CS388: Natural Language Processing
Lecture 12: Dependency |l

Greg Durrett

Recall: Dependencies

» Dependency syntax: syntactic structure is defined by dependencies
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol
» Dependencies must form a directed acyclic graph

<7 N

DT NN VBD TO DT NN
the dog ran to the

ROOT
house

Recall: Projectivity

» Projective <-> no “crossing” arcs

AN

dogs in houses and cats

N
the dog ran to the house

PUNC

» Crossing arcs:

ROOT
NP

NMOD

scheduled on the issue

root A hearing is today

credit: Language Log

Recall: Eisner’s Algorithm

» Left and right children are built independently, heads are edges of spans
» Complete item: all children are attached, head is at the “tall end”
» Incomplete item: arc from “tall end” to “short end”, may still expect children

the dog ran to the

This Lecture

» Transition-based (shift-reduce) dependency parsing

» Approximate, greedy inference — fast, but a little bit weird!

Shift-Reduce Parsing

Shift-Reduce Parsing

» Similar to deterministic parsers for compilers

» Also called transition-based parsing

» Atree is built from a sequence of incremental decisions moving
left to right through the sentence

» Stack containing partially-built tree, buffer containing rest of
sentence

» Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing
ROOT
A/A/\/\
| ate some spaghetti bolognese
» Initial state: Stack: [ROOT] Buffer: [l ate some spaghetti bolognese]
» Shift: top of buffer -> top of stack
» Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]

» Shift 2: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

Shift-Reduce Parsing

ROOT
K‘\//\/‘\

| ate some spaghetti bolognese

» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

» Left-arc (reduce): Let o denote the stack, alw_1= stack ending in w_;

» “Pop two elements, add an arc, put them back on the stack”

|a]w_2,w_1|—>|0]w_1|, w_g is now a child of w_1

» State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]
¥

Arc-Standard Parsing

ROOT
A/A/\/\

| ate some spaghetti bolognese
» Start: stack contains [ROOT], buffer contains [l ate some spaghetti bolognese

» Arc-standard system: three operations
» Shift: top of buffer -> top of stack

» Left-Arc: |a|w_2, w_1|—>|a|w_1[w_g is now a child of w_1

» Right-Arc |U|w—2, w—ll —>|U|w—2| , W—_1is now a child of w_2

» End: stack contains [ROQT], buffer is empty []

» How many transitions do we need if we have n words in a sentence?

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
NS LA pop two, left arc between them

| ate some spaghetti bolognese
Pag & RA pop two, right arc between them

[l ate some spaghetti bolognese]

[ROOT] E

[ROOT 1]

[ROOT I ate] I
L

[ate some spaghetti bolognese]
[some spaghetti bolognese]

[ROOT ate]
¥
|

» Could do the left arc later! But no reason to wait

» Can’t attach ROOT <- ate yet even though this is a correct dependency!

[some spaghetti bolognese]

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
NS LA pop two, left arc between them

| ate some spaghetti bolognese
bag & RA pop two, right arc between them

[ROOT ate] [some spaghetti bolognese]
X
.
[ROOT ate some spaghetti] [bolognese]
+
|
[ROOT aIe spaghetti] [bolognese]
¥
I some

Arc-Standard Parsing

ROOT

| ate some spaghetti bolognese

[ROQT ate spaghetti bolognese]]
\ '

| some

[ROOT ate spaghetti] (]
‘ 2
| some bolognese
[ROOT ateL E
¥ Spaghetti
Iy ™
some

(]

bolognese

S top of buffer -> top of stack
LA pop two, left arc between them
RA pop two, right arc between them

» Stack consists of all words that are
still waiting for right children, end
with a bunch of right-arc ops

Final state:

[ROOT] (1
™ ate

¥ Bpaghetti
Iy ™

some bolognese

Other Systems

» Arc-eager (Nivre, 2004): lets you add right arcs sooner and keeps
items on stack, separate reduce action that clears out the stack

» Arc-swift (Qi and Manning, 2017): explicitly choose a parent from
what’s on the stack

» Many ways to decompose these, which one works best depends on
the language and features (nonprojective variants too!)

Building Shift-Reduce Parsers

[ROOT]

[I ate some spaghetti bolognese]

» How do we make the right decision in this case?

» Only one legal move (shift)

[ROOT ate some spaghetti]
v

[bolognese]

» How do we make the right decision in this case? (all three actions legal)

» Multi-way classification problem: shift, left-arc, or right-arc?

argmax,c (s L,A,RA} w' f(stack, buffer, a)

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese]
¥

I
» Features to know this should left-arc?

» One of the harder feature design tasks!

» In this case: the stack tag sequence VBD - DT - NN is pretty informative
— looks like a verb taking a direct object which has a determiner in it

» Things to look at: top words/POS of buffer, top words/POS of stack,
leftmost and rightmost children of top items on the stack

Training a Greedy Model

[ROOT ate some spaghetti] [bolognese]
¥

I
argmaxye{S’LA,RA}wa(y7 stack, buffer)

» Can turn a tree into a decision sequence a by building an oracle
» Train a classifier to predict the right decision using these as training data
» Training data assumes you made correct decisions up to this point

and teaches you to make the correct decision, but what if you
screwed up...

