CS388: Natural Language Processing Lecture 14: Semantics II / Seq2seq I



Greg Durrett

Graham Neubig (CMU) talk this Friday at 11am in 6.302.

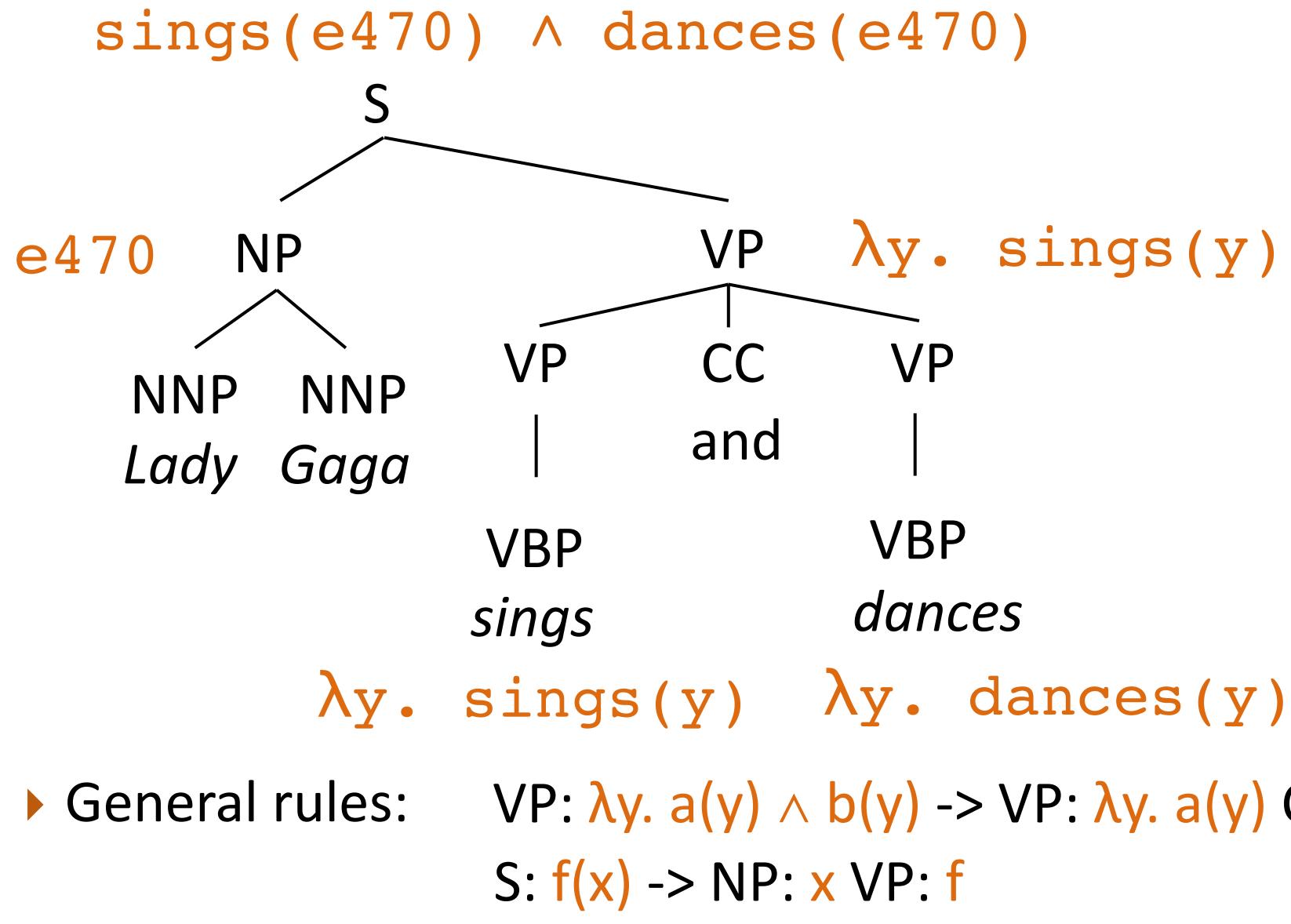
Mini 2 graded by the end of the week

Project 2 out by Thursday

Administrivia

"Towards Open-domain Generation of Programs from Natural Language"

