CS388: Natural Language Processing Lecture 17: Machine Translation I

Greg Durrett

Some slides adapted from Dan Klein, UC Berkeley

This Lecture

- MT and evaluation
- Word alignment
- Language models
- Phrase-based decoders
- Syntax-based decoders (probably next time)

MT Basics

MT Basics

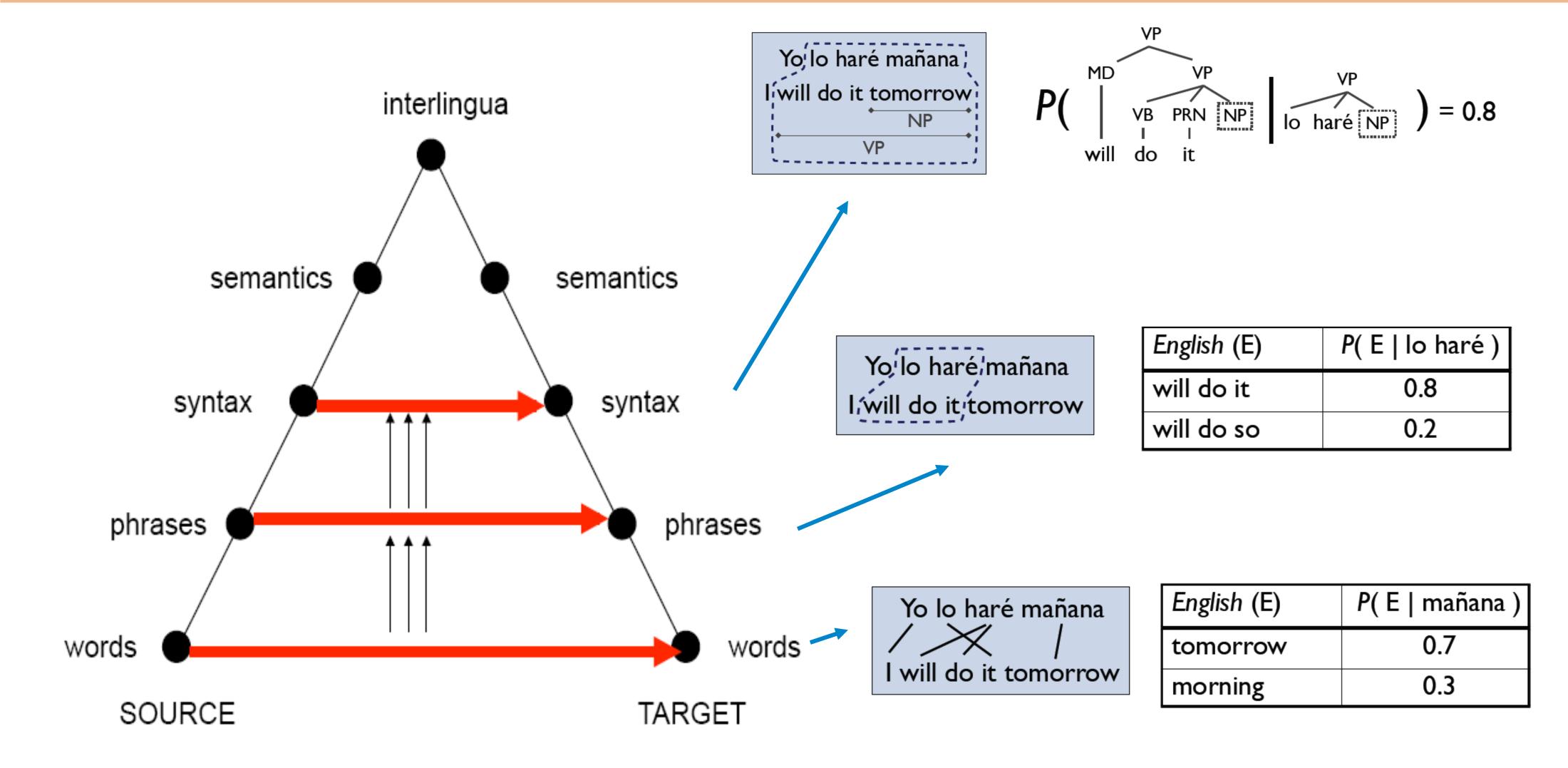
People's Daily, August 30, 2017

Trump Pope family watch a hundred years a year in the White House balcony

MT Ideally

- ▶ I have a friend => ∃x friend(x,self) => J'ai un ami
 J'ai une amie
 - May need information you didn't think about in your representation
 - Hard for semantic representations to cover everything
- Everyone has a friend => $\exists x \forall y \text{ friend}(x,y) => Tous a un amise to the second state of the second st$
 - ▶ Can often get away without doing all disambiguation same ambiguities may exist in both languages

