
CS388:	Natural	Language	Processing	
Lecture	13:	Seman8cs	I

Greg	Durrett

Slides	adapted	from	Dan	Klein,	UC	Berkeley

Administrivia
‣Mini	2	due	*today*	at	5pm

Recall:	Dependencies

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntac8c	structure	is	defined	by	dependencies	
‣Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol	
‣Dependencies	must	form	a	directed	acyclic	graph

ROOT

Recall:	ShiX-Reduce	Parsing

I	ate	some	spagheZ	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spagheZ	bolognese]

‣ LeX-arc	(reduce	opera8on):	Let					denote	the	stack�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

‣ State:	Stack:		[ROOT	ate]				Buffer:		[some	spagheZ	bolognese]

I

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of,



Where	are	we	now?
‣ Early	in	the	class:	sentences	are	just	sequences	of	words

‣Why	is	this	useful?	What	does	this	allow	us	to	do?

‣Now	we	can	understand	them	in	terms	of	tree	structures	as	well

‣ We’re	going	to	see	how	parsing	can	be	a	stepping	stone	towards	more	
formal	representa8ons	of	language	meaning

Today
‣ First-order	logic

‣ CCG	parsing	for	database	queries

‣ Composi8onal	seman8cs	with	first-order	logic

‣ Lambda-DCS	for	ques8on	answering

First-Order	Logic

First-order	Logic

‣ sings	is	a	predicate	(with	one	argument),	func8on	f:	en8ty	=>	true/false

‣ Powerful	logic	formalism	including	things	like	en88es,	rela8ons,	and	
quan8fica8ons

‣ [[sings]]	=	denota,on,	set	of	en88es	which	sing	(sort	of	like	execu8ng	
this	predicate	on	the	world	—	we’ll	come	back	to	this)

‣ Proposi8ons:	let	a	=	It	is	day,	b	=	It	is	night
‣ a	∨	b	=	either	a	is	true	or	b	is	true,	a	=>	¬b	=	a	implies	not	b

‣ More	complex	statements:	“Lady	Gaga	sings”

‣ sings(Lady	Gaga)	=	true	or	false,	have	to	execute	this	against	some	
database	(called	a	world)



Quan8fica8on

‣ ∀x	sings(x)	∨	dances(x)	=>	performs(x)

‣ ∃y	∀x	friend(x,y)

‣ Universal	quan8fica8on:	“forall”	operator

‣ Existen8al	quan8fica8on:	“there	exists”	operator

‣ ∀x	∃y	friend(x,y)
‣ Source	of	ambiguity!	“Everyone	is	friends	with	someone”

“Everyone	who	sings	or	dances	performs”

“Someone	sings”‣ ∃x	sings(x)

Logic	in	NLP
‣ Ques8on	answering:

‣ Informa8on	extrac8on: Lady	Gaga	and	Eminem	are	both	musicians

∀x	musician(x)	=>	performer(x)

musician(Lady	Gaga)	∧	musician(Eminem)	

Then:	performer(Lady	Gaga)	∧	performer(Eminem)	

Who	are	all	the	American	singers	named	Amy?

λx.	na8onality(x,USA)	∧	sings(x)	∧	firstName(x,Amy)

‣ Func8on	that	maps	from	x	to	true/false,	like	filter.	Execute	this	
on	the	world	to	answer	the	ques8on

‣ Can	now	do	reasoning.	Maybe	know:

‣ Lambda	calculus:	powerful	system	for	expressing	these	func8ons

Composi8onal	Seman8cs	with	First-
Order	Logic

Truth-Condi8onal	Seman8cs
Id Name Alias Birthdate Sings?

e470 Stefani	Germanooa Lady	Gaga 3/28/1986 T
e728 Marshall	Mathers Eminem 10/17/1972 T

‣ Database	containing	en88es,	predicates,	etc.

‣ Truth-condi8onal	seman8cs:	sentence	expresses	something	about	the	
world	which	is	either	true	or	false

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

‣ Denota8on:	evalua8on	of	some	expression	against	this	database

‣[[Lady	Gaga]] = e470

denota8on	of	this	string	is	an	en8ty

‣[[sings(e470)]] = True

denota8on	of	this	expression	is	T/F



Parses	to	Logical	Forms

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

e470

λy. sings(y)
takes	one	argument	(y,	the	en8ty)	and	
returns	a	logical	form	sings(y)

λy. sings(y)

sings(e470)

‣We	can	use	the	syntac8c	parse	as	a	bridge	to	the	lambda-calculus	
representa8on,	build	up	a	logical	form	composi,onally

func8on	applica8on:	apply	this	to	e470
ID

Parses	to	Logical	Forms

NP

VPNNP NNP

S

VBP
Lady			Gaga

sings

e470

λy. sings(y)

sings(e470) ∧ dances(e470)

