
 1

Project 1

1 Introduction

In Named Entity Recognition tasks, we are
trying to label, in text, the tokens which corre-
spond to entities such as an organization, a person,
a place, or some other miscellaneous entity. A
common way of labeling this data is the BIO tag
scheme, which consists of labeling each token in a
sentence with a B, I or O tag. An O tag represents
a token that is not part of an entity name, and a B
or I represent tokens which are the beginning or
continuation of an entity name, respectively. B
and I tokens are also appended with a label de-
scribing the type of entity the describe, either Per-
son (PER), Location (LOC), Organization (ORG),
or some other entity (MISC).

In this project, our task is to build an NER
model capable of predicting the correct BIO tags
for each token in a given sentence. The model we
use is a Conditional Random Field, a discrimina-
tive graphical model capable of predicting BIO
tags for sequences of tokens of varying length.
This model explains the problem as a set of states
and transitions, although in our implementation
we choose not to use transition data, instead favor-
ing features that attempt to capture relevant in-
formation regarding transitions and by enforcing
structure in our decoding.

2 Implementation

In my implementation of CRF, I make two var-
iations from the standard CRF. One of them is
during training, regarding the computation of for-
ward-backward score, and the other is during de-
coding, where I enforce some structure in the de-
coder to prevent illegal sequences from being
produced.

2.1 Training

The item of note done differently in my imple-
mentation from a standard CRF is the computa-
tion of the forward-backward algorithm. This al-
gorithm has complexity of 𝑂 𝑁𝑇$ where 𝑁 is
the number of tokens in the sentence, and 𝑇 is the
number of tags (9 for BIO tags). However, after
making the choice not to include transition fea-

tures into our model, we can simplify the algo-
rithm’s complexity to 𝑂 𝑁𝑇 by assuming a tran-
sition score of 1 for each transition, which pre-
vents us from having to multiply the forward
score of the each previous tag by the transition
score before multiplying. Instead we can just sum
the previous columns forward scores, and for each
tag multiply that sum by the emission score of the
tag to get that tag’s forward score.
This changes the value of a given forward score to
be

 𝛼& 𝑡 = 𝑠𝑐𝑜𝑟𝑒 𝑤&, 𝑡 ∗ 𝛼&12(𝑡4)6
74

where n is the current position in the sequence,

and t is the tag whose forward score at position n
is being evaluated.

 A similar technique can be used to calculate
the backward scores.

2.2 Decoding

To predict a sequence of BIO tags for a given
sequence, we use the Viterbi algorithm to find the
optimal path of tags that gives us the highest score
in the model given the unlabeled sequence of to-
kens. The only thing of note here is that, because
we are not using transition features, we instead as-
sume a transition score of 1 unless the transition is
considered illegal. An illegal transition is any
transition to an I-tag that does not come from the
matching category B-tag (including starting with
an I tag). When we make this transition in the
Viterbi algorithm, we assign a transition score that
is very large and negative, to assure that Viterbi
will not take this path as the optimal.

3 Extensions

3.1 Training

In addition to using regular Stochastic Gradient
Descent, I used the Adagrad Optimizer as well.
Additionally, I implemented batching for both of
these trainers and tested several different batch
sizes.

The Adagrad Optimizer took a significantly
longer amount of time to train than SGD, because
of the extra complexity involved when updating

 2

and accessing the weights. However, with the
same step size as SGD and a lambda value of
101:, the Adagrad optimizer performed signifi-
cantly better than SGD, achieving a score of 86.98
on the test data after only 5 epochs, compared to
SGD’s 79.36.

Training in batches however, proved to hurt test
set performance significantly. Both SGD and
Adagrad saw performance losses for batch sizes
greater than one. As batch size got larger, perfor-
mance got worse and worse, by a significant
amount.

