
CS388:	Natural	Language	Processing	
Lecture	14:	Seman9cs	II	/	Seq2seq	I

Greg	Durrett

Administrivia
‣Graham	Neubig	(CMU)	talk	this	Friday	at	11am	in	6.302.  
“Towards	Open-domain	Genera9on	of	Programs	from	Natural	Language”

‣ Mini	2	graded	by	the	end	of	the	week

‣ Project	2	out	by	Thursday

Recall:	Parses	to	Logical	Forms

NP

VPNNP NNP

S

VBP
Lady			Gaga

sings

e470

λy. sings(y)

sings(e470) ∧ dances(e470)

VP

CC VP

VBP
dances
λy. dances(y)

and

VP:	λy.	a(y)	∧	b(y)	->	VP:	λy.	a(y)	CC	VP:	λy.	b(y)

λy. sings(y) ∧ dances(y)

‣ General	rules:
S:	f(x)	->	NP:	x	VP:	f

Recall:	CCG
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman9cs
‣ Syntac9c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	lec	side,	I	form	a	sentence”	—	verb
‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	lec”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas
e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

This	Lecture
‣ Lambda-DCS:	more	lightweight	than	CCG

‣ Seq2seq	models

‣ Seq2seq	models	for	seman9c	parsing Lambda-DCS

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

‣ Dependency-based	composi9onal	seman9cs	—	original	version	was	
less	powerful	than	lambda	calculus,	lambda-DCS	is	as	powerful

‣ Designed	in	the	context	of	building	a	QA	system	from	Freebase

‣ Freebase:	set	of	en99es	and	rela9ons

Alice	Smith

Bob	Cooper

Seafle

March	15,	1961 Washington
DateOfBirth PlaceOfBirth

PlaceOfBirth

CapitalOf

‣ [[PlaceOfBirth]]	=	set	of	pairs	of	(person,	loca9on)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Lambda-DCS Lambda	calculus

Seattle λx. x = Seattle
PlaceOfBirth λx.λy. PlaceOfBirth(x,y)

PlaceOfBirth.Seattle λx. PlaceOfBirth(x,Seattle)
‣ Looks	like	a	tree	fragment	over	Freebase,	denotes	the	set	of	people	
born	in	Seafle,	no	explicit	variables

SeaflePlaceOfBirth???

Profession.Scientist ∧
PlaceOfBirth.Seattle

λx. Profession(x,Scientist)
∧ PlaceOfBirth(x,Seattle)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Alice	Smith

Bob	Cooper

Seafle

March	15,	1961 Washington
DateOfBirth

PlaceOfBirth

PlaceOfBirth

CapitalOf

Profession

Scien9st

Profession.Scientist ∧
PlaceOfBirth.Seattle“list	of	scien9sts	born	in	Seafle”

‣ Execute	this	fragment	against	Freebase,	returns	Alice	Smith	(and	
others)

???

Seafle
PlaceOfBirthProfession

Scien9st

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Building	the	lexicon:	more	sophis9cated	process	than	GENLEX,	but	can	
handle	thousands	of	predicates

‣ Log-linear	model	with	features	on	rules:

‣ Deriva9on	d	on	sentence	x:

‣No	more	explicit	syntax  
in	these	deriva9ons 
like	we	had	in	CCG

‣ Everything	is	a	set,	sets	
combine	in	a	few	ways

P (d|x) / expw>

X

r2d

f(r,x)

!

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Learn	from	deriva9ons:	standard	supervised	learning,	maximize	
probability	of	correct	deriva9on

L(✓) =
nX

i=1

logP (d

⇤
i |xi)

‣ Problem:	supervision	looks	like	“Where	was	Barack	Obama	born”	—	
“Hawaii”	without	a	deriva9on

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Learn	just	from	ques9on-answer	pairs:	maximize	the	likelihood	of	the	
right	denota9on	y*	with	the	deriva9on	d	marginalized	out

Approx	procedure:	for	each	example:
Run	beam	search	to	get	a	set	of	deriva9ons

Let	d*	=	highest-scoring	deriva9on	in	the	beam	with	correct	denota;on
Do	a	structured	perceptron	update	towards	d*	away	from	d

