
Project 1: CRFs for NER

Abstract

In this assignment, we look at the prob-
lem of Named Entity Recognition (NER),
which is a sequence labeling task. We
approach the problem using chain CRF
model. Further, we compare the CRF
model to structured SVM, in terms of F1
score, learning curve, training time and
variation across multiple runs.

1 Problem statement

Named Entity Recognition (NER) is a natural lan-
guage processing task that attempts to find named
entities (persons, locations, organizations, etc.)
within a text. Since the tag of one word depends
on neighboring words (and their tags), the problem
is modeled as a sequence labeling task, wherein a
sentence is considered as an input, and the goal is
to produce the tags of all words jointly, so as to
maximize accuracy.

Evaluation Metric: Since most of the tags are
‘O’, using a simple token-wise accuracy is not rep-
resentative of the actual performance of the model.
So, we compute chunks using the BIO tags to
compute predicted entities, and compare them to
the ground truth entities, to calculate an F1 score.

2 Basic CRF model

2.1 Implementation details

Forward-backward algorithm: We use
forward-backward algorithm to compute marginal
probabilities required by stochastic gradient
descent on log likelihood. For the forward pass,
the scores of the first word are set to the emission
potentials, and for backward pass, the scores of
the last word are initialized to 1 (or 0 in the log
space).

Gradient descent: Stochastic gradient descent
was used with constant step size. The value of the
step size was determined to be 0.2, using valida-
tion. In each epoch, the sentences in the training
corpus were shuffled, and one sentence was used
per step of gradient descent.

Initial and Transition potentials: Initial and
transition potentials were hard-coded to prevent il-
legal tag sequences, by disallowing an ‘I’ tag to be
at the start of the sentence, or following an ‘O’ tag
or a ‘B’ tag from a different category.

Viterbi decoding: In order to reuse the Viterbi
decoding implementation for HMMs which takes
a precomputed table of emission potentials for
all (tag, word) pairs, a wrapper was written that
computes emission potentials for each sentence.
Specifically, given a sentence, the Viterbi algo-
rithm will only require emission potentials of (tag,
word) pairs for words that appear in the given sen-
tence. However, since in CRFs, the emission fea-
tures are dependent on the position of the word,
using an indexer that maps a word literal to an in-
dex in the emission table doesn’t work if the sen-
tence has duplicates. Therefore, in the wrapper, an
auxiliary sentence was created where each word
token is identical to the word position, and a word
indexer maps the word tokens (‘0’, ‘1’, . . ., ‘N’) to
indexes (0, 1, . . ., N) respectively, where N is the
length of the sentence. The corresponding emis-
sion table (in the log space) is computed by multi-
plying the learnt feature vector with the emission
features for the words.

Results: The resulting CRF model achieves an
F1 score of 88.29 on the development set.



3 Extensions: Structured SVM model

3.1 Implementation details
Loss-augmented Viterbi decoding: To com-
pute the most violated constraint, Viterbi algo-
rithm was extended so that for every word posi-
tion, the score of each incorrect tag was incre-
mented by 1. The resulting dynamic program re-
turns the correct tag sequence if the scores of the
correct tags at each step are larger than the next
highest score by at least a margin of 1. Otherwise,
it returns the most violated sequence of tags ac-
cording to the structured SVM constraint set. The
output is then used to compute the gradient for the
weight vector.

Gradient descent: As in CRF model, we use
one sentence per gradient step for stochastic gra-
dient descent with a fixed step size. The values
of the step size and the regularization parameter
were found to be 0.5 and 0.00001 respectively us-
ing validation on the development set.

Results: The structured SVM model achieves an
F1 score of 83.16 on the development set.

3.2 Comparison of CRF and structured SVM
models

In the following, we compare the two models on
various different parameters.

Accuracy vs training iterations: The graph be-
low shows the F1 scores of the models plotted as
a function of the number of epochs.

Figure 1: F1 score comparison for CRF and
structured SVM as a function of the number of

epochs.

As can be seen from the figure above, both the
models are fairly similar in terms of converging to

their respective F1 scores.

Accuracy vs number of samples: The graph
below shows the F1 scores of the models plotted
as a function of the number of training samples.

Figure 2: F1 score comparison for CRF and
structured SVM as a function of the number of

training samples.

Again, we see that the convergence behavior is
similar for both curves.

Variation across multiple runs: An interesting
observation can be made from the graph above
– while the curve for CRF is monotonically in-
creasing, the curve for structured SVM does not.
This suggests that the performance of structured
SVM varies more across multiple runs. To test
this hypothesis, we run both models with best
parameters for 5 independent runs, and compute
the mean and standard deviation of the F1 scores.

For CRF, the mean F1 score was obtained to be
88.29, and the standard deviation was found to be
0.18. For structured SVM, the mean F1 score was
obtained to be 83.16, and the standard deviation
was found to be 1.96. Thus, we see that it is in-
deed true that different runs of SVM are likely to
generate more varied results, possibly because it
is more sensitive to the stochasticity of SGD. One
way to get around this problem is to increase the
batch size to have better estimates of gradients at
every step, at the expense of increasing the train-
ing time.

Training time: The mean training time of CRF
was found to be about 57 minutes, while that of
structured SVM was found to be about 28 min-
utes. Therefore, training structured SVM is about



twice as fast as training CRF. This factor of two
probably comes from the fact that in training CRF,
every gradient computation needs to perform a for-
ward and backward pass, while in training struc-
tured SVM, only a forward pass is required in loss-
augmented Viterbi algorithm.

4 Conclusions

We implemented a chain CRF model for NER tag-
ging of English sentences, and compared the per-
formance of the model to that of structured SVM.
We observe that while structured SVM is twice as
fast to train compared to CRF model, the F1 score
generated by CRF model is about 3.5% better in
relative terms. Further, CRF appears to be less
sensitive to stochasticity in gradient descent.


