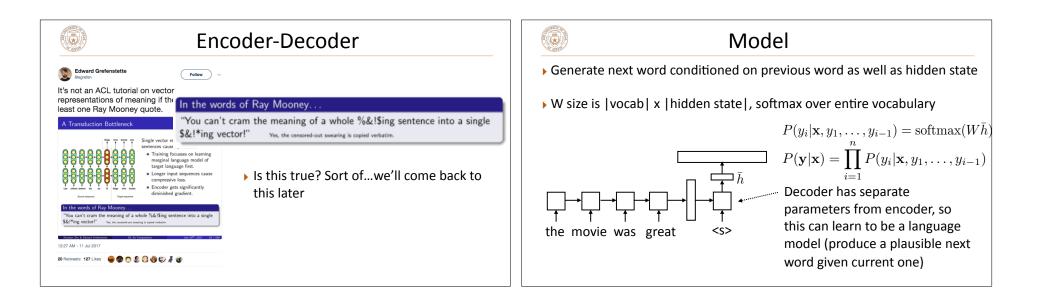
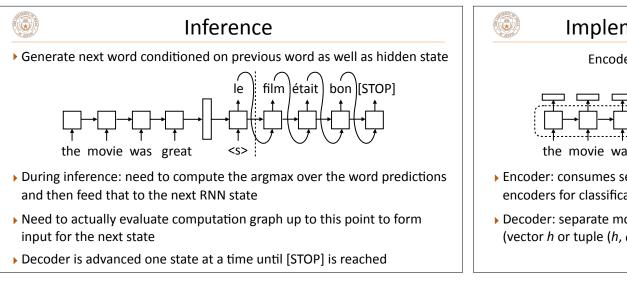
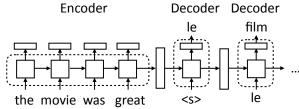


Motivation	Encoder-Decoder
Parsers have been pretty hard to build	Encode a sequence into a fixed-sized vector
Constituency/graph-based: complex dynamic programs	le film était bon [STOP]
Transition-based: complex transition systems	
 CCG/semantic parsers: complex syntax/semantics interface, challenging inference, challenging learning 	the movie was great
 For semantic parsing in particular: bridging the syntax-semantics divide results in structural weirdnesses in parsers 	Now use that vector to produce a series of tokens as output from a separate LSTM decoder
 Encoder-decoder models can be a lot more uniform — we'll come back to this later in the lecture 	
	Sutskever et al. (2014

