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1 Introduction 

In Named Entity Recognition tasks, we are 
trying to label, in text, the tokens which corre-
spond to entities such as an organization, a person, 
a place, or some other miscellaneous entity. A 
common way of labeling this data is the BIO tag 
scheme, which consists of labeling each token in a 
sentence with a B, I or O tag. An O tag represents 
a token that is not part of an entity name, and a B 
or I represent tokens which are the beginning or 
continuation of an entity name, respectively. B 
and I tokens are also appended with a label de-
scribing the type of entity the describe, either Per-
son (PER), Location (LOC), Organization (ORG), 
or some other entity (MISC). 

In this project, our task is to build an NER 
model capable of predicting the correct BIO tags 
for each token in a given sentence. The model we 
use is a Conditional Random Field, a discrimina-
tive graphical model capable of predicting BIO 
tags for sequences of tokens of varying length. 
This model explains the problem as a set of states 
and transitions, although in our implementation 
we choose not to use transition data, instead favor-
ing features that attempt to capture relevant in-
formation regarding transitions and by enforcing 
structure in our decoding. 

2 Implementation  

In my implementation of CRF, I make two var-
iations from the standard CRF. One of them is 
during training, regarding the computation of for-
ward-backward score, and the other is during de-
coding, where I enforce some structure in the de-
coder to prevent illegal sequences from being 
produced. 

2.1 Training 

The item of note done differently in my imple-
mentation from a standard CRF is the computa-
tion of the forward-backward algorithm. This al-
gorithm  has complexity of 𝑂 𝑁𝑇$  where 𝑁 is 
the number of tokens in the sentence, and 𝑇 is the 
number of tags (9 for BIO tags). However, after 
making the choice not to include transition fea-

tures into  our model, we can simplify the algo-
rithm’s complexity to 𝑂 𝑁𝑇  by  assuming a tran-
sition score of 1 for each transition, which pre-
vents us from having to multiply the forward 
score of the each previous tag by the transition 
score before multiplying. Instead we can just sum 
the previous columns forward scores, and for each 
tag multiply that sum by the emission score of the 
tag to get that tag’s forward score. 
This changes the value of a given forward score to 
be 

 𝛼& 𝑡 = 𝑠𝑐𝑜𝑟𝑒 𝑤&, 𝑡 ∗ 𝛼&12(𝑡4)6
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where n is the current position in the sequence, 

and t is the tag whose forward score at position n 
is being evaluated. 

 A similar technique can be used to calculate 
the backward scores. 

2.2 Decoding 

To predict a sequence of BIO tags for a given 
sequence, we use the Viterbi algorithm to find the 
optimal path of tags that gives us the highest score 
in the model given the unlabeled sequence of to-
kens. The only thing of note here is that, because 
we are not using transition features, we instead as-
sume a transition score of 1 unless the transition is 
considered illegal. An illegal transition is any 
transition to an I-tag that does not come from the 
matching category B-tag (including starting with 
an I tag). When we make this transition in the 
Viterbi algorithm, we assign a transition score that 
is very large and negative, to assure that Viterbi 
will not take this path as the optimal. 

3 Extensions 

3.1 Training 

In addition to using regular Stochastic Gradient 
Descent, I used the Adagrad Optimizer as well. 
Additionally, I implemented batching for both of 
these trainers and tested several different batch 
sizes.  

The Adagrad Optimizer took a significantly 
longer amount of time to train than SGD, because 
of the extra complexity involved when updating 
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and accessing the weights. However, with the 
same step size as SGD and a lambda value of   
101:,  the Adagrad optimizer performed signifi-
cantly better than SGD, achieving a score of 86.98 
on the test data after only 5 epochs, compared to 
SGD’s 79.36. 

Training in batches however, proved to hurt test 
set performance significantly. Both SGD and 
Adagrad saw performance losses for batch sizes 
greater than one. As batch size got larger, perfor-
mance got worse and worse, by a significant 
amount. 