Greedy training

Start state -

State space

» Greedy: 2n local training examples
» Non-gold states unobserved during training: consider

making bad decisions but don’t condition on bad decisions

Speed Tradeoffs

Dev Test Speed
UAS LAS| UAS LAS| (sent/s)
standard 89.9 88.7| 89.7 88.3 51
eager 90.3 89.2| 899 88.6 63
Malt:sp 90.0 88.8|89.9 88.5| 560
Malt:eager | 90.1 889| 90.1 88.7| 535
Graph-based MSTParser | 92.1 90.8 | 92.0 90.5 12

Neural S-R { Our parser | 92.2 91.0| 92.0 90.7| 1013

» Many early-2000s constituency parsers were ~5 sentences/sec

Parser

Unoptimized S-R

Optimized S-R

» Using S-R used to mean taking a performance hit compared to

graph-based, that’s no longer true Chen and Manning (2014)

Global Decoding

Global Decoding
OSSN

[ROOT gave him] [dinner]
| gave him dinner +

I
» Is it a problem that we make decisions greedily?

» Correct: Right-arc, Shift, Right-arc, Right-arc

[ROOT gave] [dinner]
¥
I him
[ROOT gave dinner] [] [ROOT gave] [
¥+ N
I him I him dinner

Global Decoding: A Cartoon
2SN

[ROOT gave him] [dinner]
| gave him dinner V

LA
» Both wrong! Also

[ROOT gave him dinner] [] both probably

S f RA low scoring!

» Correct, high
scoring option

RA [ROOT gavel] [dinner] — S
™\

I him

Global Decoding: A Cartoon
Y SIN

[ROOT gave him] [dinner]
| gave him dinner ¥

» Lookahead can help us avoid getting stuck in bad spots

» Global model: maximize sum of scores over all decisions

» Similar to how Viterbi works: we maintain uncertainty over the current
state so that if another one looks more optimal going forward, we can
use that one

Global Shift-Reduce Parsing
2SI

[ROOT gave him] [dinner]
| gave him dinner ¥

I
» Greedy: repeatedly execute » Global:

2n
T
best < argmax,w f(s,a) argmaxs,aw—rf(s, a) = Z w' f(sq,a;)
i=1

S < Qbest (5) Si+1 = ai(si)

» Can we do search exactly?
» How many states s are there?

» No! Use beam search

Beam Search

» Maintain a beam of k plausible states at the current timestep, expand
each and only keep top k best new ones

» Example: POS

VBZ 2.0/ ~\
NNS-1.0

—|VBD +1.2 » Maintain priority queue

to efficiently add things

VBZ +1.2'
——|NNP +0.9

—|VBN +0.7
—— NN +0.3 =<— PRP -5.8 —<—

Not expanded
Fed raises

» Beam size of k, n words, s states, time complexity O(nks log(ks))

Not expanded

How good is beam search?

» k=1: greedy search

» Choosing beam size:
» 2 is usually better than 1
» Usually don’t use larger than 50

» Depends on problem structure

Global Shift-Reduce Parsing

E[ROOT gave him dinner] [] S[ROOT gave dinner] (1
¥ +0.9 i ™\ +2.0
' | S| I him
- .
E[ROOT gfv\eA] [dinner] / [ROOT gave dinner] [
: L him -1.2¢ LA ‘ v -2.0
I him

» Beam search gave us the [ROOT gfve him] 3.0

lookahead to make the right RA er)

decision [

Global Training

» If using global inference, should train the parser in a global fashion as
well: use structured perceptron / structured SVM

» Model treats an entire derivation as something to featurize

» No algorithm like Viterbi for doing efficient parsing, so use beam search

State-of-the-art Parsers

State-of-the-art Parsers
» 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
» 2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)
» 2012: Maltparser was SOTA was for transition-based (~90 UAS)

» 2014: Chen and Manning got 92 UAS with transition-based neural
model

» 2016: Improvements to Chen and Manning

h=(WPz® + Wizt + Wit 4 by)?

State-of-the-art Parsers

Softmax layer: [.]
p = softmax(Wah)
Hidden layer: [! T |]

7

w ot

Input layer: [z, zt, z!] [V788 """ &i\\\\\\\\\]

words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good JJ | | control NN ...
"~ nsubj
He_PRP

Chen and Manning (2014)

Parsey McParseFace (a-ka. SyntaxNet)

» Close to state-of-the-art, released by Google publicly

» 94.61 UAS on the Penn Treebank using a global transition-based system
with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)
» Additional data harvested via “tri-training”, form of self-training
» Feedforward neural nets looking at words and POS associated with
» Words at the top of the stack
» Those words’ children
» Words in the buffer
» Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Andor et al. (2016)

Stack LSTMs

» Use LSTMs over stack, buffer, past action sequence. Trained greedily

» Slightly less good than Parsey

S B
A
7 /\Op /\09)
T amod T T T
0 an [\ deczszon was made ROOT 0
overhasty ©
\ le— REDUCE-LEFT(amod)

Iﬁ‘_ SHIFT

Dyer et al. (2015)

Recap

» Shift-reduce parsing can work nearly as well as graph-based

» Arc-standard system for transition-based parsing
» Purely greedy or more “global” approaches

» Next time: semantic parsing