Levels of Transfer: Vauquois Triangle



Today: mostly phrase-based, some syntax

Slide credit: Dan Klein

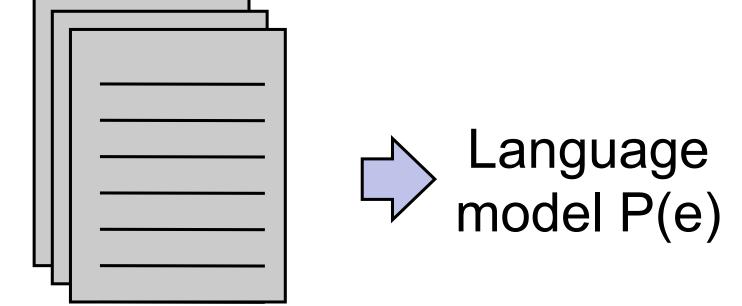
Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - How to identify phrases? Word alignment over source-target bitext
 - ▶ How to stitch together? Language model over target language
 - Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

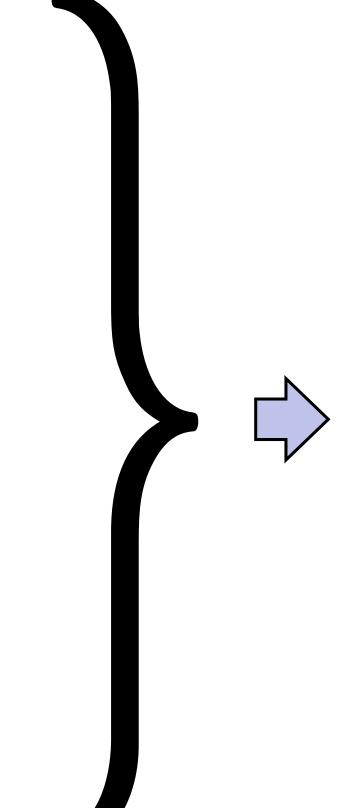
Phrase-Based MT

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9

Phrase table P(f|e)



Unlabeled English data



$$P(e|f) \propto P(f|e)P(e)$$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- ▶ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Typically $n = 4$, $w_i = 1/4$

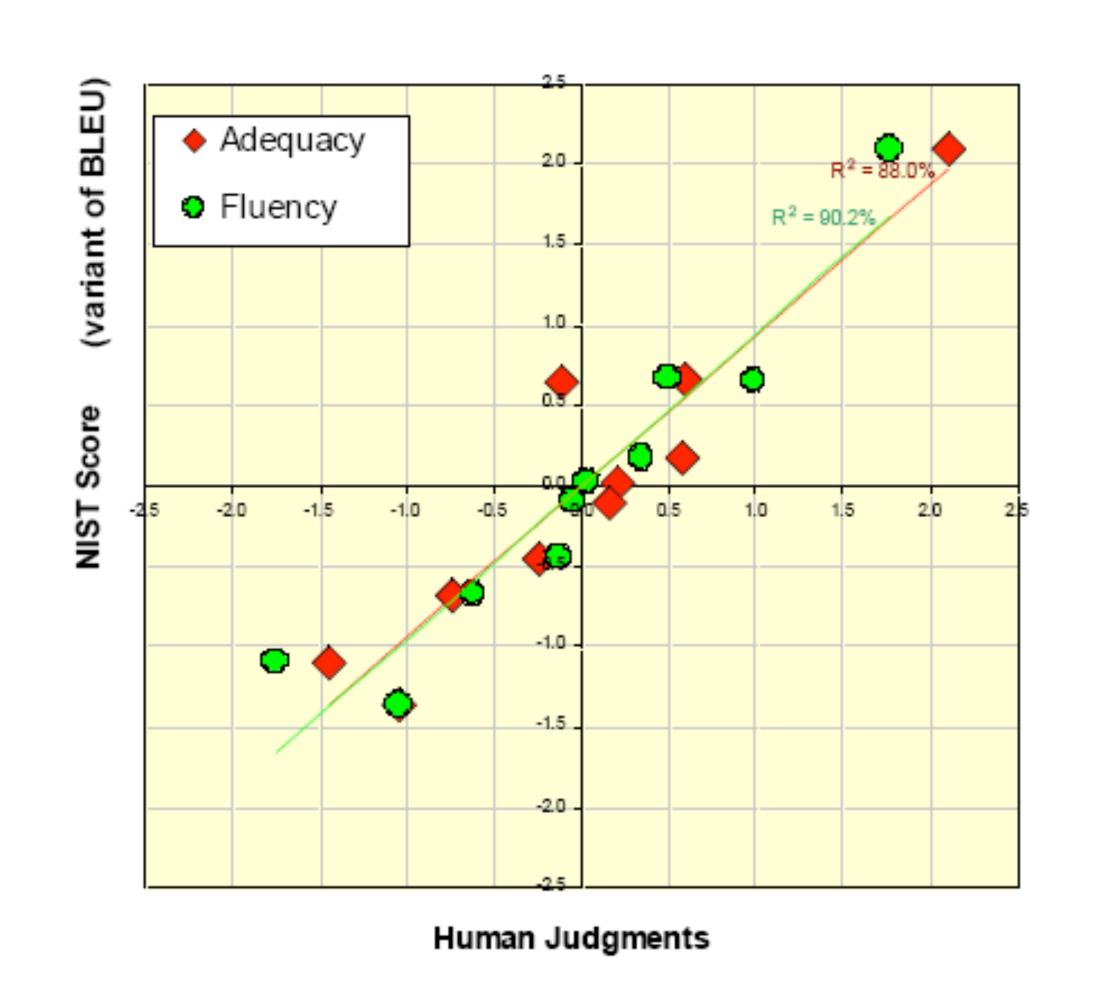
$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$
 $r = \text{length of reference}$ $c = \text{length of prediction}$