Let	d	=	highest-scoring	deriva9on	in	the	beam

sum	over	deriva9ons	d	such	that	the	
denota9on	of	d	on	knowledge	base	K	is	yi

L(✓) =
nX

i=1

log

X

d:[[d]]K=y⇤
i

P (d|xi)

Learning

Berant	et	al.	(2013)

‣Only	a	small	number	of	ques9ons	are	even	reachable	by	beam	search	
ini9ally	(but	some	ques9ons	are	very	easy	so	even	a	totally	untrained	
model	can	answer	them)
‣During	training,	more	and	more	“good”	deriva9ons	surface	and	will	
result	in	model	updates

‣ Each	ver9cal	slice	is	the	
beam	for	one	example.	
Green	=	correct	denota9on

Encoder-Decoder	Models

Mo9va9on
‣ Parsers	have	been	prefy	hard	to	build…
‣ Cons9tuency/graph-based:	complex	dynamic	programs

‣ Transi9on-based:	complex	transi9on	systems

‣ CCG/seman9c	parsers:	complex	syntax/seman9cs	interface,	challenging	
inference,	challenging	learning

‣ For	seman9c	parsing	in	par9cular:	bridging	the	syntax-seman9cs	divide	
results	in	structural	weirdnesses	in	parsers

‣ Encoder-decoder	models	can	be	a	lot	more	uniform	—	we’ll	come	back	
to	this	later	in	the	lecture

Encoder-Decoder
‣ Encode	a	sequence	into	a	fixed-sized	vector

the		movie		was			great

‣Now	use	that	vector	to	produce	a	series	of	tokens	as	output	from	a	
separate	LSTM	decoder

le						film			était			bon	[STOP]

Sutskever	et	al.	(2014)

Encoder-Decoder

‣ Is	this	true?	Sort	of…we’ll	come	back	to	
this	later

Model
‣Generate	next	word	condi9oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great <s>

h̄

‣W	size	is	|vocab|	x	|hidden	state|,	socmax	over	en9re	vocabulary

Decoder	has	separate	
parameters	from	encoder,	so	
this	can	learn	to	be	a	language	
model	(produce	a	plausible	next	
word	given	current	one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(W¯h)

Inference
‣Generate	next	word	condi9oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣During	inference:	need	to	compute	the	argmax	over	the	word	predic9ons	
and	then	feed	that	to	the	next	RNN	state	

le					

<s>

‣Need	to	actually	evaluate	computa9on	graph	up	to	this	point	to	form	
input	for	the	next	state

‣Decoder	is	advanced	one	state	at	a	9me	un9l	[STOP]	is	reached

film était bon [STOP]

Implemen9ng	seq2seq	Models

the		movie		was			great

‣ Encoder:	consumes	sequence	of	tokens,	produces	a	vector.	Analogous	to	
encoders	for	classifica9on/tagging	tasks

le					

<s>

‣Decoder:	separate	module,	single	cell.	Takes	two	inputs:	hidden	state	
(vector	h	or	tuple	(h,	c))	and	previous	token.	Outputs	token	+	new	state

Encoder

…

film					

le

Decoder Decoder

Training

‣Objec9ve:	maximize

the		movie		was			great <s> le						film			était			bon

le

‣One	loss	term	for	each	target-sentence	word,	feed	the	correct	word	
regardless	of	model’s	predic9on

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)

Training:	Scheduled	Sampling

‣ Star9ng	with	p	=	1	and	decaying	it	works	best

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predic9on

the		movie		was			great

la						film			étais			bon	[STOP]

le film était

‣Model	needs	to	do	the	right	thing	even	with	its	own	predic9ons

Bengio	et	al.	(2015)

sample

Implementa9on	Details
‣ Sentence	lengths	vary	for	both	encoder	and	decoder:
‣ Typically	pad	everything	to	the	right	length	and	use	a	mask	or	indexing	
to	access	a	subset	of	terms

‣ Encoder:	looks	like	what	you	did	in	Mini	2.	Can	be	a	CNN/LSTM/…

‣ Decoder:	also	flexible	in	terms	of	architecture	(more	next	lecture).	
Execute	one	step	of	computa9on	at	a	9me,	so	computa9on	graph	is	
formulated	as	taking	one	input	+	hidden	state

