
CS388:	Natural	Language	Processing	
Lecture	14:	Seman9cs	II	/	Seq2seq	I

Greg	Durrett

Administrivia
‣ Graham	Neubig	(CMU)	talk	this	Friday	at	11am	in	6.302.  
“Towards	Open-domain	Genera9on	of	Programs	from	Natural	Language”

‣Mini	2	graded	by	the	end	of	the	week

‣ Project	2	out	by	Thursday

Recall:	Parses	to	Logical	Forms

NP

VPNNP NNP

S

VBP
Lady			Gaga

sings

e470

λy. sings(y)

sings(e470) ∧ dances(e470)

VP

CC VP

VBP
dances
λy. dances(y)

and

VP:	λy.	a(y)	∧	b(y)	->	VP:	λy.	a(y)	CC	VP:	λy.	b(y)

λy. sings(y) ∧ dances(y)

‣ General	rules:
S:	f(x)	->	NP:	x	VP:	f

Recall:	CCG
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman9cs
‣ Syntac9c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	lec	side,	I	form	a	sentence”	—	verb
‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	lec”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas
e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

This	Lecture
‣ Lambda-DCS:	more	lightweight	than	CCG

‣ Seq2seq	models

‣ Seq2seq	models	for	seman9c	parsing

Lambda-DCS

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

‣ Dependency-based	composi9onal	seman9cs	—	original	version	was	
less	powerful	than	lambda	calculus,	lambda-DCS	is	as	powerful

‣ Designed	in	the	context	of	building	a	QA	system	from	Freebase

‣ Freebase:	set	of	en99es	and	rela9ons

Alice	Smith

Bob	Cooper

Seafle

March	15,	1961 Washington
DateOfBirth

PlaceOfBirth

PlaceOfBirth

CapitalOf

‣ [[PlaceOfBirth]]	=	set	of	pairs	of	(person,	loca9on)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Lambda-DCS Lambda	calculus

Seattle λx. x = Seattle
PlaceOfBirth λx.λy. PlaceOfBirth(x,y)

PlaceOfBirth.Seattle λx. PlaceOfBirth(x,Seattle)
‣ Looks	like	a	tree	fragment	over	Freebase,	denotes	the	set	of	people	
born	in	Seafle,	no	explicit	variables

SeaflePlaceOfBirth???

Profession.Scientist ∧
PlaceOfBirth.Seattle

λx. Profession(x,Scientist)
∧ PlaceOfBirth(x,Seattle)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Alice	Smith

Bob	Cooper

Seafle

March	15,	1961 Washington
DateOfBirth

PlaceOfBirth

PlaceOfBirth

CapitalOf

Profession

Scien9st

Profession.Scientist ∧
PlaceOfBirth.Seattle“list	of	scien9sts	born	in	Seafle”

‣ Execute	this	fragment	against	Freebase,	returns	Alice	Smith	(and	
others)

???

Seafle
PlaceOfBirthProfession

Scien9st

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Building	the	lexicon:	more	sophis9cated	process	than	GENLEX,	but	can	
handle	thousands	of	predicates

‣ Log-linear	model	with	features	on	rules:

‣ Deriva9on	d	on	sentence	x:

‣ No	more	explicit	syntax  
in	these	deriva9ons  
like	we	had	in	CCG

‣ Everything	is	a	set,	sets	
combine	in	a	few	ways

P (d|x) / expw>

X

r2d

f(r,x)

!

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Learn	from	deriva9ons:	standard	supervised	learning,	maximize	
probability	of	correct	deriva9on

L(✓) =
nX

i=1

logP (d

⇤
i |xi)

‣ Problem:	supervision	looks	like	“Where	was	Barack	Obama	born”	—	
“Hawaii”	without	a	deriva9on

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Learn	just	from	ques9on-answer	pairs:	maximize	the	likelihood	of	the	
right	denota9on	y*	with	the	deriva9on	d	marginalized	out

Approx	procedure:	for	each	example:
Run	beam	search	to	get	a	set	of	deriva9ons

Let	d*	=	highest-scoring	deriva9on	in	the	beam	with	correct	denota;on
Do	a	structured	perceptron	update	towards	d*	away	from	d