Does this capture fluency and adequacy?

BLEU Score

- Better methods with human-in-the-loop
- HTER: human-assisted translation error rate

If you're building real MT systems, you do user studies. In academia, you mostly use BLEU



Word Alignment

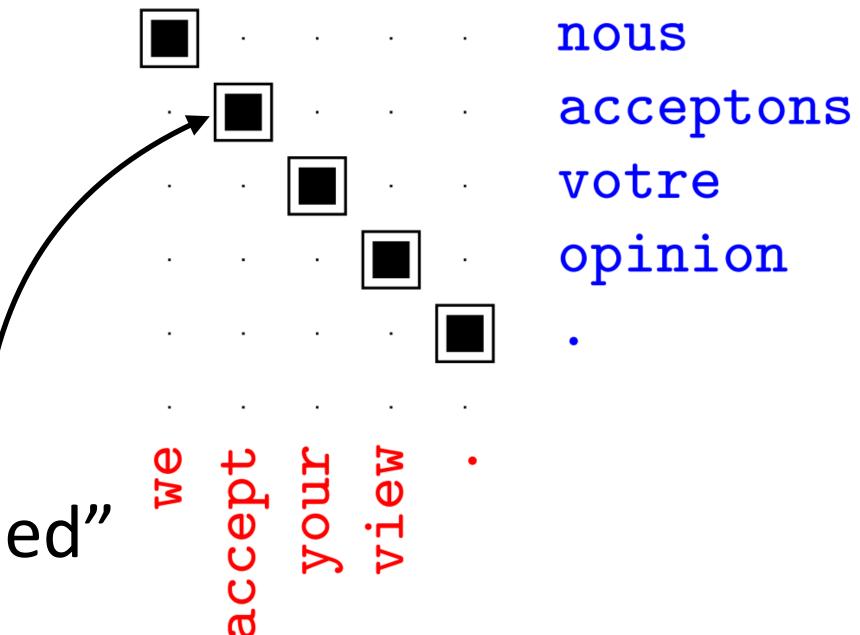
Word Alignment

Input: a bitext, pairs of translated sentences

nous acceptons votre opinion . | | | we accept your view

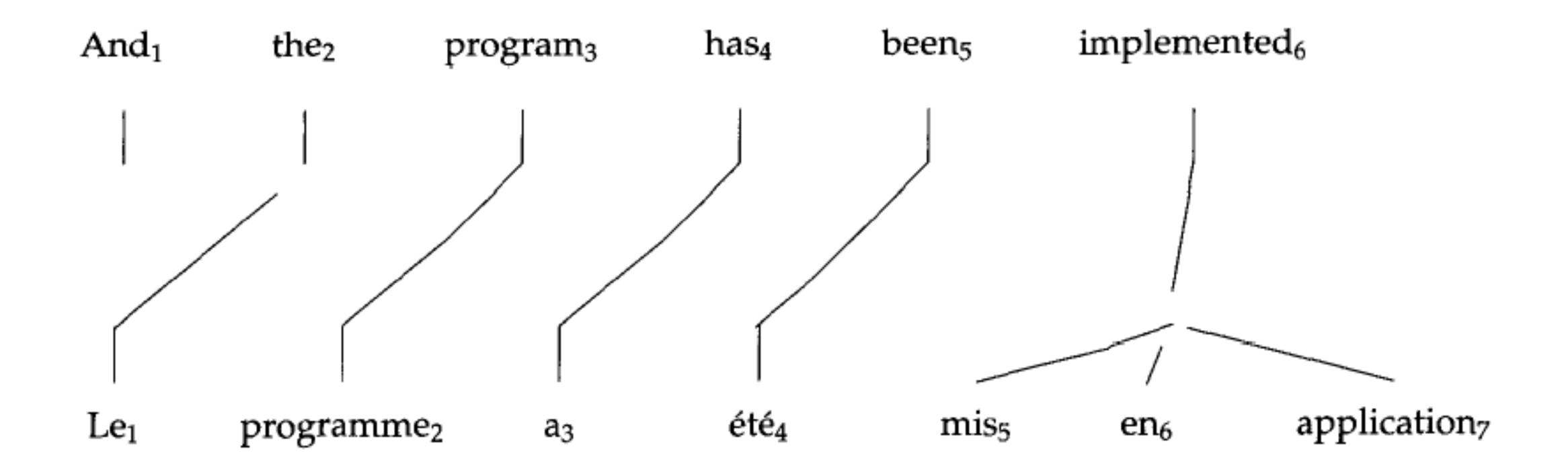
nous allons changer d'avis | | | we are going to change our minds