‣ Test	9me:	do	this	un9l	you	generate	the	stop	token

‣ Training:	do	this	un9l	you	reach	the	gold	stopping	point

Implementa9on	Details	(cont’d)
‣ Batching	is	prefy	tricky
‣ Decoder	is	across	9me	steps,	so	you	probably	want	your	label	vectors	to	
look	like	[num	9mesteps	x	batch	size	x	num	labels],	iterate	upwards	by	
9me	steps

‣ Beam	search:	can	help	with	lookahead.	Finds	the	(approximate)	highest	
scoring	sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)

Beam	Search
‣Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣Do	not	max	over	the	two	film	states!	Hidden	state	vectors	are	different

the		movie		was			great

Seq2seq	Seman9c	Parsing

Seman9c	Parsing	as	Transla9on

Jia	and	Liang	(2015)

‣ Write	down	a	linearized	form	of	the	seman9c	parse,	train	seq2seq	models	
to	directly	translate	into	this	representa9on

‣ What	might	be	some	concerns	about	this	approach?	How	do	we	mi9gate	
them?

“what	states	border	Texas”

lambda x (state (x) and border (x , e89)))

‣ What	are	some	benefits	of	this	approach	compared	to	grammar-based?

Handling	Invariances

‣ Parsing-based	approaches	handle	these	the	same	way

‣ Possible	divergences:	features,	different	weights	in	the	lexicon

‣ Key	idea:	don’t	change	the	model,	change	the	data

“what	states	border	Texas” “what	states	border	Ohio”

‣ Can	we	get	seq2seq	seman9c	parsers	to	handle	these	the	same	way?

‣ “Data	augmenta9on”:	encode	invariances	by	automa9cally	genera9ng	
new	training	examples

Data	Augmenta9on

‣ Abstract	out	en99es:	now	we	can	“remix”	examples	and	encode	
invariance	to	en9ty	ID.	More	complicated	remixes	too

‣ Lets	us	synthesize	a	“what	states	border	ohio	?”	example

Jia	and	Liang	(2015)

Seman9c	Parsing	as	Transla9on

Jia	and	Liang	(2015)

‣ Prolog

‣ Lambda	calculus

‣ Other	DSLs

‣ Handle	all	of	these	with	uniform	machinery!

Seman9c	Parsing	as	Transla9on

Jia	and	Liang	(2015)

‣ Three	forms	of	data	
augmenta9on	all	help

‣ Results	on	these	tasks	are	s9ll	not	
as	strong	as	hand-tuned	systems	
from	10	years	ago,	but	the	same	
simple	model	can	do	well	at	all	
problems

Regex	Predic9on
‣ Can	use	for	other	seman9c	parsing-like	tasks

‣ Predict	regex	from	text

‣ Problem:	requires	a	lot	of	data:	10,000	examples	needed	to	get	~60%	
accuracy	on	prefy	simple	regexes

Locascio	et	al.	(2016)

SQL	Genera9on
‣ Convert	natural	language	
descrip9on	into	a	SQL	
query	against	some	DB

‣How	to	ensure	that	well-
formed	SQL	is	generated?

Zhong	et	al.	(2017)

‣ Three	seq2seq	models

‣How	to	capture	column	
names	+	constants?
‣ Pointer	mechanisms

Afen9on

‣ Orange	pieces	are	probably	reused	across	many	problems

‣ LSTM	has	to	remember	the	value	of	Texas	for	13	steps!

‣ Next	lecture:	afen9on	mechanisms	that	let	us	“look	back”	at	the	input	to	
avoid	having	to	remember	everything

“what	states	border	Texas” lambda	x	(state	(x)	and	border	(x	,	e89)))

‣ Not	too	hard	to	learn	to	generate:	start	with	lambda,	always	follow	with	x,	
follow	that	with	paren,	etc.	This	is	a	common	ques9on

Takeaways
‣ Lambda-DCS	is	a	more	lightweight	formalism	than	lambda	calculus

‣ Rather	than	combining	syntax	and	seman9cs	like	in	CCG,	we	can	either	
parse	to	seman9c	representa9ons	directly	or	generate	them	with	seq2seq	
models

‣ Seq2seq	models	are	a	very	flexible	framework,	some	weaknesses	can	
poten9ally	be	patched	with	more	data