Let	d	=	highest-scoring	deriva9on	in	the	beam

sum	over	deriva9ons	d	such	that	the	
denota9on	of	d	on	knowledge	base	K	is	yi

L(✓) =
nX

i=1

log

X

d:[[d]]K=y⇤
i

P (d|xi)

Learning

Berant	et	al.	(2013)

‣ Only	a	small	number	of	ques9ons	are	even	reachable	by	beam	search	
ini9ally	(but	some	ques9ons	are	very	easy	so	even	a	totally	untrained	
model	can	answer	them)
‣ During	training,	more	and	more	“good”	deriva9ons	surface	and	will	
result	in	model	updates

‣ Each	ver9cal	slice	is	the	
beam	for	one	example.	
Green	=	correct	denota9on

Encoder-Decoder	Models

Mo9va9on
‣ Parsers	have	been	prefy	hard	to	build…
‣ Cons9tuency/graph-based:	complex	dynamic	programs

‣ Transi9on-based:	complex	transi9on	systems

‣ CCG/seman9c	parsers:	complex	syntax/seman9cs	interface,	challenging	
inference,	challenging	learning

‣ For	seman9c	parsing	in	par9cular:	bridging	the	syntax-seman9cs	divide	
results	in	structural	weirdnesses	in	parsers

‣ Encoder-decoder	models	can	be	a	lot	more	uniform	—	we’ll	come	back	
to	this	later	in	the	lecture

Encoder-Decoder
‣ Encode	a	sequence	into	a	fixed-sized	vector

the		movie		was			great

‣ Now	use	that	vector	to	produce	a	series	of	tokens	as	output	from	a	
separate	LSTM	decoder

le						film			était			bon	[STOP]

Sutskever	et	al.	(2014)

Encoder-Decoder

‣ Is	this	true?	Sort	of…we’ll	come	back	to	
this	later

Model
‣ Generate	next	word	condi9oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great <s>

h̄

‣W	size	is	|vocab|	x	|hidden	state|,	socmax	over	en9re	vocabulary

Decoder	has	separate	
parameters	from	encoder,	so	
this	can	learn	to	be	a	language	
model	(produce	a	plausible	next	
word	given	current	one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(W¯h)

Inference
‣ Generate	next	word	condi9oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic9ons	
and	then	feed	that	to	the	next	RNN	state	

le					

<s>

‣ Need	to	actually	evaluate	computa9on	graph	up	to	this	point	to	form	
input	for	the	next	state

‣ Decoder	is	advanced	one	state	at	a	9me	un9l	[STOP]	is	reached

film était bon [STOP]

Implemen9ng	seq2seq	Models

the		movie		was			great

‣ Encoder:	consumes	sequence	of	tokens,	produces	a	vector.	Analogous	to	
encoders	for	classifica9on/tagging	tasks

le					

<s>

‣ Decoder:	separate	module,	single	cell.	Takes	two	inputs:	hidden	state	
(vector	h	or	tuple	(h,	c))	and	previous	token.	Outputs	token	+	new	state

Encoder

…

film					

le

Decoder Decoder

Training

‣ Objec9ve:	maximize

the		movie		was			great <s> le						film			était			bon

le

‣ One	loss	term	for	each	target-sentence	word,	feed	the	correct	word	
regardless	of	model’s	predic9on

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)

Training:	Scheduled	Sampling

‣ Star9ng	with	p	=	1	and	decaying	it	works	best

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predic9on

the		movie		was			great

la						film			étais			bon	[STOP]

le film était

‣Model	needs	to	do	the	right	thing	even	with	its	own	predic9ons

Bengio	et	al.	(2015)

sample

Implementa9on	Details
‣ Sentence	lengths	vary	for	both	encoder	and	decoder:

‣ Typically	pad	everything	to	the	right	length	and	use	a	mask	or	indexing	
to	access	a	subset	of	terms

‣ Encoder:	looks	like	what	you	did	in	Mini	2.	Can	be	a	CNN/LSTM/…

‣ Decoder:	also	flexible	in	terms	of	architecture	(more	next	lecture).	
Execute	one	step	of	computa9on	at	a	9me,	so	computa9on	graph	is	
formulated	as	taking	one	input	+	hidden	state