Recall: Parses to Logical Forms

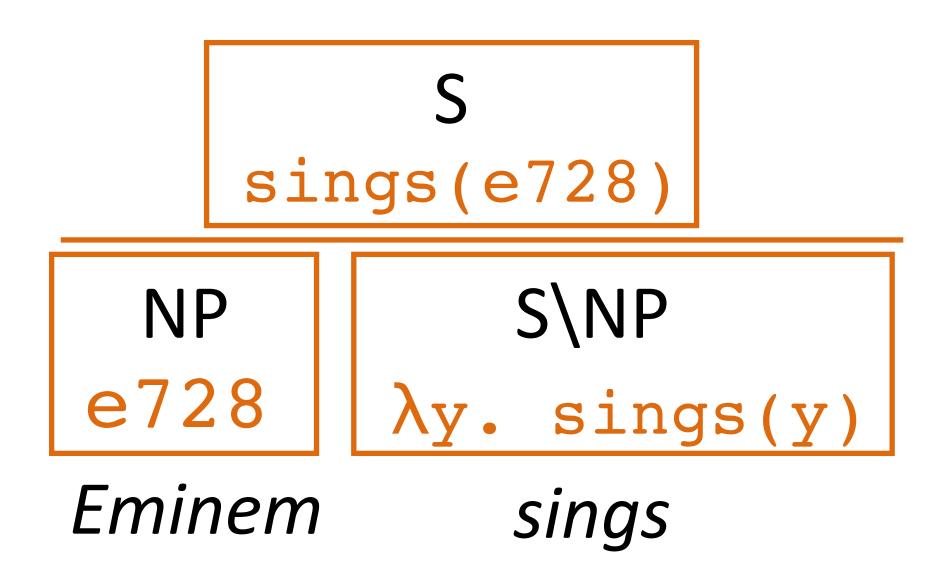


$\lambda y. sings(y) \wedge dances(y)$ VP

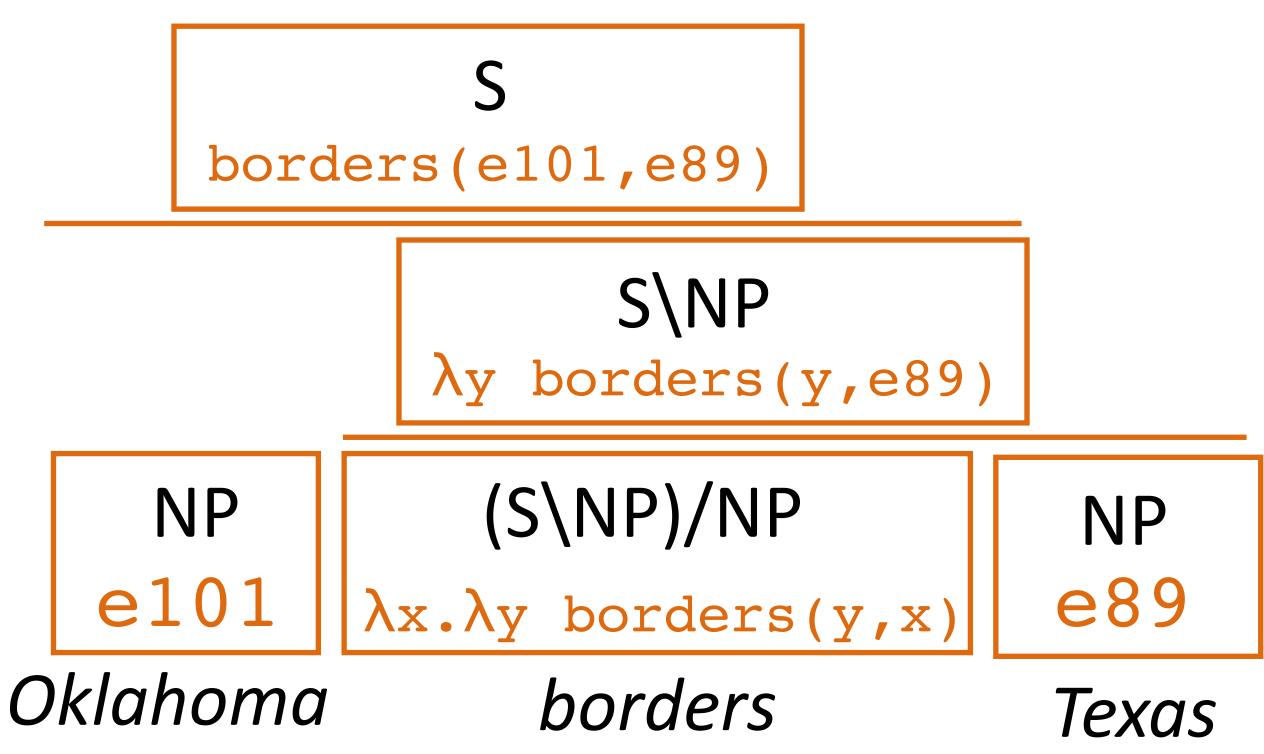
- **VBP**
- dances

VP: λy . $a(y) \wedge b(y) \rightarrow VP$: λy . a(y) CC VP: λy . b(y)

- Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
- Syntactic categories (for this lecture): S, NP, "slash" categories
 - S\NP: "if I combine with an NP on my left side, I form a sentence" verb
 - (S\NP)/NP: "I need an NP on my right and then on my left" verb with a direct object



Recall: CCG



Lambda-DCS: more lightweight than CCG

Seq2seq models

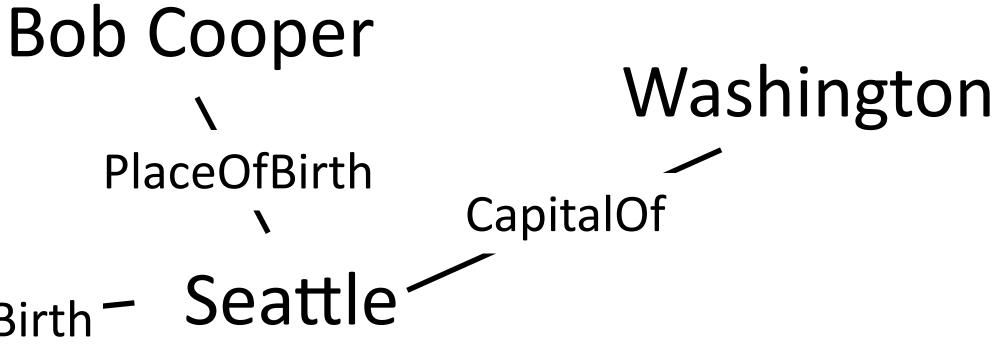
Seq2seq models for semantic parsing

This Lecture

Lambda-DCS

Lambda-DCS

- Dependency-based compositional semantics original version was less powerful than lambda calculus, lambda-DCS is as powerful
- Designed in the context of building a QA system from Freebase
- Freebase: set of entities and relations
 - March 15, 1961 DateOfBirth ____PlaceOfBirth - Seattle Alice Smith
- [[PlaceOfBirth]] = set of pairs of (person, location)



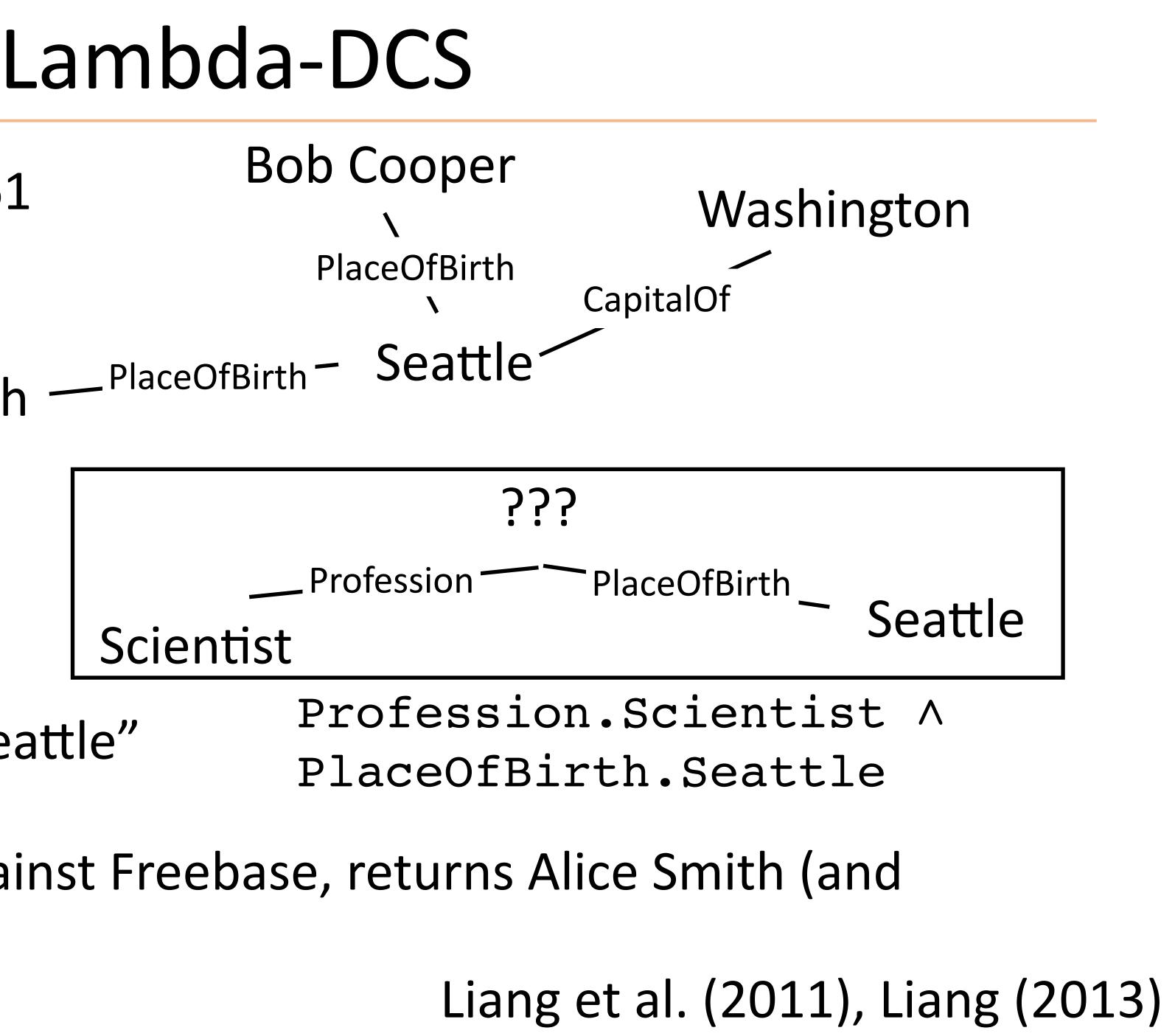
Liang et al. (2011), Liang (2013)

