) *
                                  score[Y][i][k] *
                                  score[Z][k][j]
```


Unary Rules

```
Unary rules?
```

```
bestScore(X,i,j,s)
if (j = i+1)
    return tagScore(X,s[i])
else
    return max max score(X->YZ) *
        bestScore(Y,i,k,s) *
        bestScore(Z,k,j,s)
        max score(X->Y) *
        bestScore(Y,i,j,s)
```

Problem: dynamic program is self-referential!

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

bestScoreB(X,i,j,s)
 return max max score(X->YZ) *
 bestScoreU(Y,i,k) *
 bestScoreU(Z,k,j)

```
bestScoreU(X,i,j,s)
if (j = i+1)
    return tagScore(X,s[i])
else
    return max max score(X->Y) *
        bestScoreB(Y,i,j)
```

Analysis

- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work

- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work

- Total time: |rules|*n³
- Simple grammar takes 0.1 sec to parse a 20-word sentence, bigger grammars can take 10+ seconds unoptimized

Parsing with the vanilla treebank grammar:

- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

Same-Span Reachability

- Lots of tricks to make CKY efficient
 - Some of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar
 - Some are algorithmic improvements:
 - Pruning: rule out chunks of the chart based on a simpler model

Learning PCFGs

Typical Experimental Setup

Corpus: Penn Treebank, WSJ

Training:	sections	02-21	
Development:	section	22 (here, first 20 files)	
Test:	section	23	

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.

Treebank PCFGs [Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

Model	F1
Baseline	72.0

Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Vertical Markovization

 Vertical Markov order: rewrites
 depend on past k ancestor nodes.
 (cf. parent

annotation)

Klein and Manning (2003)

Horizontal Markovization

Tag Splits

Klein and Manning (2003)

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.

Partial Solution:

Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Some Test Set Results

Parser	LP	LR	F1	CB	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
K+M 2003	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Baseline: ~72

Lexicalization

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - $VP \rightarrow VP PP$
 - NP \rightarrow NP PP
- Parse will go one way or the other, regardless of words
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

A derivation of a local tree [Collins 99]

Choose a head tag and word P(child symbol | parent, head word)

Generate children from head sequentially

P(child tag, child head | parent, head symbol, head word)

Finish generating the children; each new one conditions on the previous ones

- How big is the state space?
- Nonterminals = Num symbols x vocab size way too large!
- Can't use standard CKY

Lexicalized CKY

X[h]

k

Z[h

h'

Y[h]

h

- Track index h of head in DP: O(n⁵)
- Better algorithms next lecture!

```
bestScore(X,i,j,h,s)
if (j = i+1)
return tagScore(X,s[i])
else
return
max max score(X[h]->Y[h] Z[h']) *
bestScore(Y,i,k,h,s) *
bestScore(Z,k,j,h',s)
max score(X[h]->Y[h'] Z[h]) *
bestScore(Y,i,k,h',s) *
bestScore(Z,k,j,h,s)
```


Results

Some results

- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)
- 92.1 was SOTA for around 8 years!

Latent Variable PCFGs

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

He Just like Forward-Backward for HMMs. Learn label *refinements*, base labels are known!

was

right

Forward

Refinement of the DT tag

Splitting all categories equally is wasteful:

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Adaptive Splitting Results

Number of Phrasal Subcategories

Number of Lexical Subcategories

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	lt	He	l.
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Hierarchical Pruning

split in eight:	 		 	 				 	 	
		-			-	-	-	-		

Bracket Posteriors

Speedup

- 100x speedup if you use the full coarse-to-fine hierarchy vs. just parsing with the finest grammar
- Parse the test set in 15 minutes 2 sentences/ second

		≤ 40 words F1	all F1
ENG	Charniak&Johnson '05 (generative)	90.1	89.6
	Split / Merge	90.6	90.1
GER	Dubev '05	76.3	_
	Split / Merge	80.8	80.1
CHN	Chiang at al. '02	80.0	76.6
	Chiang et al. 02	00.0	70.0
	Split / Merge	86.3	83.4

Ensemble of split-merge parsers = best cross-lingual parser for ~7 years!