My initial thought was that due to the sparsity
of the features, there was little overlap between
features in a batch, and thus each feature’s gradi-
ent was getting scaled down by batch size without
receiving the size boost of being affected by each
item in the batch. However, scaling up step size to
match batch size had no effect on test set perfor-
mance, and additionally the speed improvements
seen by batching the Adagrad optimizer would not
have occurred if there were little overlap between
features in each batch. Running larger batch sizes
for longer time periods did improve performance,
but with Adagrad, this will eventually taper off to
barely moving at all, and this also makes the
speed improvements gained from training in
batches obsolete.

I decided that training in batches had little ben-
efit for this model and problem, and significantly
hurt training.

3.2 Extended Prediction History

A feature that I wanted to add to the data set is
a feature referred to as Extended Prediction Histo-
ry in Ratinov (2009). This feature attempts to take
advantage of the fact that the ConLL03 data has a
lot of sentences that are locally related. For exam-
ple, in the dev set has an example “Japan then laid

siege to the Syrian penalty area for most of the
game but rarely breached the Syrian defense”.
Then, two sentences later the sentence “Japan
coach Shu Kamo said ‘The Syrian own goal
proved lucky for us’” appears. So we should be
able to use information from sentences we’ve re-
cently decoded to help us make our decisions on
the current sentence, because of the way the data
is shaped. Intuitively, this could hurt us if we
make an incorrect prediction early on in the be-
ginning of a sequence of training sentences that
are related, because we would be biased towards
making that incorrect prediction again.

I implemented this a bit differently than the ref-
erence paper, for simplicity. I create a cache of the
last 20 sentences that have been decoded by the
model thus far. For each sentence in the cache, on-
ly named entities and their BIO tags are stored.
When we are extracting features for a given ex-
ample word, the cache is searched in the direction
of most recently added to least recently added to
see if we’ve decoded that word recently. Once the
sentence is decoded, we add the sentence and it’s
predicted BIO tags to the cache, and evict the least
recently added sentence (assuming we are at the
cache’s max capacity, which was set to 20). Dur-
ing training feature extraction, a similar method is
used, only instead of decoding after feature ex-
traction, we just add to the cache with the golden
BIO tag labels. Adding this feature to the CRF
model using the Adagrad optimizer and 5 epochs
resulted in an increase in score on the F1 test set
of about 1.3, moving us from 86.98 to a score of
88.27. Adding this additional layer of feature ex-
traction does add a bit of time to decoding, but for
5 epochs using Adagrad, it only added about 68
seconds to the total time. Inserting and removing
items are fast, because we simply push on the top,
and pop on the bottom of the cache, so searching
the cache in order is what takes most of that time.

3.3 Further Improvements

If I could discern why batches seem to hurt
training so poorly and fix it, then there would be a
potential for some serious speed improvements to
the system. Already, using batches in Adagrad has
significant advantages in terms of speed because
of how much less overhead you have per epoch
simply because you are updating the gradient

Optimizer Epochs Batch
Size

Time(s) F1

SGD (1) 5 1 499.591 83.27
SGD (1) 5 5 542.24 79.36
SGD (1) 5 10 484.938 78.69
SGD (1) 5 20 479.582 79.36
SGD (1) 10 1 1016.697 83.13
SGD (1) 15 1 1546.944 84.19
Adagrad (0.001, 1) 5 1 1412.670 73.22
Adagrad (0.00001,1) 5 1 1409.472 86.98
Adagrad (0.0001, 1) 5 10 917.950 78.47
Adagrad (0.0001, 1) 5 50 746.403 70.70
Adagrad (0.0001, 1) 15 50 2010.375 77.11

Table 1: Optimizer and Batch Data. SGD(step size), Adagrad(lambda, step
size)

Used Feature Time F1
CRF 1409.472 86.98
CRF with History 1468.346 88.27

Table 2: Comparing gain of Extended Prediction History

 3

fewer times. If this was to be parallelized, then
Adagrad training would probably get close to, or
beat standard SGD in terms of speed. However,
because of the hit that test performance takes, it
just doesn’t seem worth the tradeoff right now.

References
Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition

 4