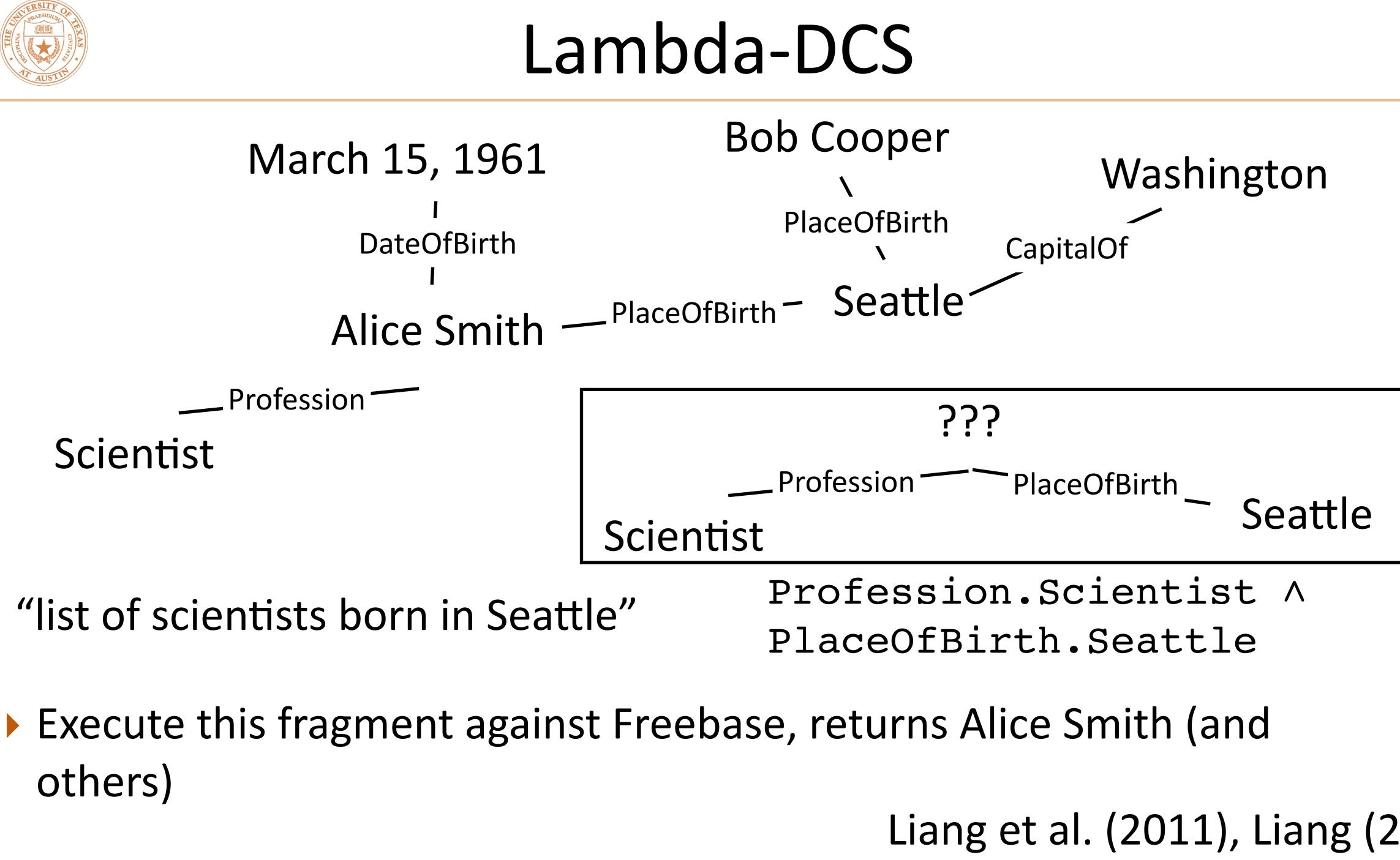
Lambda-DCS Lambda calculus $\lambda x. x = Seattle$ Seattle $\lambda x \cdot \lambda y$. PlaceOfBirth(x,y) PlaceOfBirth λx . PlaceOfBirth(x,Seattle) PlaceOfBirth.Seattle Looks like a tree fragment over Freebase, denotes the set of people born in Seattle, no explicit variables ??? — PlaceOfBirth - Seattle

Profession.Scientist ^ PlaceOfBirth.Seattle

Lambda-DCS

- $\lambda x.$ Profession(x, Scientist) ^ PlaceOfBirth(x,Seattle)
 - Liang et al. (2011), Liang (2013)



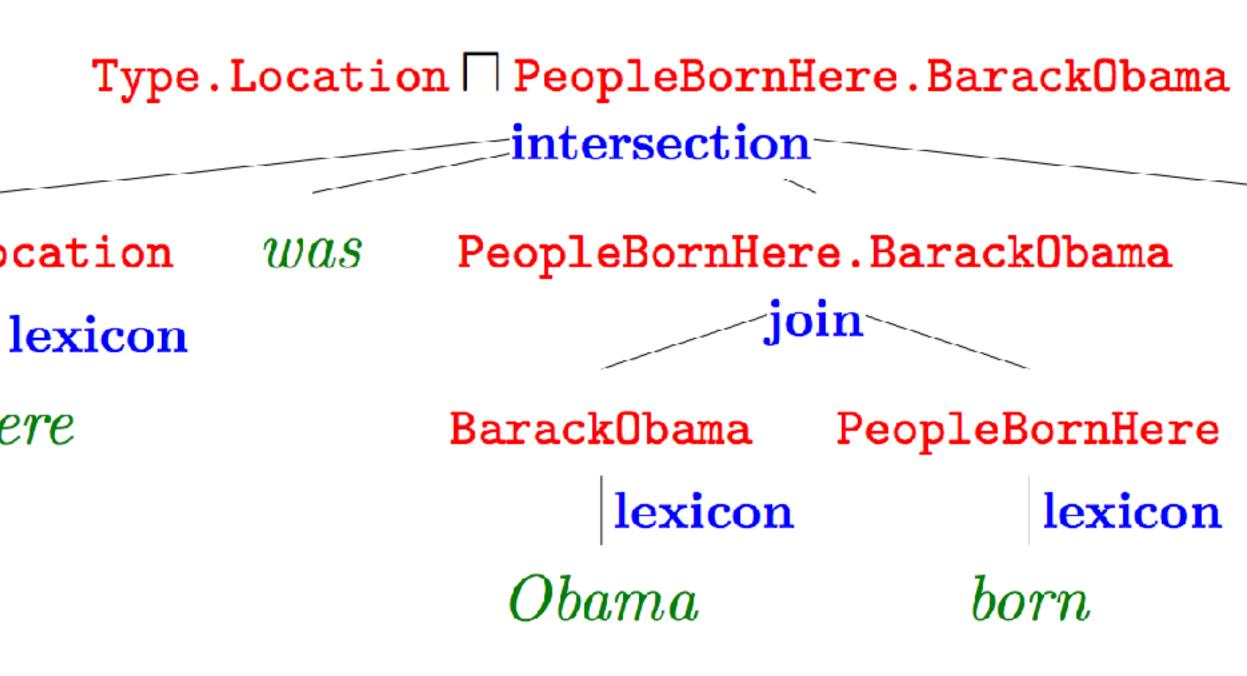


"list of scientists born in Seattle"

others)

Parsing into Lambda-DCS

- Derivation d on sentence x:
- No more explicit syntax Type.Location in these derivations like we had in CCG where
- Everything is a set, sets combine in a few ways
- handle thousands of predicates
- Log-linear model with features on rules: $P(\mathbf{d}|\mathbf{x}) \propto \exp w^{\top}$