‣ Test	9me:	do	this	un9l	you	generate	the	stop	token

‣ Training:	do	this	un9l	you	reach	the	gold	stopping	point

Implementa9on	Details	(cont’d)
‣ Batching	is	prefy	tricky
‣ Decoder	is	across	9me	steps,	so	you	probably	want	your	label	vectors	to	
look	like	[num	9mesteps	x	batch	size	x	num	labels],	iterate	upwards	by	
9me	steps

‣ Beam	search:	can	help	with	lookahead.	Finds	the	(approximate)	highest	
scoring	sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)

Beam	Search
‣Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Do	not	max	over	the	two	film	states!	Hidden	state	vectors	are	different

the		movie		was			great

Seq2seq	Seman9c	Parsing

Seman9c	Parsing	as	Transla9on

Jia	and	Liang	(2015)

‣Write	down	a	linearized	form	of	the	seman9c	parse,	train	seq2seq	models	
to	directly	translate	into	this	representa9on

‣What	might	be	some	concerns	about	this	approach?	How	do	we	mi9gate	
them?

“what	states	border	Texas”

lambda x (state (x) and border (x , e89)))

‣What	are	some	benefits	of	this	approach	compared	to	grammar-based?

Handling	Invariances

‣ Parsing-based	approaches	handle	these	the	same	way

‣ Possible	divergences:	features,	different	weights	in	the	lexicon

‣ Key	idea:	don’t	change	the	model,	change	the	data

“what	states	border	Texas” “what	states	border	Ohio”

‣ Can	we	get	seq2seq	seman9c	parsers	to	handle	these	the	same	way?

‣ “Data	augmenta9on”:	encode	invariances	by	automa9cally	genera9ng	
new	training	examples

Data	Augmenta9on

‣ Abstract	out	en99es:	now	we	can	“remix”	examples	and	encode	
invariance	to	en9ty	ID.	More	complicated	remixes	too

‣ Lets	us	synthesize	a	“what	states	border	ohio	?”	example

Jia	and	Liang	(2015)

Seman9c	Parsing	as	Transla9on

Jia	and	Liang	(2015)

‣ Prolog

‣ Lambda	calculus

‣ Other	DSLs

‣ Handle	all	of	these	with	uniform	machinery!

Seman9c	Parsing	as	Transla9on

Jia	and	Liang	(2015)

‣ Three	forms	of	data	
augmenta9on	all	help

‣ Results	on	these	tasks	are	s9ll	not	
as	strong	as	hand-tuned	systems	
from	10	years	ago,	but	the	same	
simple	model	can	do	well	at	all	
problems

Regex	Predic9on
‣ Can	use	for	other	seman9c	parsing-like	tasks

‣ Predict	regex	from	text

‣ Problem:	requires	a	lot	of	data:	10,000	examples	needed	to	get	~60%	
accuracy	on	prefy	simple	regexes

Locascio	et	al.	(2016)

SQL	Genera9on
‣ Convert	natural	language	
descrip9on	into	a	SQL	
query	against	some	DB

‣ How	to	ensure	that	well-
formed	SQL	is	generated?

Zhong	et	al.	(2017)

‣ Three	seq2seq	models

‣ How	to	capture	column	
names	+	constants?
‣ Pointer	mechanisms

Afen9on

‣ Orange	pieces	are	probably	reused	across	many	problems

‣ LSTM	has	to	remember	the	value	of	Texas	for	13	steps!

‣ Next	lecture:	afen9on	mechanisms	that	let	us	“look	back”	at	the	input	to	
avoid	having	to	remember	everything

“what	states	border	Texas” lambda	x	(state	(x)	and	border	(x	,	e89)))

‣ Not	too	hard	to	learn	to	generate:	start	with	lambda,	always	follow	with	x,	
follow	that	with	paren,	etc.	This	is	a	common	ques9on

Takeaways
‣ Lambda-DCS	is	a	more	lightweight	formalism	than	lambda	calculus

‣ Rather	than	combining	syntax	and	seman9cs	like	in	CCG,	we	can	either	
parse	to	seman9c	representa9ons	directly	or	generate	them	with	seq2seq	
models

‣ Seq2seq	models	are	a	very	flexible	framework,	some	weaknesses	can	
poten9ally	be	patched	with	more	data

