CS395T: Structured Models for NLP Lecture 7: Parsing I

Greg Durrett

Adapted from Dan Klein – UC Berkeley

Administrivia

Project 1 due one week from today!

Recall: EM for HMMs

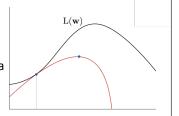
Maximize lower bound of log marginal likelihood:

$$\log \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y} | \theta) \ge \mathbb{E}_{q(\mathbf{y})} \log P(\mathbf{x}, \mathbf{y} | \theta) + \text{Entropy}[q(\mathbf{y})]$$

EM: alternating maximization

E-step: maximize w.r.t. q $q^t = P(\mathbf{y}|\mathbf{x}, \theta^{t-1})$

M-step: maximize w.r.t. theta $\theta^t = \mathrm{argmax}_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, \mathbf{y} | \theta)$



Supervised learning from fractional annotation

Road Map

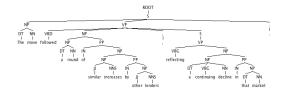
- Done: Sequences: generative, discriminative, supervised, unsupervised
- Now: trees (parsing) a little more linguistics...
- This week: constituency lots of generative models
- Next week: dependency (Project 2) more discriminative models

This Lecture

- Constituency formalism
- (Probabilistic) Context-free Grammars
- CKY
- Refining grammars
- Next time: finish constituency + writing tips

Syntax

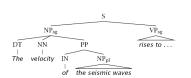
Parse Trees



The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

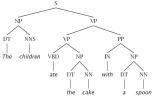
Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Dependency (next week) makes more sense for some languages



Constituency Tests

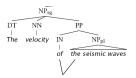
- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - Clefting (It was with a spoon...)
 - Answer ellipsis (What did you eat?)
 - Coordination



Cross-linguistic arguments, too

Conflicting Tests

- Constituency isn't always clear
 - Phonological reduction:
 - I will go → I'll go
 - I want to go → I wanna go
 - a le centre → au centre



La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

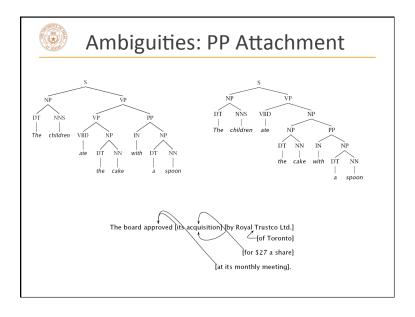
Classical NLP: Parsing

Write symbolic or logical rules:

Grammar (C	Lexicon	
ROOT → S NF	P → NP PP	$NN \to interest$
$S \rightarrow NP VP$ VF	$P \rightarrow VBP NP$	$NNS \to raises$
$NP \rightarrow DT NN$	$P \rightarrow VBP NP PP$	$VBP \to interest$
NP → NN NNS PF	P → IN NP	$VBZ \to raises$

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguities



Attachments

- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures
 The tourists objected to the guide that they couldn't hear.
 She knows you like the back of her hand.
- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.

Syntactic Ambiguities II

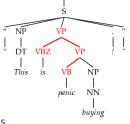
- Modifier scope within NPs impractical design requirements plastic cup holder
- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers!"



- Unknown words and new usages
- Solution: We need probabilistic techniques handle this uncertainty

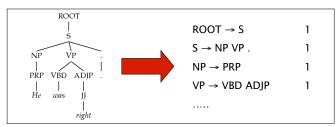
PCFGs

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <*N*, *T*, *S*, *R*>
 - *N* : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T: the set of terminals (the words)
 - S: the start symbol
 - Often written as ROOT or TOP (not S not all "sentences" are sentences)
 - R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: S → NP VP, VP → VP CC VP
 - Also called rewrites or productions
- A PCFG adds:
 - A top-down production probability per rule P(Y₁ Y₂ ... Y_k | X)

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):



- Maximum-likelihood estimate: get P(NP -> PRP | NP) by counting + normalizing
- Better results by enriching the grammar (lexicalization, other techniques)

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals



- Unaries / empties are "promoted"
- NOT equivalent to this:

• In practice: binarize the grammar, keep unaries

CKY Parsing

A Recursive Parser

```
bestScore(X,i,j,s)
if (j = i+1)
    return tagScore(X,s[i])
else
    return max score(X->YZ) *
        bestScore(Y,i,k,s) *
        bestScore(Z,k,j,s)
```

- max over k and rule being applied
- Will this parser work?