Building the lexicon: more sophisticated process than GENLEX, but can

Parsing into Lambda-DCS

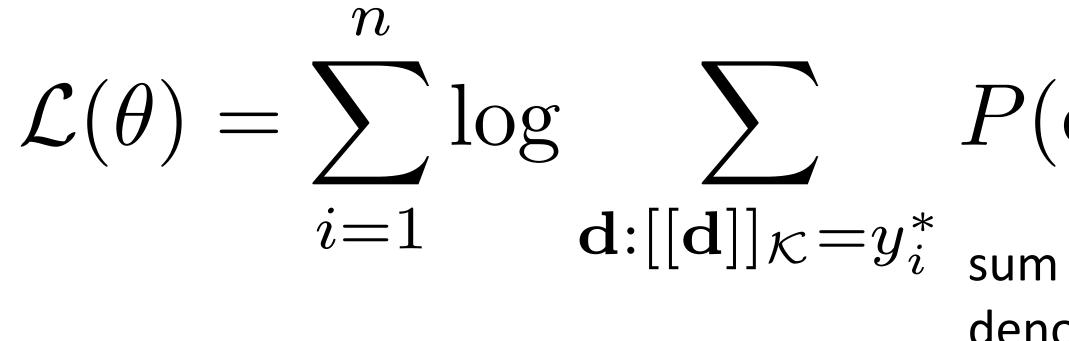
Learn from derivations: standard supervised learning, maximize probability of correct derivation

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log P(\mathbf{d}_i^* | \mathbf{x}_i)$$

Problem: supervision looks like "Where was Barack Obama born" — "Hawaii" without a derivation

Parsing into Lambda-DCS

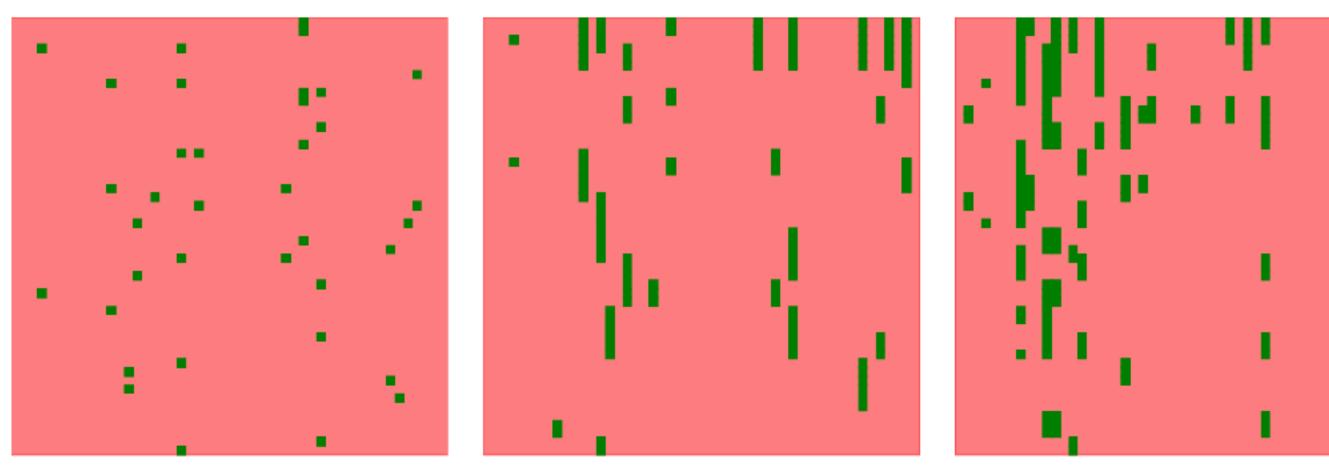
Learn just from question-answer pairs: maximize the likelihood of the right denotation y* with the derivation d marginalized out



- \mathbf{d} : $[[\mathbf{d}]]_{\mathcal{K}} = y_i^*$ sum over derivations **d** such that the denotation of **d** on knowledge base K is y_i Approx procedure: for each example:
 - Run beam search to get a set of derivations
 - Let d = highest-scoring derivation in the beam
 - Let d* = highest-scoring derivation in the beam with correct denotation
 - Do a structured perceptron update towards d* away from d

$$(\mathbf{d}|\mathbf{x}_i)$$

Each vertical slice is the beam for one example. Green = correct denotation



- model can answer them)
- result in model updates

Learning

0 iterations

1 iterations

2 iterations

Only a small number of questions are even reachable by beam search initially (but some questions are very easy so even a totally untrained

During training, more and more "good" derivations surface and will

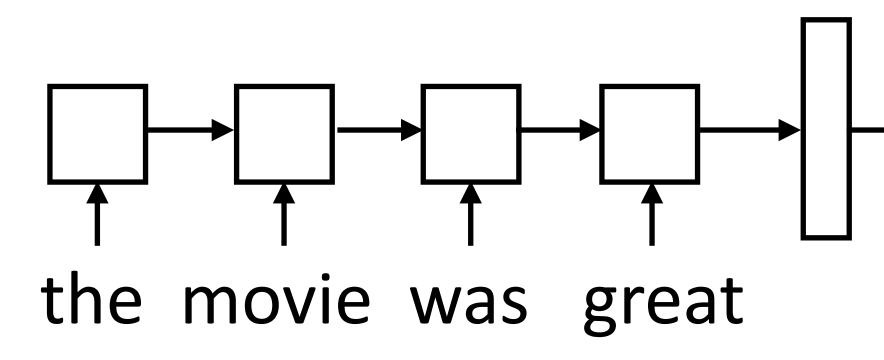
Encoder-Decoder Models

- Parsers have been pretty hard to build...
 - Constituency/graph-based: complex dynamic programs
 - Transition-based: complex transition systems
 - CCG/semantic parsers: complex syntax/semantics interface, challenging inference, challenging learning
- For semantic parsing in particular: bridging the syntax-semantics divide results in structural weirdnesses in parsers
- Encoder-decoder models can be a lot more uniform we'll come back to this later in the lecture

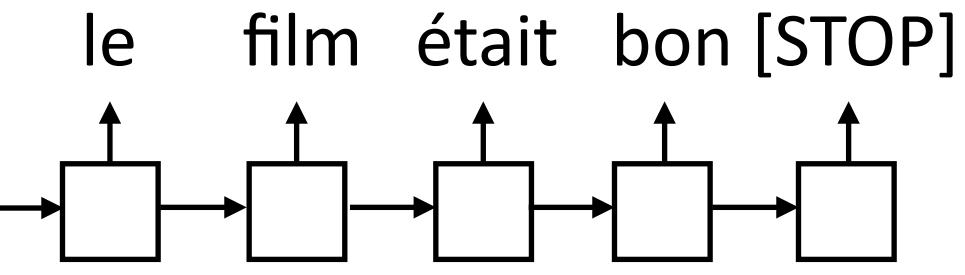
Motivation

Encoder-Decoder

Encode a sequence into a fixed-sized vector



Now use that vector to produce a series of tokens as output from a separate LSTM *decoder*



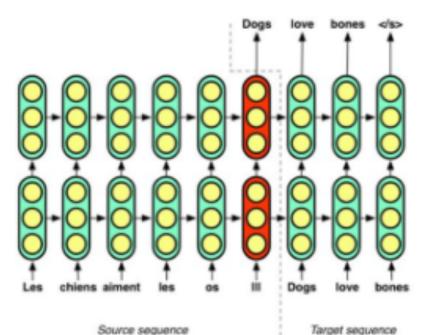
Sutskever et al. (2014)

Edward Grefenstette

Follow \sim

It's not an ACL tutorial on vector representations of meaning if the In the words of Ray Mooney... least one Ray Mooney quote.

\$&!*ing vector!"



A Transduction Bottleneck

Single vector re sentences cause_ _.....

- Training focusses on learning marginal language model of target language first.
- Longer input sequences cause compressive loss.
- Encoder gets significantly diminished gradient.

In the words of Ray Mooney...

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!" Yes, the censored-out swearing is copied verbatim.

