
CS395T:	Structured	Models	for	NLP	
Lecture	9:	Trees	3

Greg	Durrett

Administrivia
‣ Project	1	due	at	*5pm*	today

‣ Project	2	will	be	out	by	tonight.	Due	October	17

‣ ShiL-reduce	parser:	greedy	model,	beam	search	model,	extension

Recall:	Dependencies

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntacSc	structure	is	defined	by	dependencies	
‣Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol	
‣Dependencies	must	form	a	directed	acyclic	graph

ROOT

Recall:	ProjecSvity
‣ ProjecSve	<->	no	“crossing”	arcs

dogs	in	houses	and	cats the	dog	ran	to	the	house

credit:	Language	Log

‣ Crossing	arcs:

‣ Today:	algorithms	for	projecSve	parsing

This	Lecture
‣Graph-based	dependency	parsing

‣ TransiSon-based	(shiL-reduce)	dependency	parsing

‣Dynamic	programs	for	exact	inference	—	look	a	lot	like	sequenSal	CRFs

‣ Approximate,	greedy	inference	—	fast,	but	a	liale	bit	weird!

Graph-based	Dependency	Parsing

‣ How	did	we	parse	lexicalized	trees?

‣ Normal	CKY	is	too	slow:	grammar	is	
too	large	if	it	includes	words

Graph-based	Dependency	Parsing
‣Naive	algorithm:	O(n5)

Y[h] Z[h’]

X[h]

i h k h’ j

‣ Combine	spans	like	CKY	and	look	at	their	heads

‣ Five	indices	to	loop	over
‣ Features	can	look	at	spans	and	heads

‣ Can	be	applied	to	dependency	parses	as	well!	Builds	projecSve	trees

‣What	do	our	scores	look	like?	For	now,	assume	features	on	edge	(head,	
child)	pair	with	some	weights

Why	is	this	inefficient?

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Lots	of	spurious	ambiguity	—	many	ways	to	derive	the	right	parses

‣ Can	split	at	either	point	and	we	can	build	up	subtrees
Y[h] Z[h’]

X[h]

i h k h’ j

Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Complete	items:	all	children	are	aaached,	head	is	at	the	“tall	end”
‣ Incomplete	items:	arc	from	“tall”	to	“short”	end,	word	on	short	end	has 
																																																	parent	but	maybe	not	all	of	its	children

‣ Cubic-Sme	algorithm	like	CKY

‣ Maintain	two	charts	with	dimension	[n,	n,	2]:

Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

+

‣ Complete	item:	all	children	are	aaached,	head	is	at	the	“tall	end”
‣ Incomplete	item:	arc	from	“tall	end”	to	“short	end”,	may	sSll	expect	children

‣ Take	two	adjacent	complete	items,	add	arc	and	build	incomplete	item

= or

+ =

‣ Take	an	incomplete	item,	complete	it
(other	case	is	
symmetric)

Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

1)	Build	incomplete	span

2)	Promote	to	complete

3)	Build	incomplete	span

+

=

+

or

=

Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

+

=

+

or

=
4)	Promote	to	complete

Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ We’ve	built	leL	children	and	right	children	of	ran	as	complete	items

‣ Aaaching	to	ROOT	makes	an	incomplete	item	with	leL	children,	aaaches	
with	right	children	subsequently	to	finish	the	parse

Eisner’s	Algorithm

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Eisner’s	algorithm	doesn’t	have	split	point	ambiguiSes	like	this

‣ LeL	and	right	children	are	built	independently,	heads	are	edges	of	spans

‣ Charts	are	n	x	n	x	2	because	we	need	to	track	arc	direcSon	/	leL	vs	right

Eisner:

n5

MST	Parser
‣ View	dependency	parsing	as	finding	a	maximum	direct	spanning	tree	—	
space	of	all	spanning	trees,	so	we	find	nonprojecSve	trees	too!

‣ Chu-Liu-Edmonds	algorithm	to	find	the	best	MST	in	O(n2)

McDonald	et	al.	(2005)

‣ Ironically,	the	soLware	arSfact	called	MST	Parser	has	an	implementaSon	
of	Eisner’s	algorithm,	which	is	what	most	people	use

‣ This	only	computes	maxes,	but	there	is	an	algorithm	for	summing	over	
all	trees	as	well	(matrix-tree	theorem)

Building	Systems

‣ Can	implement	Viterbi	decoding	and	marginal	computaSon	using	
Eisner’s	algorithm	or	MST	to	max/sum	over	projecSve/nonprojecSve	
trees

‣ Same	concept	as	sequenSal	CRFs	for	NER,	can	also	use	margin-based	
methods	—	you	know	how	to	implement	these!