VP

CC VP

VBP
dances
λy. dances(y)

and

VP:	λy.	a(y)	∧	b(y)	->	VP:	λy.	a(y)	CC	VP:	λy.	b(y)

λy. sings(y) ∧ dances(y)

‣ General	rules:
S:	f(x)	->	NP:	x	VP:	f

Parses	to	Logical	Forms

NP

NNP NNP

S

VBD
Lady			Gaga was

e470

λx.λy. born(y,x)

born(e470,3/28/1986)

VP

NP

March	28,	1986born

λy. born(y, 3/28/1986)

VBN

VP

λy. born(y, 3/28/1986)

‣How	to	handle	tense:	should	we	indicate	that	this	happened	in	the	past?
‣ Func8on	takes	two	arguments:	first	x	(date),	then	y	(en8ty)

3/28/1986

Tricky	things
‣ Adverbs/temporality:	Lady	Gaga	sang	well	yesterday

∃e. type(e,sing) ∧ agent(e,e470) ∧ manner(e,well) ∧ time(e,…)
‣ “Neo-Davidsonian”	view	of	events:	things	with	many	proper8es:

‣ Quan8fica8on:	Everyone	is	friends	with	someone

‣ Generic:	Cats	eat	mice	(all	cats	eat	mice?	most	cats?	some	cats?)

∀x ∃y friend(x,y)∃y ∀x friend(x,y)
(different	friends)(one	friend)

‣ Same	syntac8c	parse	for	both!	So	syntax	doesn't	resolve	all	ambigui8es

sings(Lady Gaga, time=yesterday, manner=well)

‣ Indefinite:	Amy	ate	a	waffle ∃w. waffle(w) ∧ ate(Amy,w)



QA	from	Parsing

				Lady			Gaga			born

NP VP

WHADVP

VBD

SQ

WRB

NNP NNP VBN

SBARQ

When was

λx. born(e470,x)
‣ Execute	this	func8on	
against	a	knowledge	base	
to	answer	the	ques8on

‣ Tricky	to	parse	due	to	wh-movement…would	be	easier	if	we	said	
Lady	Gaga	was	born	when

Seman8c	Parsing
‣ For	ques8on	answering,	syntac8c	parsing	doesn’t	tell	you	everything	you	
want	to	know,	but	indicates	the	right	structure

‣ Solu8on:	seman,c	parsing:	many	forms	of	this	task	depending	on	
seman8c	formalisms

‣ Two	today:	CCG	(looks	like	what	we’ve	been	doing)	and	lambda-DCS

CCG	Parsing

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman8cs

‣ Syntac8c	categories	(for	this	lecture):	S,	NP,	
“slash”	categories

‣ S\NP:	“if	I	combine	with	an	NP	on	my	
leX	side,	I	form	a	sentence”	—	verb

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

‣ Parallel	deriva8ons	of	syntac8c	parse	and	lambda	calculus	expression

‣ When	you	apply	this,	there	has	to	be	a	
parallel	instance	of	func8on	
applica8on	on	the	seman8cs	side



Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman8cs
‣ Syntac8c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	leX	side,	I	form	a	sentence”	—	verb
‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	leX”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas
e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

CCG	Parsing

Zeolemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

‣ Lexicon	is	highly	ambiguous	—	all	the	challenge	of	CCG	parsing	is	in	
picking	the	right	lexicon	entries

CCG	Parsing

Slide	credit:	Dan	Klein

‣ “to”	needs	an	NP	(des8na8on)	and	N	(parent)

Building	CCG	Parsers

Zeolemoyer	and	Collins	(2005)

‣Model:	log-linear	model	over	
deriva8ons	with	features	on	rules:

P (d|x) / expw

>

 
X

r2d

f(r, x)

!

‣ Can	parse	with	a	variant	of	CKY
Eminem sings

NP S\NP
e728 λy. sings(y)

S
sings(e728)

f

f

f =	Indicator(S\NP	->	sings)

=	Indicator(S	->	NP	S\NP)



Building	CCG	Parsers

Zeolemoyer	and	Collins	(2005)

‣ Training	data	looks	like	pairs	of	sentences	and	logical	forms

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

‣ Texas	corresponds	to	NP	|	e89	in	the	logical	form	(easy	to	figure	out)

(S/(S\NP))/N	|	λf.λg.λx. f(x) ∧ g(x)‣ What	corresponds	to

‣ How	do	we	infer	that	without	being	told	it?