- Output: alignments between words in each sentence
 - We will see how to turn these into phrases



"accept and acceptons are aligned" \$\frac{1}{2} \frac{1}{2} \frac{

1-to-Many Alignments



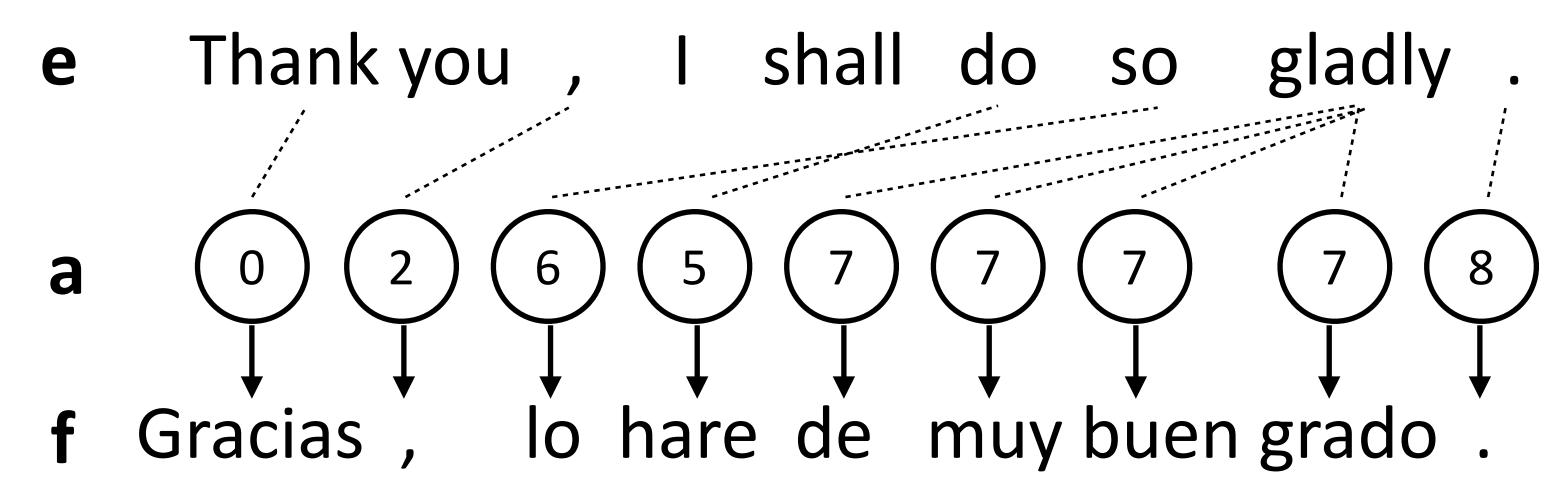
Word Alignment

- ▶ Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- Latent variable model: $P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}|\mathbf{a}, \mathbf{e}) P(\mathbf{a})$
- Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

Each French word is aligned to at most one English word

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i)$$



- Set P(a) uniformly (no prior over good alignments)
- $ightharpoonup P(f_i|e_{a_i})$: word translation probability table

HMM for Alignment

Sequential dependence between a's to capture monotonicity

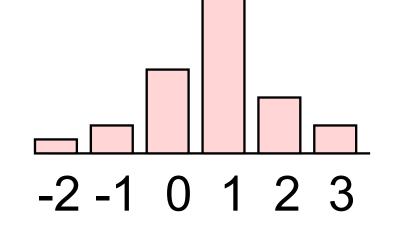
$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

e Thank you, I shall do so gladly.

a 0+2+6+5+7+7+7+8

f Gracias, lo hare de muy buen grado.