‣ Features	are	over	dependency	edges

Features	in	Graph-Based	Parsing
‣Dynamic	program	exposes	the	parent	and	child	indices

‣McDonald	et	al.	(2005)	—	conjuncSons	of	parent	and	child	words	+	POS,	
POS	of	words	in	between,	POS	of	surrounding	words.	~91	UAS

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Lei	et	al.	(2014)	—	ways	of	learning	conjuncSons	of	these

‣ HEAD=TO	&	MOD=NN
‣ HEAD=TO	&	MOD-1=the

‣ HEAD=TO	&	MOD=house
‣ HEAD=TO	&	MOD=DT

Features	in	Graph-Based	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Ideally	would	use	features	on	more	arcs

‣Grandparents:	ran	->	to	->	house

‣ Siblings:	dog	<-	ran	->	to

Higher-Order	Parsing
‣ Terry	Koo	(2010)

‣ Track	addiSonal	state	during	parsing	so	we	can	look	at	grandparents	and	
siblings,	O(n4)

‣ AddiSonal	indicator	features	based	
on	this	informaSon,	~93	UAS	(up	
from	91	UAS)

‣ Turns	out	you	can	just	use	beam	
search	and	forget	this	crazy	
dynamic	program…

ShiL-Reduce	Parsing

ShiL-Reduce	Parsing

‣ Similar	to	determinisSc	parsers	for	compilers

‣ A	tree	is	built	from	a	sequence	of	incremental	decisions	moving	
leL	to	right	through	the	sentence

‣ ShiLs	consume	the	buffer,	reduces	build	a	tree	on	the	stack

‣ Stack	containing	parSally-built	tree,	buffer	containing	rest	of	
sentence

‣ Also	called	transiSon-based	parsing

ShiL-Reduce	Parsing

I	ate	some	spaghew	bolognese

ROOT

‣ ShiL	1:	Stack:		[ROOT	I]				Buffer:		[ate	some	spaghew	bolognese]

‣ ShiL:	top	of	buffer	->	top	of	stack

‣ IniSal	state:	Stack:		[ROOT]				Buffer:		[I	ate	some	spaghew	bolognese]

‣ ShiL	2:	Stack:		[ROOT	I	ate]				Buffer:		[some	spaghew	bolognese]

ShiL-Reduce	Parsing

I	ate	some	spaghew	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spaghew	bolognese]

‣ LeL-arc	(reduce	operaSon):	Let					denote	the	stack�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

‣ State:	Stack:		[ROOT	ate]				Buffer:		[some	spaghew	bolognese]

I

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of,

Arc-Standard	Parsing

‣ Start:	stack	contains	[ROOT],	buffer	contains	[I	ate	some	spaghew	bolognese]

‣ ShiL:	top	of	buffer	->	top	of	stack
‣ LeL-Arc: �|w�2, w�1 ! �|w�1 w�1w�2

‣ Right-Arc �|w�2, w�1 ! �|w�2

is	now	a	child	of,

w�1 w�2,

I	ate	some	spaghew	bolognese

‣ End:	stack	contains	[ROOT],	buffer	is	empty	[]

‣ Must	take	2n	steps	for	n	words	(n	shiLs,	n	LA/RA)

is	now	a	child	of

ROOT

‣ Arc-standard	system:	three	operaSons

Arc-Standard	Parsing

[I	ate	some	spaghew	bolognese][ROOT]

[ROOT	I]

[ROOT	I	ate]

[ROOT	ate]

I

S

S

L

‣ Could	do	the	leL	arc	later!	But	no	reason	to	wait
‣ Can’t	aaach	ROOT	<-	ate	yet	even	though	this	is	a	correct	dependency!

S					top	of	buffer	->	top	of	stack
LA
RA

[I	some	spaghew	bolognese]

[some	spaghew	bolognese]

[some	spaghew	bolognese]

I	ate	some	spaghew	bolognese

ROOT
pop	two,	leL	arc	between	them
pop	two,	right	arc	between	them

Arc-Standard	Parsing

[ROOT	ate]

I

[some	spaghew	bolognese]

[ROOT	ate	some	spaghew]

I

[bolognese]

[ROOT	ate	spaghew]

I some

[bolognese]

S

L

I	ate	some	spaghew	bolognese

S

ROOT

S

S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	leL	arc	between	them
pop	two,	right	arc	between	them

Arc-Standard	Parsing

[ROOT	ate	spaghew	bolognese]

I some

[ROOT	ate	spaghew]

I some bolognese
[ROOT	ate]

I
some bolognese
spaghew

‣ Stack	consists	of	all	words	that	are	
sSll	waiSng	for	right	children,	end	
with	a	bunch	of	right-arc	ops

[ROOT]

I
some bolognese
spaghew

ate

[]