12:27 AM - 11 Jul 2017

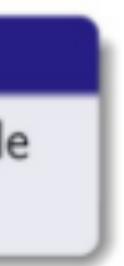
20 Retweets 127 Likes 🛛 🌑 🚳 🤭 🕵 🚱 🌍 🦉 🦉 🖉

Encoder-Decoder

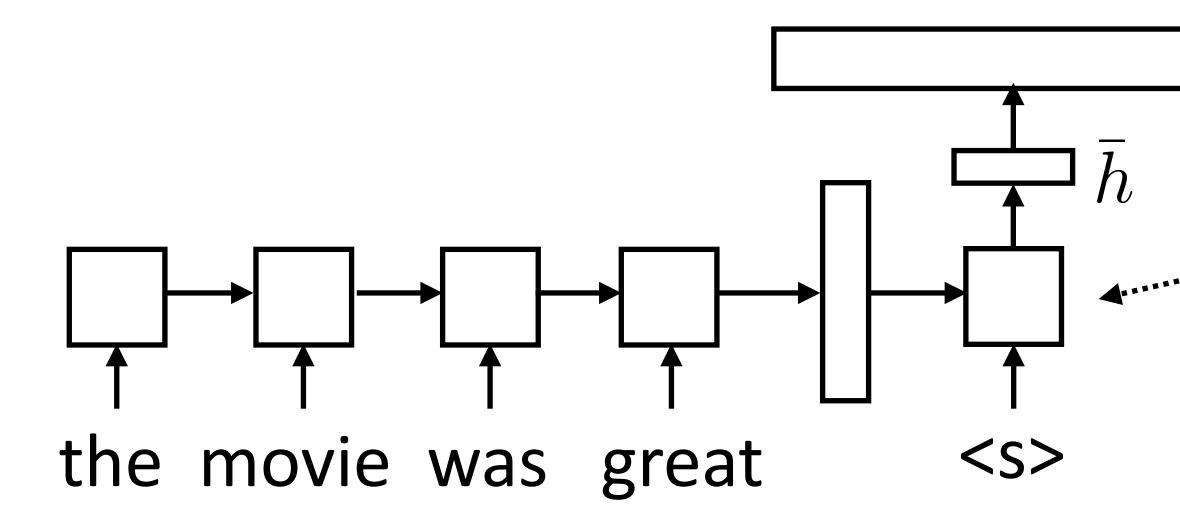
"You can't cram the meaning of a whole %&!\$ing sentence into a single

Yes, the censored-out swearing is copied verbatim.

Is this true? Sort of...we'll come back to this later



W size is vocab x hidden state, softmax over entire vocabulary

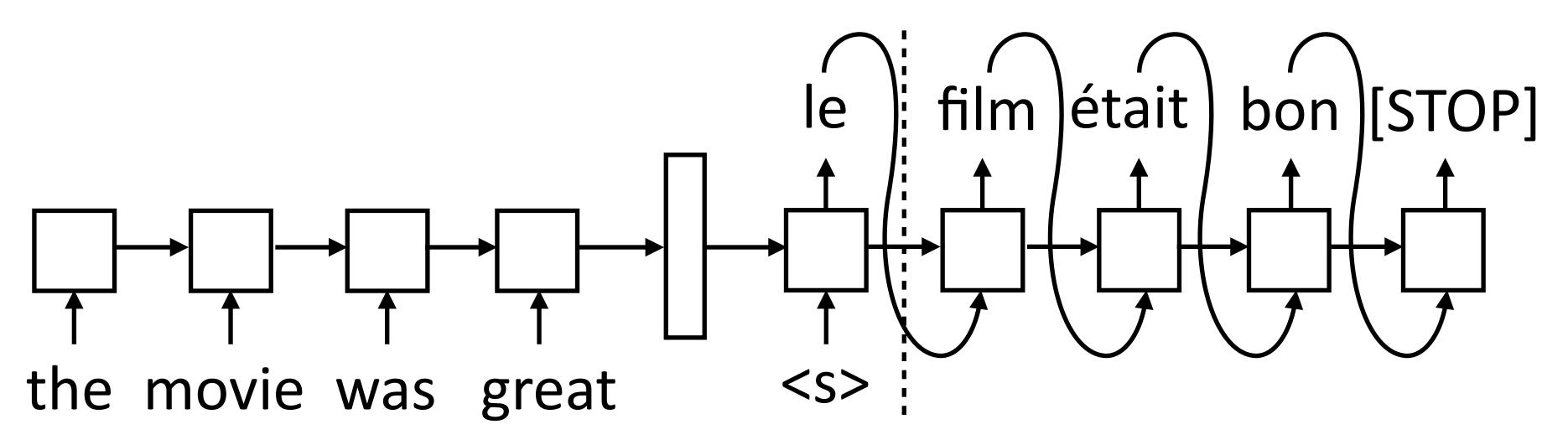


Model

Generate next word conditioned on previous word as well as hidden state

$$P(y_i | \mathbf{x}, y_1, \dots, y_{i-1}) = \text{softmax}(x_i)$$
$$P(\mathbf{y} | \mathbf{x}) = \prod_{i=1}^n P(y_i | \mathbf{x}, y_1, \dots, y_i)$$

Decoder has separate parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)



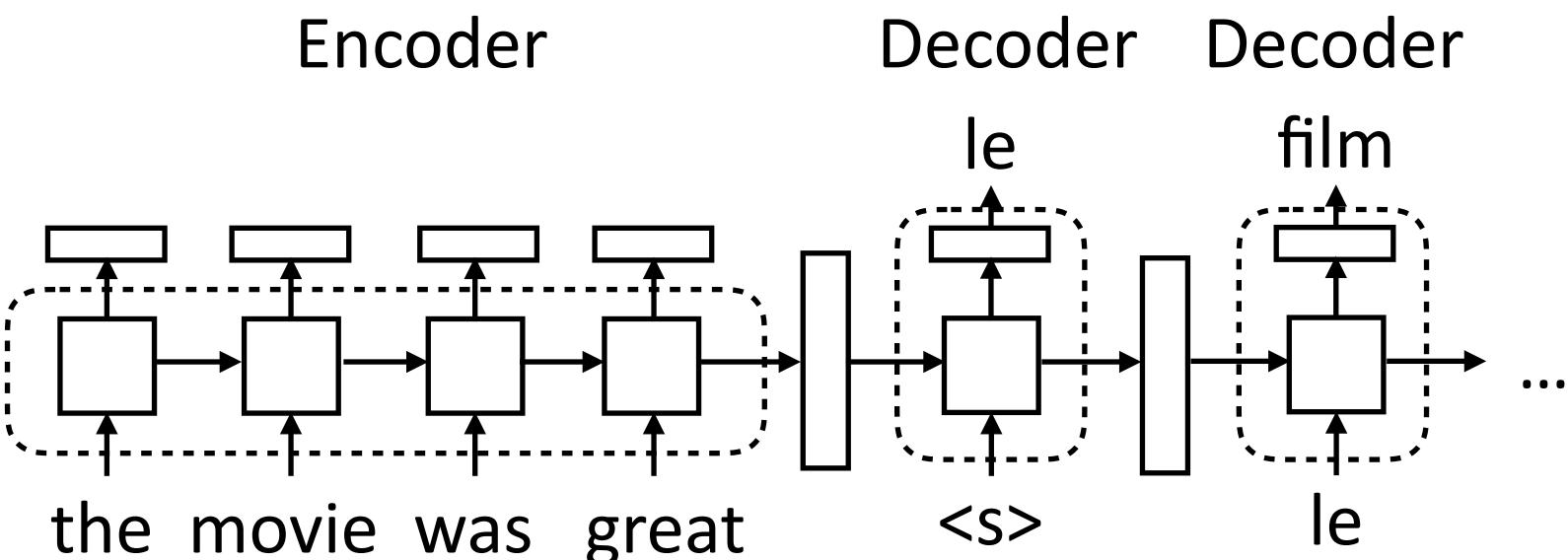
- and then feed that to the next RNN state
- input for the next state
- Decoder is advanced one state at a time until [STOP] is reached