▶ Alignment dist parameterized by jump size: $P(a_j - a_{j-1})$ ——



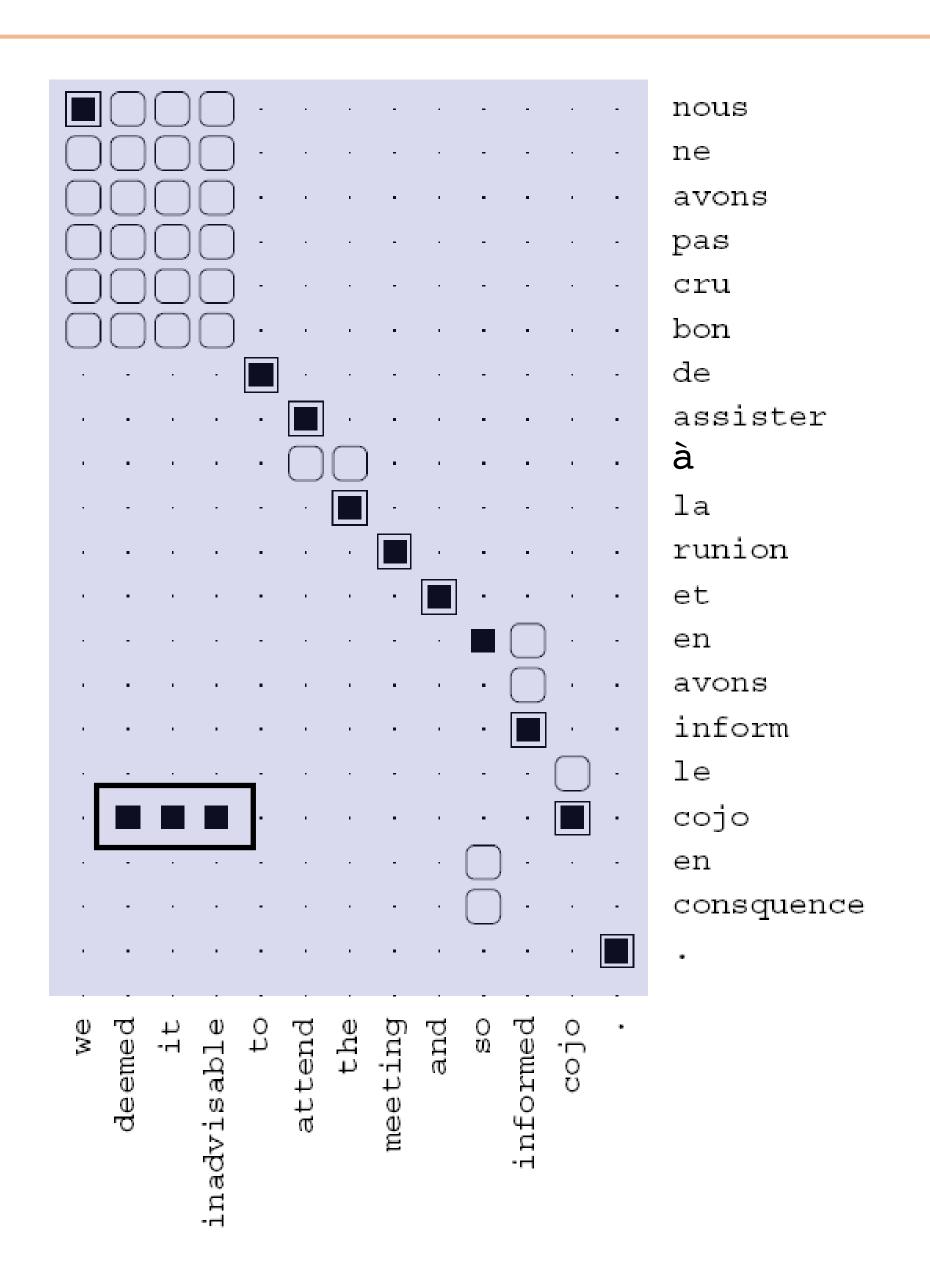
 $P(f_i|e_{a_i})$: same as before

Brown et al. (1993)

HMM Model

Which direction is this?

- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (garbage collection)



Evaluating Word Alignment

"Alignment error rate": use labeled alignments on small corpus

Model	AER
Model 1 INT	19.5
HMM E→F	11.4
HMM F→E	10.8
HMMAND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

Run Model 1 in both directions and intersect "intelligently"