A Bottom-Up Parser (CKY)

- Can also organize things bottom-up
- Not every tag/nonterminal can be built over every span!

Unary Rules

Unary rules?

• Problem: dynamic program is self-referential!

Unary Closure

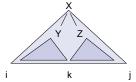
- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

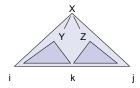
Time: Theory

- How much time will it take to parse?
 - For each diff (<= n)
 - For each i (<= n)</p>
 - For each rule X → Y Z
 - For each split point k
 Do constant work

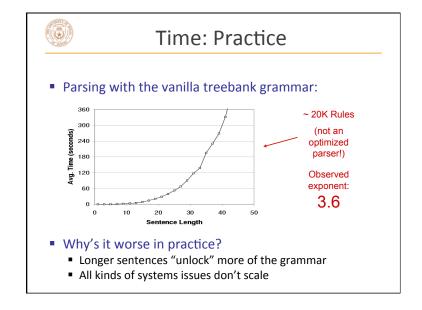


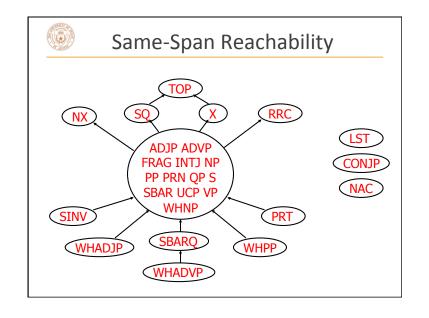
Time: Theory

- How much time will it take to parse?
 - For each diff (<= n)
 - For each i (<= n)</p>
 - For each rule X → Y Z
 - For each split point k
 Do constant work



- Total time: |rules|*n³
- Simple grammar takes 0.1 sec to parse a 20-word sentence, bigger grammars can take 10+ seconds unoptimized





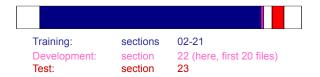
Efficient CKY

- Lots of tricks to make CKY efficient
 - Some of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar
 - Some are algorithmic improvements:
 - Pruning: rule out chunks of the chart based on a simpler model

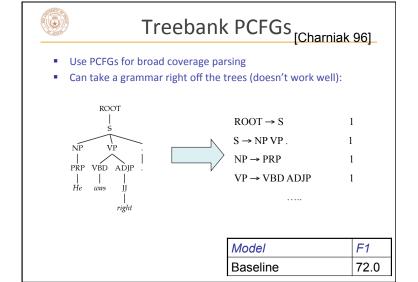
Learning PCFGs

Typical Experimental Setup

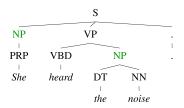
Corpus: Penn Treebank, WSJ



- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.



Conditional Independence?

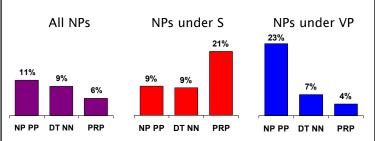


- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Inde

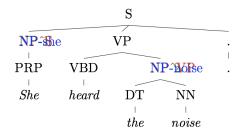
Non-Independence

Independence assumptions are often too strong.



- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

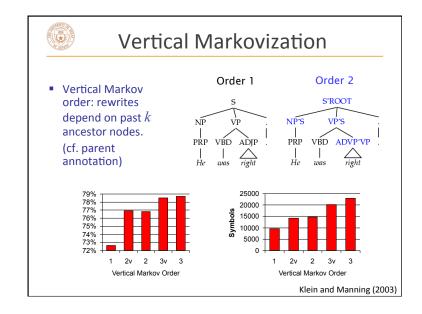


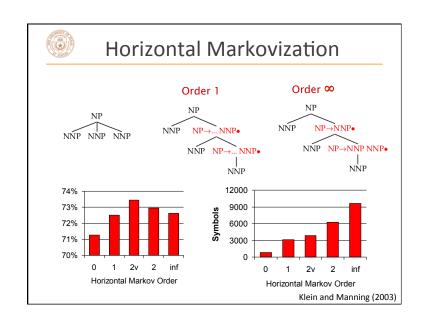
- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

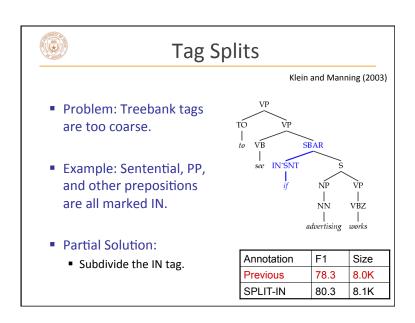
Structural Annotation

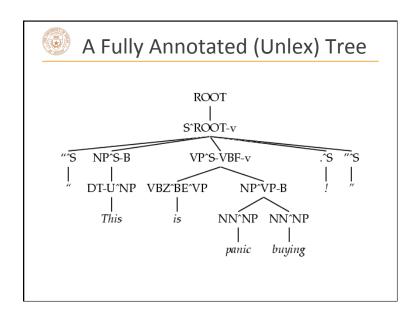
S NP^S VP PRP VBD NP^VP She heard DT NN the noise

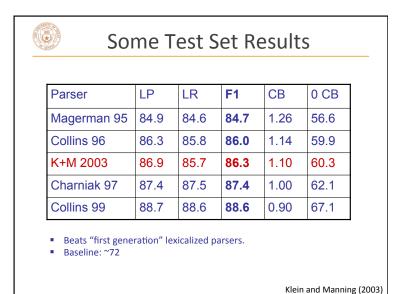
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation