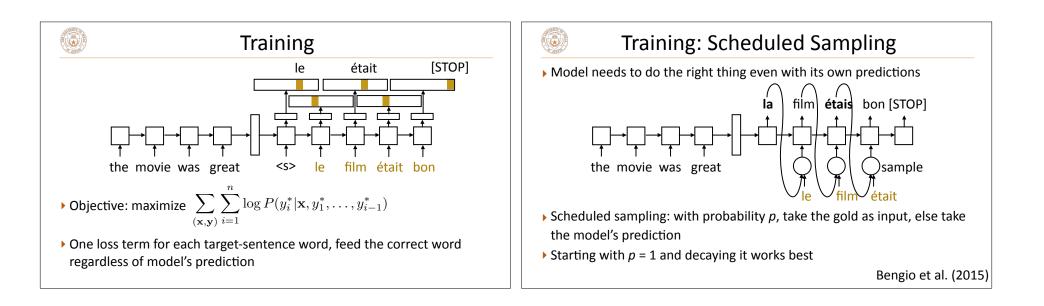


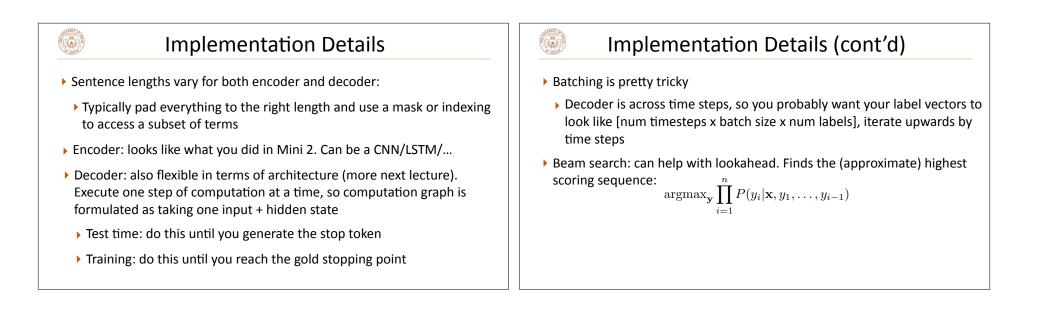


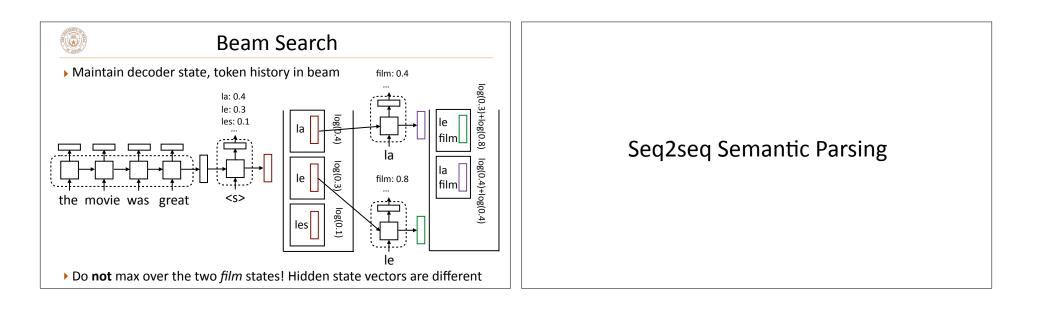
Implementing seq2seq Models

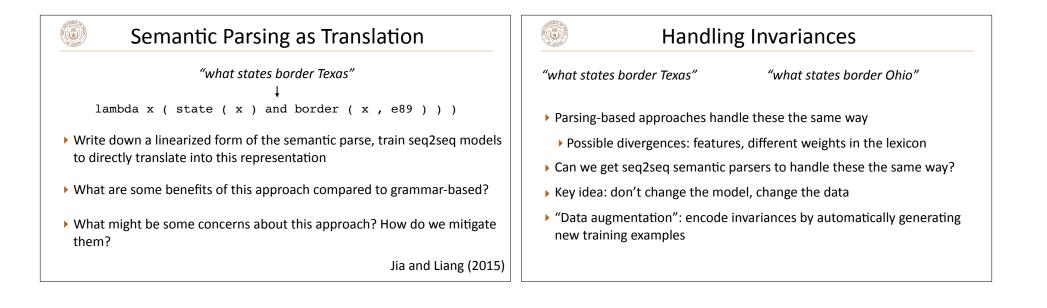


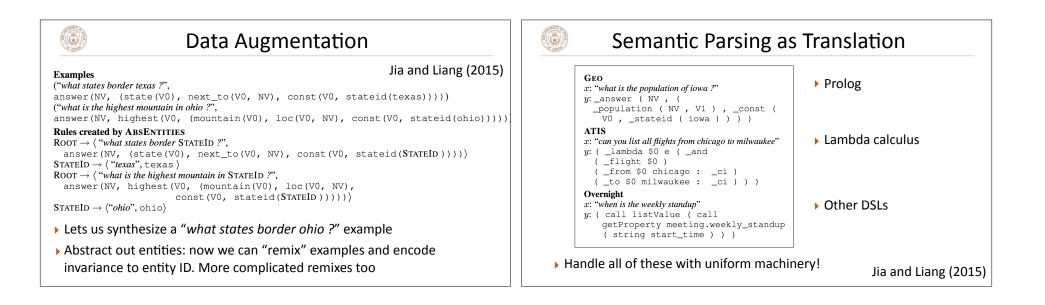
- Encoder: consumes sequence of tokens, produces a vector. Analogous to encoders for classification/tagging tasks
- Decoder: separate module, single cell. Takes two inputs: hidden state (vector h or tuple (h, c)) and previous token. Outputs token + new state

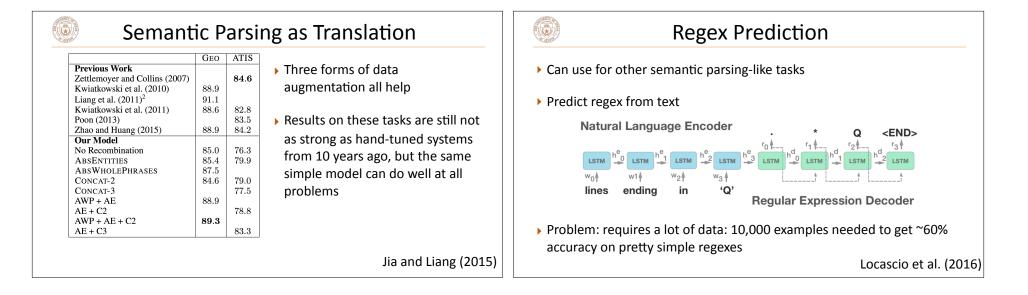


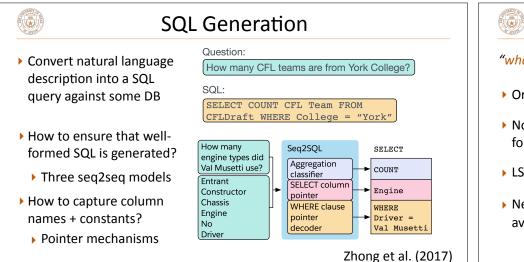












Attention

"what states border Texas" ----> lambda x (state (x) and border (x, e89)))

- Orange pieces are probably reused across many problems
- Not too hard to learn to generate: start with lambda, always follow with x, follow that with paren, etc. This is a common question
- LSTM has to remember the value of Texas for 13 steps!
- Next lecture: attention mechanisms that let us "look back" at the input to avoid having to remember everything

	Takeaways
Lambda-DCS i	is a more lightweight formalism than lambda calculus
	ombining syntax and semantics like in CCG, we can either antic representations directly or generate them with seq2seq
• •	els are a very flexible framework, some weaknesses can e patched with more data