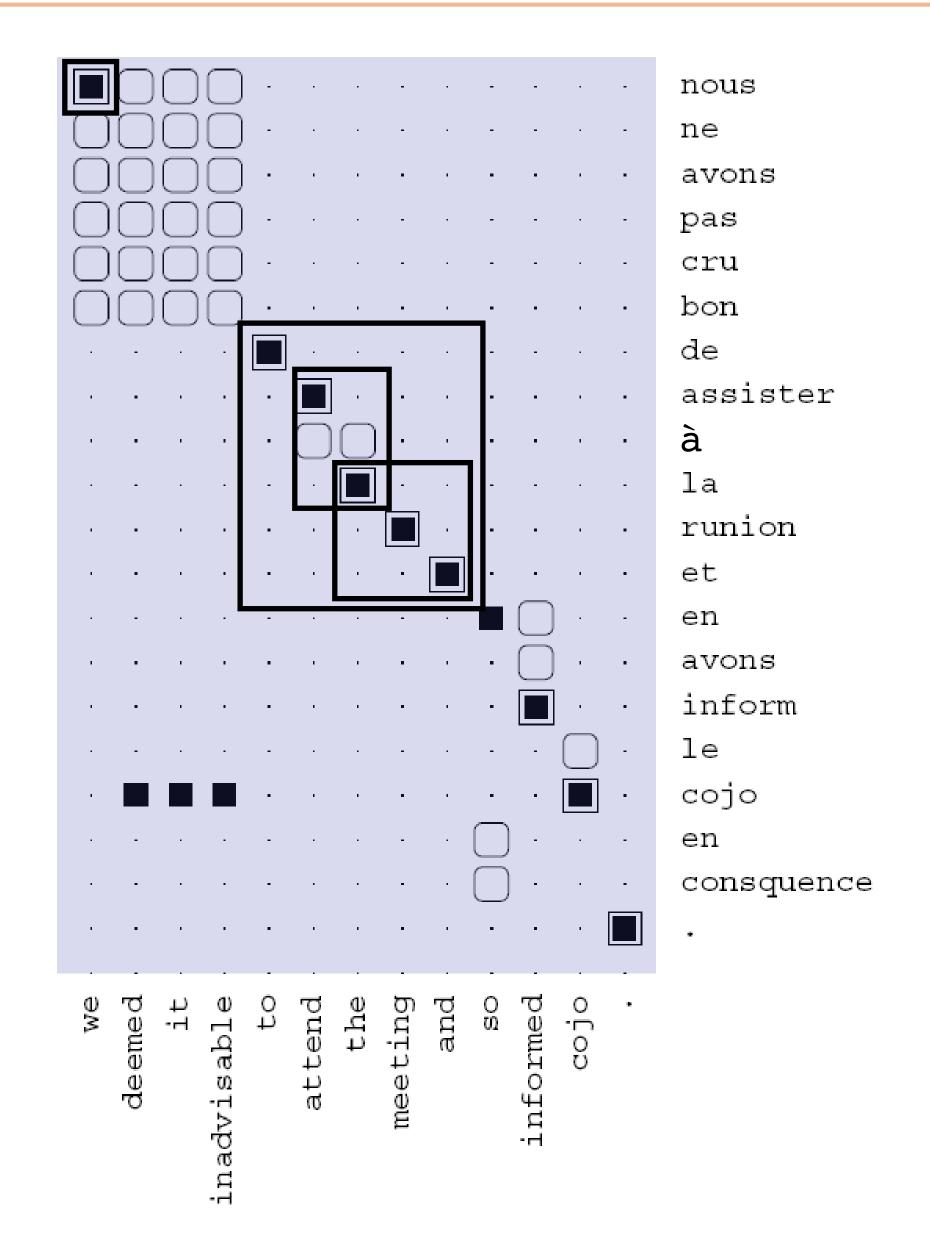
Run HMM model in both directions and intersect "intelligently"

Phrase Extraction

Find contiguous sets of aligned words in the two languages that don't have alignments to other words

```
d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we
```