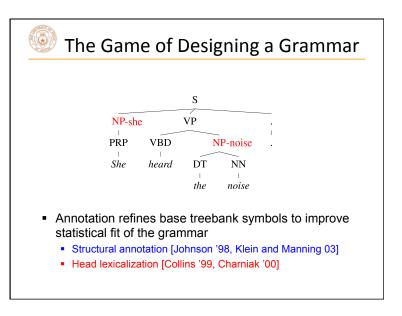


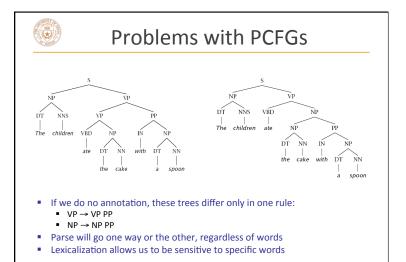


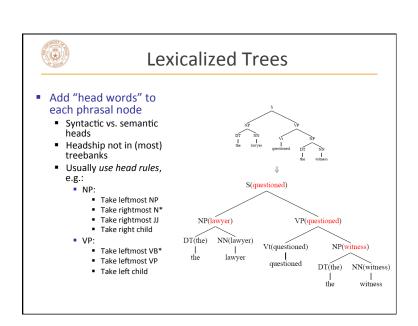


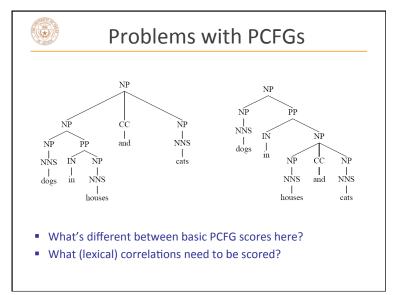


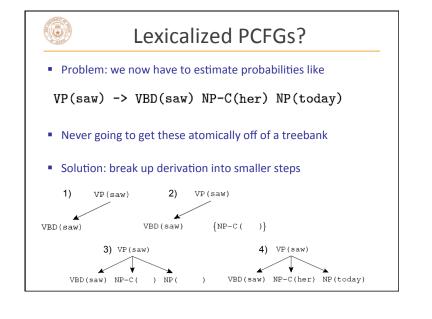
Lexicalization





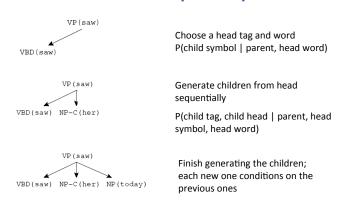






Lexical Derivation Steps

• A derivation of a local tree [Collins 99]



Lexicalized CKY

- How big is the state space?
- Nonterminals = Num symbols x vocab size way too large!
- Can't use standard CKY

Lexicalized CKY

X[h]

■ Track index h of head in DP: O(n⁵)

Better algorithms next lecture!

```
bestScore(X,i,j,h,s)
    if (j = i+1)
        return tagScore(X,s[i])
    else
        return

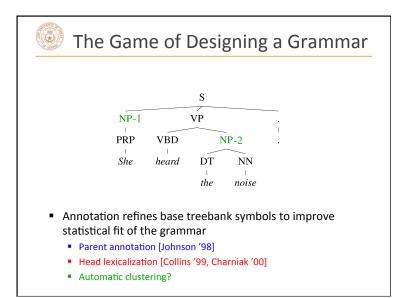
        max_max_score(X[h]->Y[h] Z[h']) *
            bestScore(Y,i,k,h,s) *
            bestScore(Z,k,j,h',s)

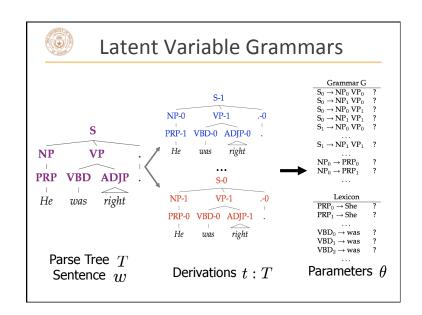
            max_score(X[h]->Y[h'] Z[h]) *
            bestScore(Y,i,k,h',s) *
            bestScore(Y,i,k,h',s) *
            bestScore(Y,i,k,h',s) *
```

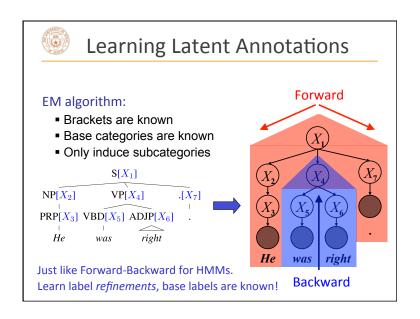

Results

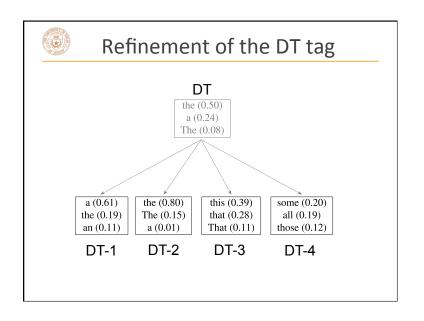
- Some results
 - Collins 99 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
 - McClosky et al 06 92.1 F1 (gen + rerank + self-train)
 - 92.1 was SOTA for around 8 years!

