CS395T: Structured Models for NLP Lecture 8: How to Write

Greg Durrett

Adapted from Chris Dyer

Writing is a skill — it takes practice!

- Write a lot
- Get feedback
- Read good papers
- Nonnative speaker? Not a problem!
 - big mental lexicon

Bad at Writing?

Good research writing is about good ideas and clear thinking, not a

Write for your readers

- Teach them something you figured out
- Convince them of something
- Be clear!
- Not writing for yourself!
 - Don't try to convince people how smart you are
 - The writing process can help clarify your ideas and motivation

Your Job as a Writer

- Title: 1000 people will read it
- Abstract: 4 sentences, 100 readers
- Intro: 1-1.5 pages, 30 readers
- Model/Idea: 2 pages, 10 readers
- Details: 2 pages, 3 readers
- Results: 1-2 pages, 20 readers
- Related work/Conclusion: 1 page, 10 readers

Conference Paper

Focus on presenting your core idea! Be 100% explicit!

- down)."
- Not: "We present a method that works well on dataset X under
- clear and simple!

"The main idea of this paper is to show how to integrate a lexicon scraped from the web into a neural NER system. Our approach is modular (can use many lexicons) and efficient (doesn't slow things

scenario Y but not on dataset Z under scenario W unless M is true."

You can get into subtlety later in a paper but the core idea needs to be

- Are you introducing a new problem?
 - Do you need to motivate the problem?
- Are you introducing a new technique?
 - Benefits relative to other techniques
 - Disadvantages (be honest!)
- sure readers will be able to understand it

Think about what's novel/hard!

What's difficult to understand/technical? Think about that and make

- Don't assume readers are as knowledgeable as you!
- Readers may not have thought about this problem much, or if they have they may have made different/wrong assumptions about it
- Don't assume readers know all related work! Remind them of relevant details (but don't re-explain everything!)

Don't Overestimate Readers!

- Abstract should crisply define/motivate the problem (1 sentence), give the method (~2 sentences), and give a headline result (~1 sentence)
- Intro should expand on this: give slightly more background (1) paragraph, incorporate some related work here as appropriate), flesh out the method/experimental setup (~2 paragraphs), describe the results more
- Make contribution very clear! "Our method is the first to do X", "We propose a model for X; while others have looked at X before, never in the context of Y."

Abstract + Introduction

- Use an example in the introduction or very early in section 2!
- Pick examples that:
 - Illustrate the easy case easily
 - Illustrate the simplest complicated case easily
 - Are concrete: no $w_1 w_2 w_3$!
 - Sound like real data: no "the quick brown fox"
 - Are (or could be) handled correctly by your model!
- Return to your example throughout your paper
- Be concrete!

Use Examples!

Related Work

- Integrate some related work into the intro, but don't have a heavy related work section as the second section!
- You can distill and present things in a way that seems clear to you, but saying "paper X does thing Y that's similar to our model except for Z" will make no sense for readers who don't know your model and might be barely familiar with X!

Be clear about your main idea

- a reader who hasn't worked on it before
- Abstract and intro should zero in on the contribution and focus on what's necessary to understand it
- Use real examples as part of your motivation

Think about how to present it clearly and make it understandable to