I	ate	some	spaghew	bolognese

ROOT

[]

[]
[]

Final	state:

R

R

S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	leL	arc	between	them
pop	two,	right	arc	between	them

Other	Systems
‣ Arc-eager	(Nivre,	2004):	lets	you	add	right	arcs	sooner	and	keeps	
items	on	stack,	separate	reduce	acSon	that	clears	out	the	stack

‣ Arc-swiL	(Qi	and	Manning,	2017):	explicitly	choose	a	parent	from	
what’s	on	the	stack

‣ Many	ways	to	decompose	these,	which	one	works	best	depends	on	
the	language	and	features

Building	ShiL-Reduce	Parsers

[ROOT	ate	some	spaghew]

I

[bolognese]

‣ Correct	acSon	is	leL-arc

‣ MulS-way	classificaSon	problem:	shiL,	leL-arc,	or	right-arc?

[ROOT] [I	ate	some	spaghew	bolognese]

‣ How	do	we	make	the	right	decision	in	this	case?

‣ How	do	we	make	the	right	decision	in	this	case?	(all	three	acSons	legal)

‣ Only	one	legal	move	(shiL)

Features	for	ShiL-Reduce	Parsing

[ROOT	ate	some	spaghew]

I

[bolognese]

‣ Features	to	know	this	should	leL-arc?

‣ One	of	the	harder	feature	design	tasks!

‣ In	this	case:	the	stack	tag	sequence	VBD	-	DT	-	NN	is	preay	informaSve	
—	looks	like	a	verb	taking	a	direct	object	which	has	a	determiner	in	it

‣ Things	to	look	at:	top	words/POS	of	buffer,	top	words/POS	of	stack,	
leLmost	and	rightmost	children	of	top	items	on	the	stack

Training	a	Greedy	Model

‣ Use	our	oracle	to	extract	parser	states	+	correct	decisions

‣ Problem:	no	look	ahead

[ROOT	ate	some	spaghew]

I

[bolognese]

‣ Train	a	classifier	to	predict	the	right	decision	using	these	as	training	data

‣ The	algorithm	we’ve	developed	so	far	is	an	oracle,	tells	us	the	
correct	state	transiSon	sequence	for	each	tree

‣ No	lookahead
‣ Training	data	is	extracted	assuming	everything	is	correct

Dynamic	Oracle

‣ Need	a	dynamic	oracle	to	determine	what’s	the	opSmal	thing	to	do	even	
if	mistakes	have	already	been	made	(so	we	know	how	to	supervise	it)

[ROOT	ate	some	spaghew]

I

[bolognese]

‣ Extract	training	data	based	on	the	oracle	but	also	an	execuSon	trace	
of	a	trained	parser

Goldberg	and	Nivre	(2012)

‣ We’ll	see	similar	ideas	in	neural	net	contexts	as	well

Speed	Tradeoffs

UnopSmized	S-R{
{
{
{

Chen	and	Manning	(2014)

OpSmized	S-R

Graph-based

Neural	S-R

‣ OpSmized	consStuency	parsers	are	~5	sentences/sec

‣ Using	S-R	used	to	mean	taking	a	performance	hit	compared	to	
graph-based,	that’s	no	longer	true

Global	Decoding

[ROOT	ate	some	spaghew]

I

[bolognese]

‣ Try	to	find	the	highest-scoring	sequence	of	decisions

‣ Global	search	problem,	requires	approximate	search

Global	Decoding

[ROOT	gave	him]

I

[dinner]

‣ Correct:	Right-arc,	ShiL,	Right-arc,	Right-arc

I	gave	him	dinner

ROOT

[ROOT	gave]

I

[dinner]

him

[ROOT	gave	dinner]

I

[]

him

[ROOT	gave]

I

[]

him dinner

Global	Decoding:	A	Cartoon

S

LA

RA

‣ Both	wrong!	Also	
both	probably	
low	scoring!

RA S
‣ Correct,	high	
scoring	opSon

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

[ROOT	gave	him	dinner]

I

[]

LA

[ROOT	gave]

I him

[dinner]

Global	Decoding:	A	Cartoon

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

‣ Lookahead	can	help	us	avoid	gewng	stuck	in	bad	spots

‣ Global	model:	maximize	sum	of	scores	over	all	decisions

‣ Similar	to	how	Viterbi	works:	we	maintain	uncertainty	over	the	current	
state	so	that	if	another	one	looks	more	opSmal	going	forward,	we	can	
use	that	one

Recap

‣ Eisner’s	algorithm	for	graph-based	parsing

‣ Arc-standard	system	for	transiSon-based	parsing

‣ Run	a	classifier	and	do	it	greedily	for	now,	we’ll	see	global	systems	next	
Sme