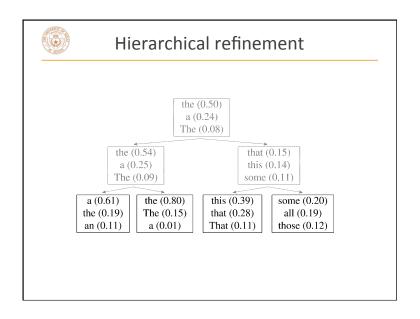
Latent Variable PCFGs

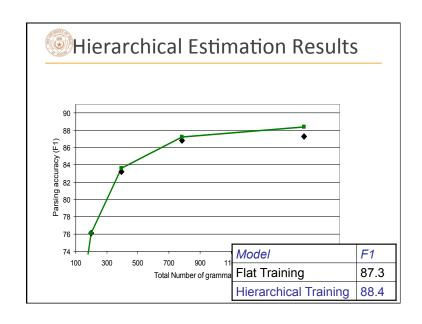


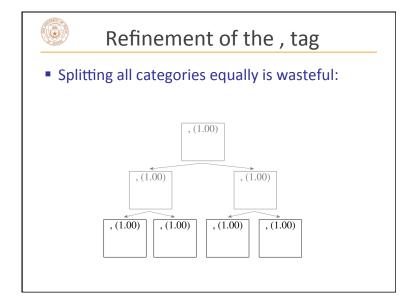


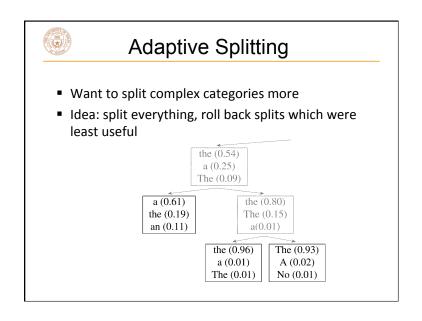


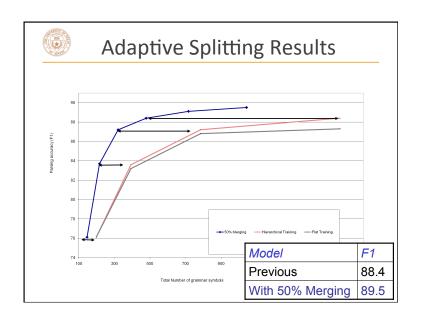


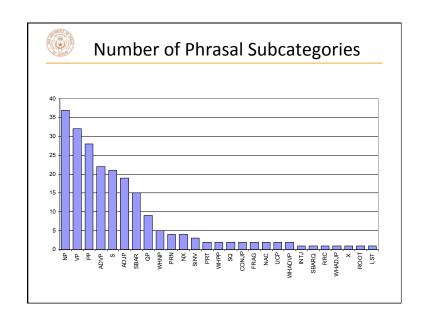


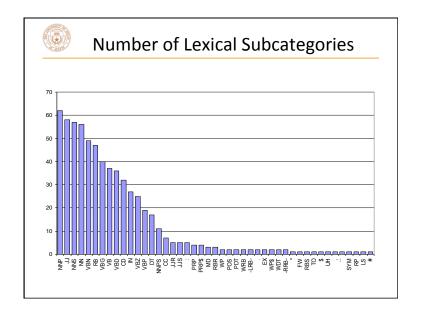












Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

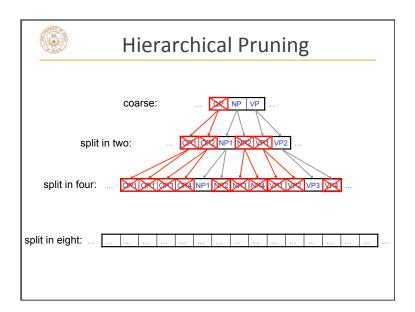
Personal pronouns (PRP):

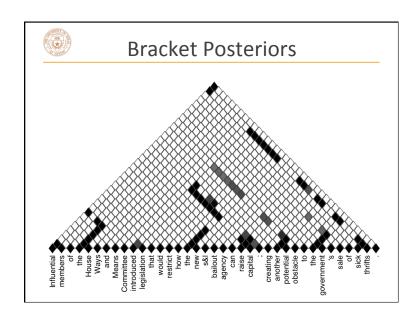
PRP-0	It	He	I
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34





Speedup

- 100x speedup if you use the full coarse-to-fine hierarchy vs. just parsing with the finest grammar
- Parse the test set in 15 minutes 2 sentences/ second