‣ Problem:	we	don’t	know	the	deriva8on

Lexicon

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

‣ Any	substring	can	parse	to	any	of	these	in	the	lexicon

‣ Chunks	inferred	from	the	logic	form	based	on	rules:

‣ GENLEX:	takes	sentence	S	and	logical	form	L.	Break	up	logical	form	
into	chunks	C(L),	assume	any	substring	of	S	might	map	to	any	chunk

‣ Texas	->	NP:	e89	is	correct
‣ border	Texas	->	NP:	e89
‣ What	states	border	Texas	->	NP:	e89
… Zeolemoyer	and	Collins	(2005)

‣ NP:	e89	 ‣ (S\NP)/NP:	λx.	λy. borders(x,y)

GENLEX

‣ Very	complex	and	hand-engineered	way	of	taking	lambda	calculus	
expressions	and	“backsolving”	for	the	deriva8on

Zeolemoyer	and	Collins	(2005)

Learning

Zeolemoyer	and	Collins	(2005)

‣ Itera8ve	procedure	like	the	EM	algorithm:	es8mate	“best”	parses	that	
derive	each	logical	form,	retrain	the	parser	using	these	parses	with	
supervised	learning

‣ We’ll	talk	about	a	simpler	form	of	this	in	a	few	slides



Applica8ons

‣ GeoQuery:	answering	ques8ons	about	states	(~80%	accuracy)

‣ Jobs:	answering	ques8ons	about	job	pos8ngs	(~80%	accuracy)

‣ ATIS:	flight	search

‣ Can	do	well	on	all	of	these	tasks	if	you	handcraX	systems	and	use	
plenty	of	training	data:	these	domains	aren’t	that	rich

‣ What	about	broader	QA?

Lambda-DCS

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

‣ Dependency-based	composi8onal	seman8cs	—	original	version	was	
less	powerful	than	lambda	calculus,	lambda-DCS	is	as	powerful

‣ Designed	in	the	context	of	building	a	QA	system	from	Freebase

‣ Freebase:	set	of	en88es	and	rela8ons

Alice	Smith

Bob	Cooper

Seaole

March	15,	1961 Washington
DateOfBirth PlaceOfBirth

PlaceOfBirth

CapitalOf

‣ [[PlaceOfBirth]]	=	set	of	pairs	of	(person,	loca8on)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Lambda-DCS Lambda	calculus

Seattle λx. x = Seattle
PlaceOfBirth λx.λy. PlaceOfBirth(x,y)

PlaceOfBirth.Seattle λx. PlaceOfBirth(x,Seattle)

‣ Looks	like	a	tree	fragment	over	Freebase

SeaolePlaceOfBirth???

Profession.Scientist ∧ 
PlaceOfBirth.Seattle

λx. Profession(x,Scientist) 
∧ PlaceOfBirth(x,Seattle)



Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Alice	Smith

Bob	Cooper

Seaole

March	15,	1961 Washington
DateOfBirth

PlaceOfBirth

PlaceOfBirth

CapitalOf

Profession

Scien8st

Profession.Scientist ∧ 
PlaceOfBirth.Seattle“list	of	scien8sts	born	in	Seaole”

‣ Execute	this	fragment	against	Freebase,	returns	Alice	Smith	(and	
others)

???

Seaole
PlaceOfBirthProfession

Scien8st

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Building	the	lexicon:	more	sophis8cated	process	than	GENLEX,	but	can	
handle	thousands	of	predicates

‣ Log-linear	model	with	features	on	rules: P (d|x) / expw

>

 
X

r2d

f(r, x)

!

‣ Deriva8on	d	on	sentence	x:

‣ Similar	to	CRF	parsers

‣ No	more	explicit	syntax  
in	these	deriva8ons 
like	we	had	in	CCG

Parsing	with	Lambda-DCS

Berant	et	al.	(2013)

‣ Learn	just	from	ques8on-answer	pairs:	maximize	the	likelihood	of	the	
right	denota8on	y	with	the	deriva8on	d	marginalized	out

For	each	example:
Run	beam	search	to	get	a	set	of	deriva8ons

Let	d*	=	highest-scoring	deriva8on	in	the	beam	with	correct	denota,on
Do	a	structured	perceptron	update	towards	d*	away	from	d

Let	d	=	highest-scoring	deriva8on	in	the	beam

sum	over	deriva8ons	d	such	that	the	
denota8on	of	d	on	knowledge	base	K	is	yi

Learning

Berant	et	al.	(2013)

‣Only	a	small	number	of	ques8ons	are	even	reachable	by	beam	search	
ini8ally	(but	some	ques8ons	are	very	easy	so	even	a	totally	untrained	
model	can	answer	them)
‣During	training,	more	and	more	“good”	deriva8ons	surface	and	will	
result	in	model	updates

‣ Each	ver8cal	slice	is	the	
beam	for	one	example.	
Green	=	correct	denota8on



Takeaways
‣ Can	represent	meaning	with	first	order	logic	and	lambda	calculus

‣Useful	for	querying	databases,	ques8on	answering,	etc.

‣ Can	bridge	syntax	and	seman8cs	and	create	seman8c	parsers	that	can	
interpret	language	into	lambda-calculus	expressions

‣Next	8me:	neural	net	methods	for	doing	this	that	rely	less	on	having	
explicit	grammars