Lots of phrases possible, count across all sentences and score by frequency

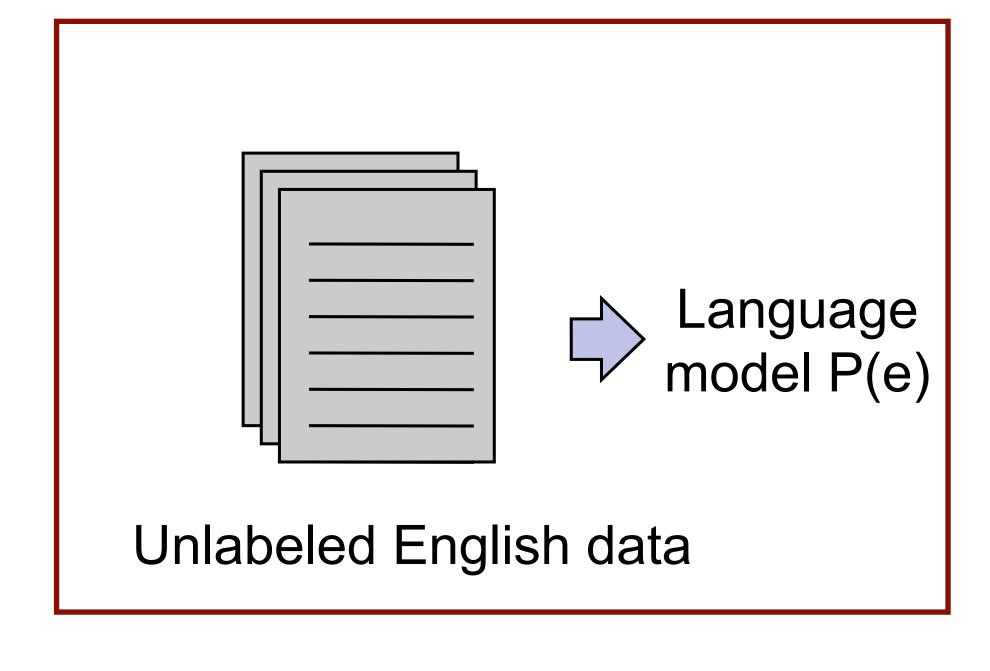


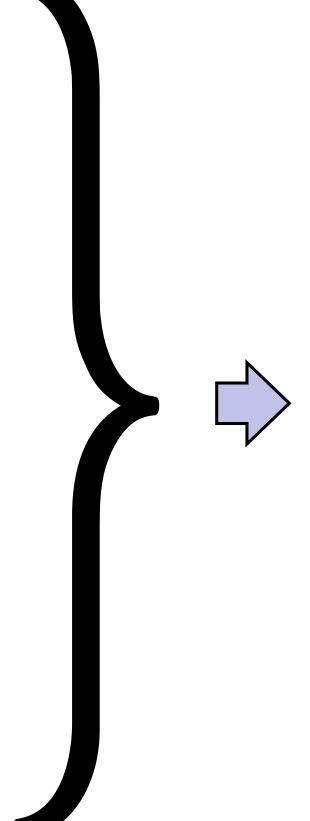
Language Modeling

Phrase-Based MT

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9

Phrase table P(f|e)





$$P(e|f) \propto P(f|e)P(e)$$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

N-gram Language Models

I visited San ____ put a distribution over the next word

Simple generative model: distribution of next word is a multinomial distribution conditioned on previous n-1 words

$$P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})}$$

Maximum likelihood estimate of this probability from a corpus

▶ Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)

Smoothing N-gram Language Models

I visited San ____ put a distribution over the next word!

▶ Smoothing is very important, particularly when using 4+ gram models

$$P(x|\text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$$
 this too!

▶ One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize (k=1 is like leave-one-out)

$$P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$$

 Kneser-Ney smoothing: this trick, plus low-order distributions modified to capture fertilities (how many distinct words appear in a context)

Engineering N-gram Models

For 5+-gram models,
 need to store between
 100M and 10B context word-count triples

(a) Context-Encoding						
w	С	val				
1933	15176585	3				
1933	15176587	2				
1933	15176593	1				
1933	15176613	8				
1933	15179801	1				
1935	15176585	298				
1935	15176589	1				

(6) 661100110 2 611002							
Δw	Δc	val					
1933	15176585	3					
+0	+2	1					
+0	+5	1					
+0	+40	8					
+0	+188	1					
+2	15176585	298					
+0	+4	1					

(b) Context Deltas

(c) Dits Required						
$ \Delta w $	$ \Delta c $	val				
24	40	3				
2	3	3				
2	3	3				
2	9	6				
2	12	3				
4	36	15				
2	6	3				

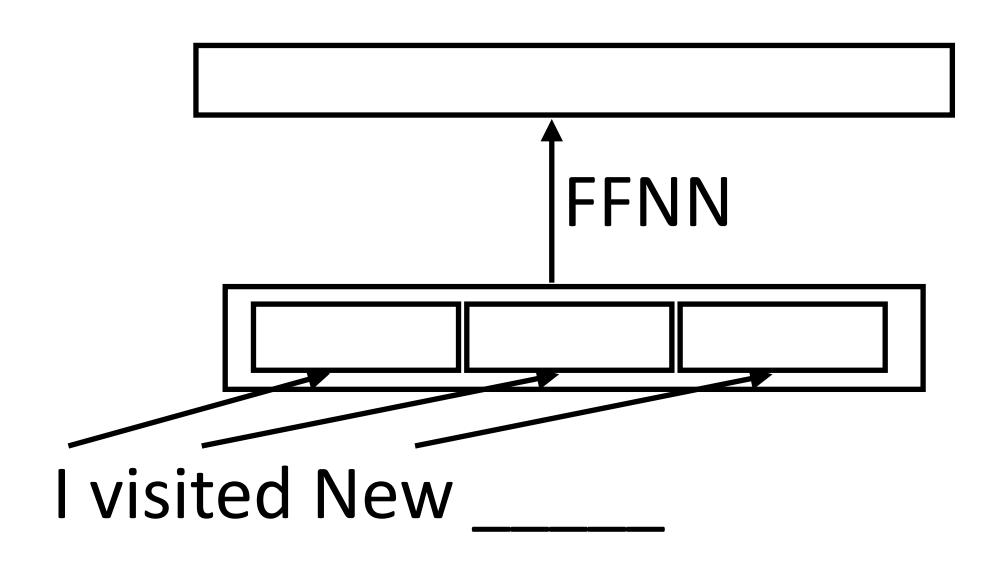
(c) Bits Required

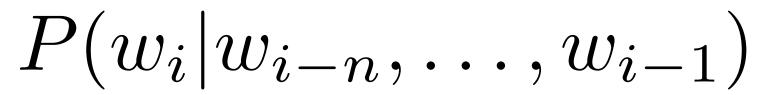
Make it fit in memory by delta encoding scheme: store deltas instead of values and use variable-length encoding