My initial thought was that due to the sparsity 
of the features, there was little overlap between 
features in a batch, and thus each feature’s gradi-
ent was getting scaled down by batch size without 
receiving the size boost of being affected by each 
item in the batch. However, scaling up step size to 
match batch size had no effect on test set perfor-
mance, and additionally the speed improvements 
seen by batching the Adagrad optimizer would not 
have occurred if there were little overlap between 
features in each batch. Running larger batch sizes 
for longer time periods did improve performance, 
but with Adagrad, this will eventually taper off to 
barely moving at all, and this also makes the 
speed improvements gained from training in 
batches obsolete. 

I decided that training in batches had little ben-
efit for this model and problem, and significantly 
hurt training. 

3.2 Extended Prediction History 

A feature that I wanted to add to the data set is 
a feature referred to as Extended Prediction Histo-
ry in Ratinov (2009). This feature attempts to take 
advantage of the fact that the ConLL03 data has a 
lot of sentences that are locally related. For exam-
ple, in the dev set has an example “Japan then laid 

siege to the Syrian penalty area for most of the 
game but rarely breached the Syrian defense”. 
Then, two sentences later the sentence “Japan 
coach Shu Kamo said ‘The Syrian own goal 
proved lucky for us’” appears. So we should be 
able to use information from sentences we’ve re-
cently decoded to help us make our decisions on 
the current sentence, because of the way the data 
is shaped. Intuitively, this could hurt us if we 
make an incorrect prediction early on in the be-
ginning of a sequence of training sentences that 
are related, because we would be biased towards 
making that incorrect prediction again. 

I implemented this a bit differently than the ref-
erence paper, for simplicity. I create a cache of the 
last 20 sentences that have been decoded by the 
model thus far. For each sentence in the cache, on-
ly named entities and their BIO tags are stored. 
When we are extracting features for a given ex-
ample word, the cache is searched in the direction 
of most recently added to least recently added to 
see if we’ve decoded that word recently. Once the 
sentence is decoded, we add the sentence and it’s 
predicted BIO tags to the cache, and evict the least 
recently added sentence (assuming we are at the 
cache’s max capacity, which was set to 20). Dur-
ing training feature extraction, a similar method is 
used, only instead of decoding after feature ex-
traction, we just add to the cache with the golden 
BIO tag labels. Adding this feature to the CRF 
model using the Adagrad optimizer and 5 epochs 
resulted in an increase in score on the F1 test set 
of about 1.3, moving us from 86.98 to a score of 
88.27.  Adding this additional layer of feature ex-
traction does add a bit of time to decoding, but for 
5 epochs using Adagrad, it only added about 68 
seconds to the total time. Inserting and removing 
items are fast, because we simply push on the top, 
and pop on the bottom of the cache, so searching 
the cache in order is what takes most of that time. 

3.3 Further Improvements 

If I could discern why batches seem to hurt 
training so poorly and fix it, then there would be a 
potential for some serious speed improvements to 
the system. Already, using batches in Adagrad has 
significant advantages in terms of speed because 
of how much less overhead you have per epoch 
simply because you are updating the gradient 

Optimizer Epochs Batch 
Size 

Time(s) F1 

SGD (1) 5 1 499.591 83.27 
SGD (1) 5 5 542.24 79.36 
SGD (1) 5 10 484.938 78.69 
SGD (1) 5 20 479.582 79.36 
SGD (1) 10 1 1016.697 83.13 
SGD (1) 15 1 1546.944 84.19 
Adagrad (0.001, 1) 5 1 1412.670 73.22 
Adagrad (0.00001,1) 5 1 1409.472 86.98 
Adagrad (0.0001, 1) 5 10 917.950 78.47 
Adagrad (0.0001, 1) 5 50 746.403 70.70 
Adagrad (0.0001, 1) 15 50 2010.375 77.11 

Table 1: Optimizer and Batch Data. SGD(step size), Adagrad(lambda, step 
size) 

Used Feature Time F1 
CRF 1409.472 86.98 
CRF with History 1468.346 88.27 

Table 2: Comparing gain of Extended Prediction History 



 3 

fewer times. If this was to be parallelized, then 
Adagrad training would probably get close to, or 
beat standard SGD in terms of speed. However, 
because of the hit that test performance takes, it 
just doesn’t seem worth the tradeoff right now. 
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