Inference

Generate next word conditioned on previous word as well as hidden state

During inference: need to compute the argmax over the word predictions

Need to actually evaluate computation graph up to this point to form

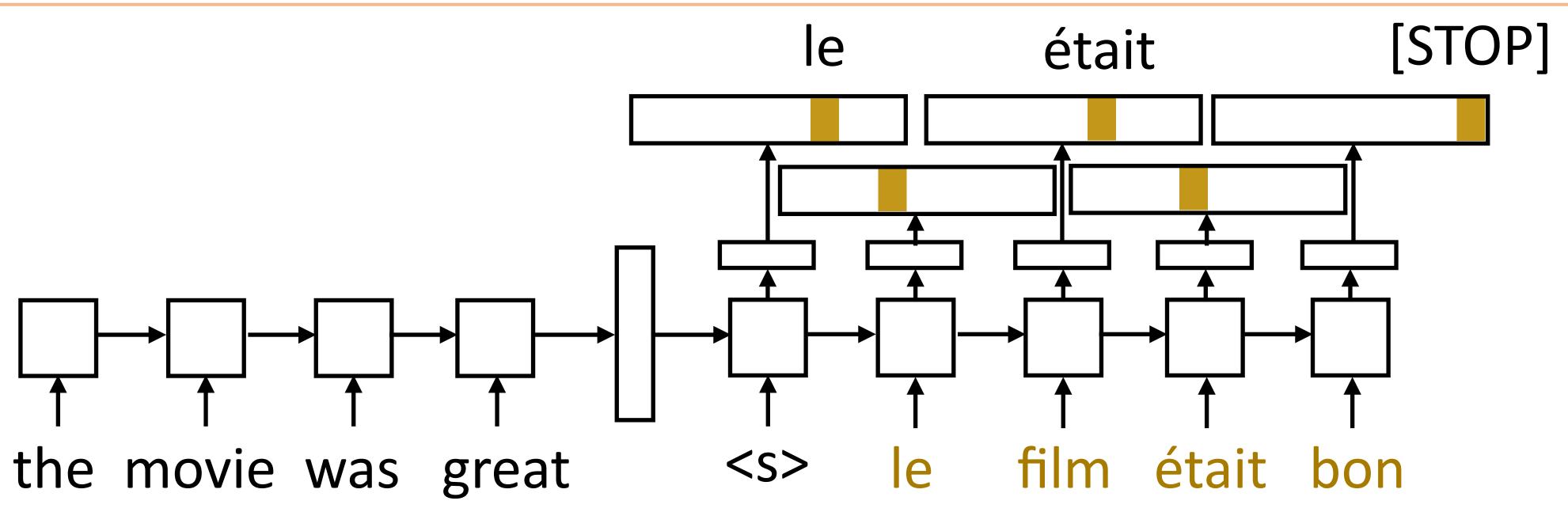


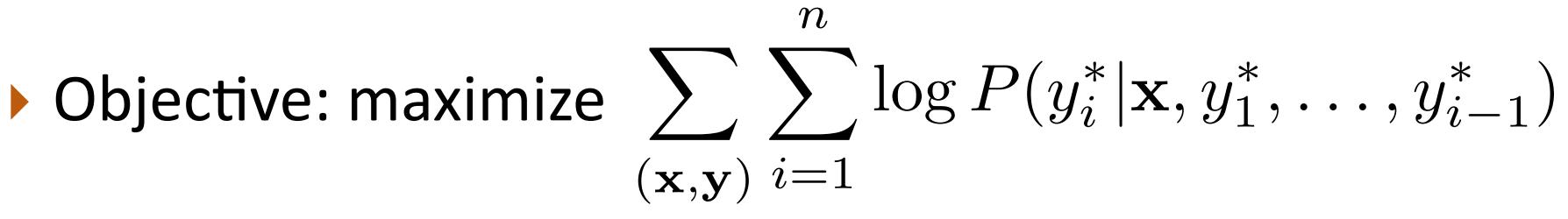
- encoders for classification/tagging tasks

Implementing seq2seq Models

Encoder: consumes sequence of tokens, produces a vector. Analogous to

Decoder: separate module, single cell. Takes two inputs: hidden state (vector h or tuple (h, c)) and previous token. Outputs token + new state



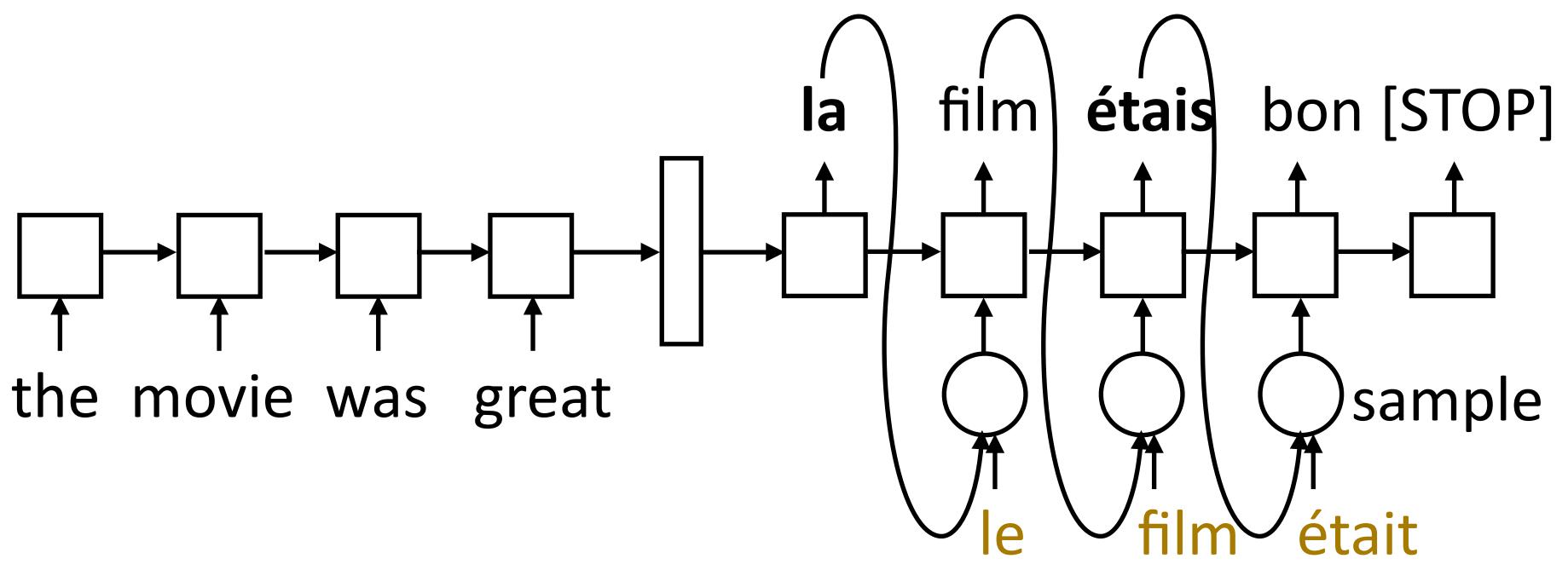


One loss term for each target-sentence word, feed the correct word regardless of model's prediction

Training

Training: Scheduled Sampling

Model needs to do the right thing even with its own predictions



- the model's prediction
- Starting with p = 1 and decaying it works best

Scheduled sampling: with probability p, take the gold as input, else take

Bengio et al. (2015)

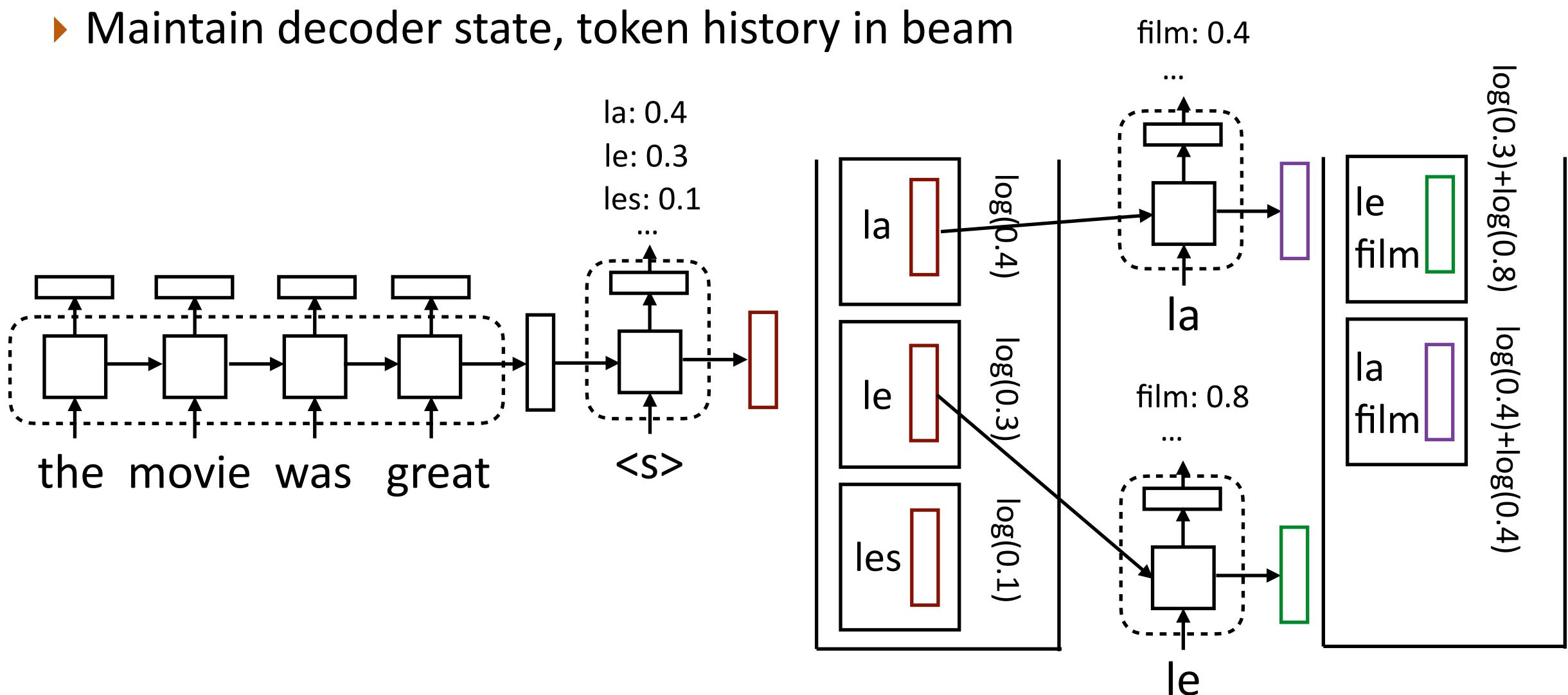
- Sentence lengths vary for both encoder and decoder:
 - Typically pad everything to the right length and use a mask or indexing to access a subset of terms
- Encoder: looks like what you did in Mini 2. Can be a CNN/LSTM/...
- Decoder: also flexible in terms of architecture (more next lecture). Execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state
 - Test time: do this until you generate the stop token
 - Training: do this until you reach the gold stopping point

- Batching is pretty tricky
 - Decoder is across time steps, so you probably want your label vectors to look like [num timesteps x batch size x num labels], iterate upwards by time steps
- Beam search: can help with lookahead. Finds the (approximate) highest scoring sequence: $\operatorname{argmax}_{\mathbf{v}}$

i=1

Implementation Details (cont'd)

$$P(y_i|\mathbf{x}, y_1, \ldots, y_{i-1})$$



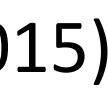
Do not max over the two film states! Hidden state vectors are different

Beam Search

Seq2seq Semantic Parsing

- "what states border Texas" lambda x (state (x) and border (x , e89)))
- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- What are some benefits of this approach compared to grammar-based?
- What might be some concerns about this approach? How do we mitigate them?

Semantic Parsing as Translation



"what states border Texas"

- Parsing-based approaches handle these the same way
 - Possible divergences: features, different weights in the lexicon
- Can we get seq2seq semantic parsers to handle these the same way?
- Key idea: don't change the model, change the data
- "Data augmentation": encode invariances by automatically generating new training examples

"what states border Ohio"

Data Augmentation

Examples

("what states border texas ?", answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas))))) ("what is the highest mountain in ohio?", **Rules created by ABSENTITIES** ROOT \rightarrow ("what states border STATEID ?", **STATEID** \rightarrow (*"texas"*, texas) ROOT \rightarrow ("what is the highest mountain in STATEID ?", answer(NV, highest(V0, (mountain(V0), loc(V0, NV),

STATEID \rightarrow ("ohio", ohio)

- Lets us synthesize a "what states border ohio ?" example
- Abstract out entities: now we can "remix" examples and encode invariance to entity ID. More complicated remixes too

- answer(NV, highest(V0, (mountain(V0), loc(V0, NV), const(V0, stateid(ohio))))))

```
answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(STATEID))))
```

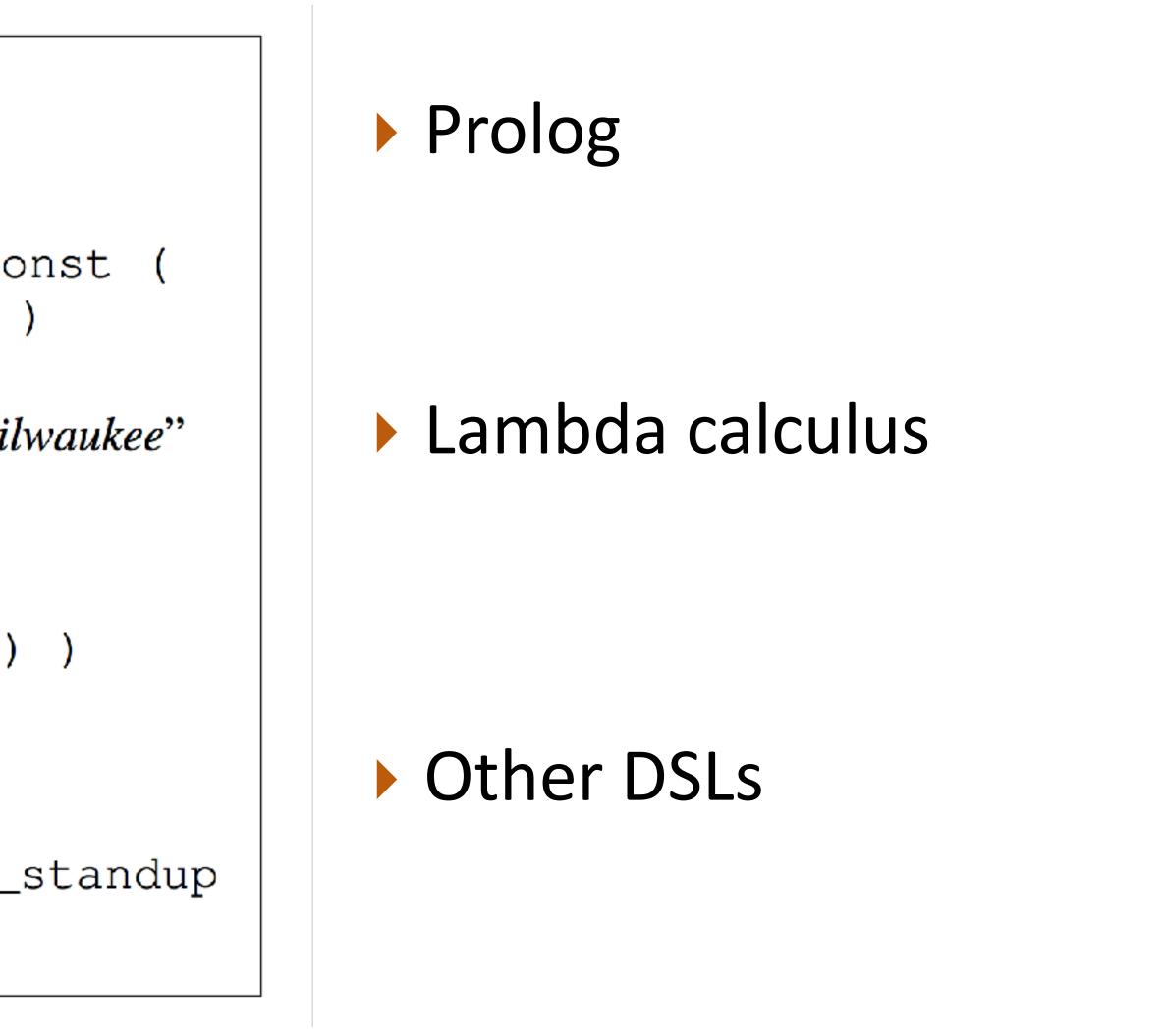
```
const(V0, stateid(STATEID)))))
```

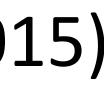


GEO x: "what is the population of iowa?" $y:_answer$ (NV , (_population (NV, V1), _const (V0 , __stateid (iowa)))) ATIS x: "can you list all flights from chicago to milwaukee" y: ($_lambda$ \$0 e ($_and$ (_flight \$0) (_from \$0 chicago : _ci) (_to \$0 milwaukee : _ci))) **Overnight** x: "when is the weekly standup" y: (call listValue (call getProperty meeting.weekly_standup (string start_time)))

Handle all of these with uniform machinery!

Semantic Parsing as Translation





Semantic Parsing as Translation

	Geo	ATIS
Previous Work		
Zettlemoyer and Collins (2007)		84.6
Kwiatkowski et al. (2010)	88.9	
Liang et al. $(2011)^2$	91.1	
Kwiatkowski et al. (2011)	88.6	82.8
Poon (2013)		83.5
Zhao and Huang (2015)	88.9	84.2
Our Model		
No Recombination	85.0	76.3
ABSENTITIES	85.4	79.9
ABSWHOLEPHRASES	87.5	
Concat-2	84.6	79.0
Concat-3		77.5
AWP + AE	88.9	
AE + C2		78.8
AWP + AE + C2	89.3	
AE + C3		83.3

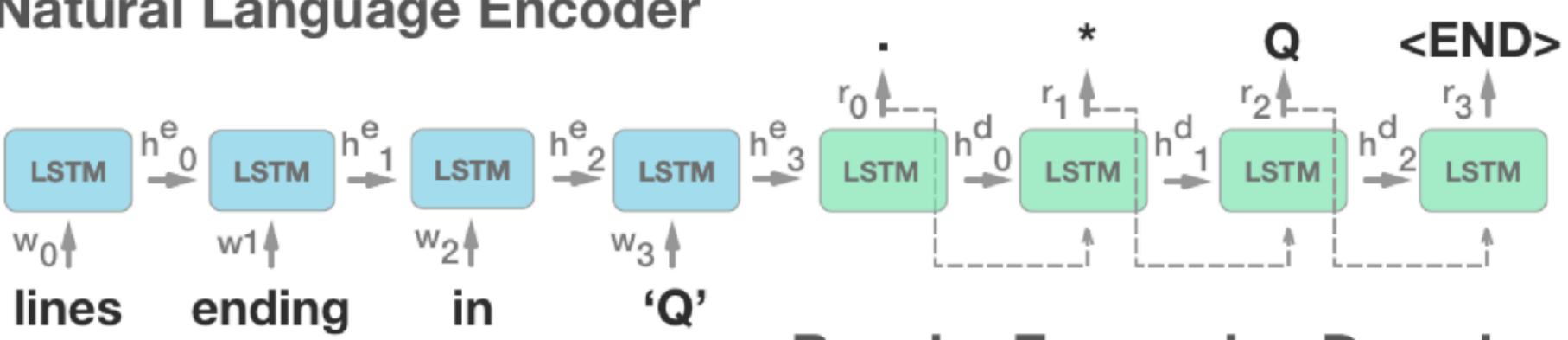
Three forms of data augmentation all help

Results on these tasks are still not as strong as hand-tuned systems from 10 years ago, but the same simple model can do well at all problems

Can use for other semantic parsing-like tasks

Predict regex from text

Natural Language Encoder



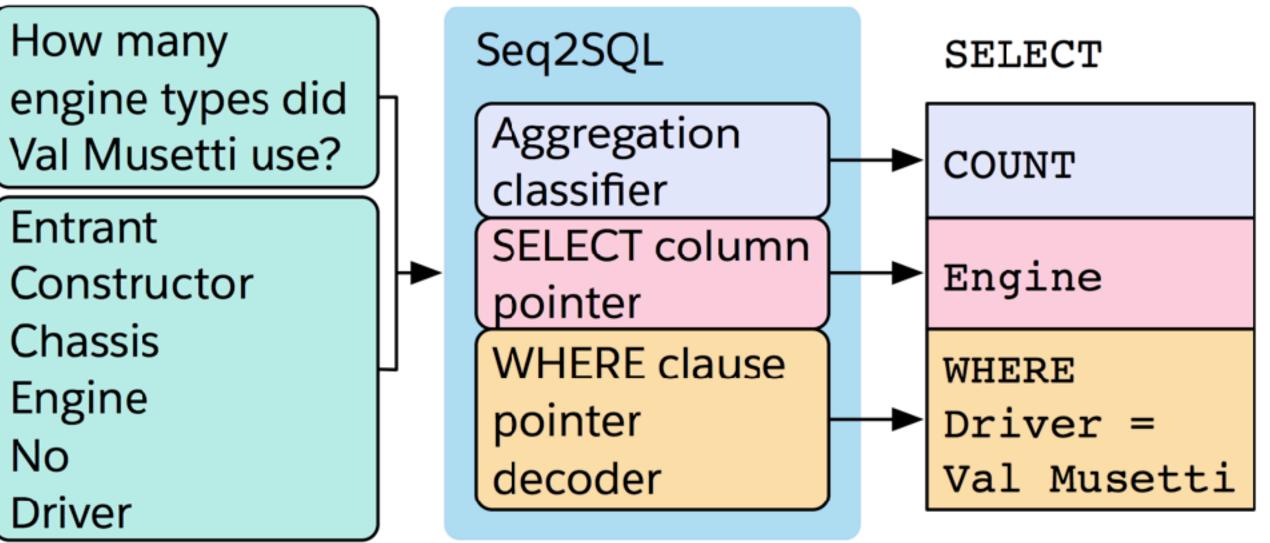
Problem: requires a lot of data: 10,000 examples needed to get ~60% accuracy on pretty simple regexes

Regex Prediction

Regular Expression Decoder

SQL Generation

- Convert natural language description into a SQL query against some DB
- How to ensure that wellformed SQL is generated?
 - Three seq2seq models
- How to capture column names + constants?
 - Pointer mechanisms



Question:

How many CFL teams are from York College?

SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York"

Zhong et al. (2017)

- Orange pieces are probably reused across many problems
- Not too hard to learn to generate: start with lambda, always follow with x, follow that with paren, etc. This is a common question
- LSTM has to remember the value of Texas for 13 steps!
- Next lecture: attention mechanisms that let us "look back" at the input to avoid having to remember everything

Attention

"what states border Texas" \longrightarrow lambda x (state (x) and border (x, e89))

- Lambda-DCS is a more lightweight formalism than lambda calculus
- Rather than combining syntax and semantics like in CCG, we can either parse to semantic representations directly or generate them with seq2seq models
- Seq2seq models are a very flexible framework, some weaknesses can potentially be patched with more data