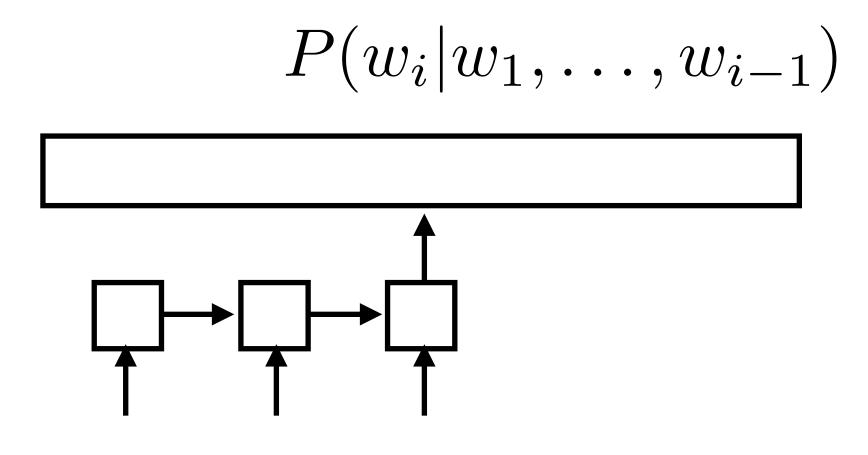
Pauls and Klein (2011), Heafield (2011)

Neural Language Models

Early work: feedforward neural networks looking at context







I visited New

- Variable length context with RNNs:
 - Works like a decoder with no encoder
- Slow to train over lots of data!

Evaluation

• (One sentence) negative log likelihood: $\sum \log p(x_i|x_1,\ldots,x_{i-1})$

$$\sum_{i=1}^{n} \log p(x_i | x_1, \dots, x_{i-1})$$

- Perplexity: $2^{-\frac{1}{n}} \sum_{i=1}^{n} \log_2 p(x_i | x_1, ..., x_{i-1})$
 - ▶ NLL (base 2) averaged over the sentence, exponentiated
 - NLL = -2 -> on average, correct thing has prob 1/4 -> PPL = 4. PPL is sort of like branching factor

Results

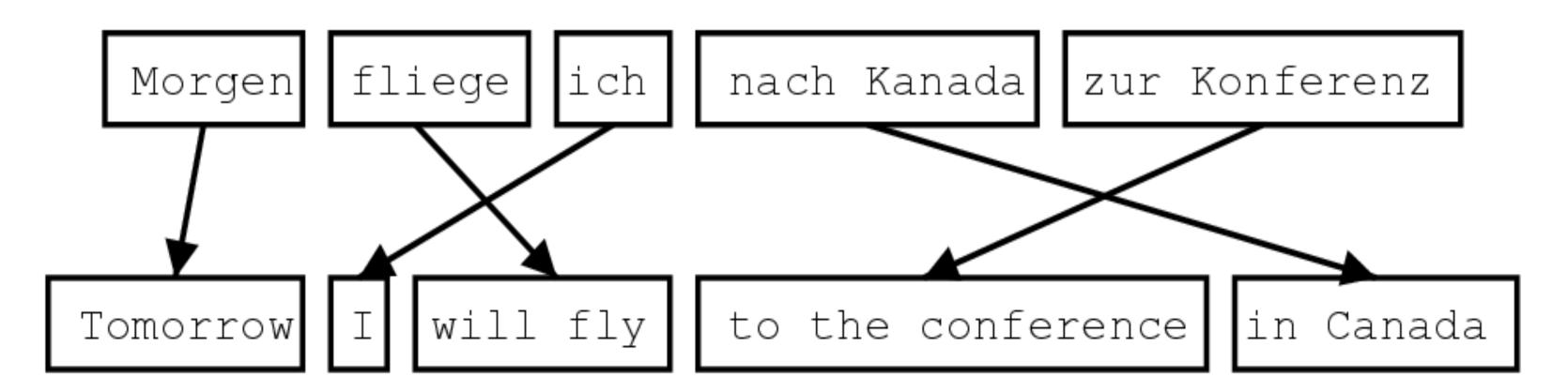
- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- ► Kneser-Ney 5-gram model with cache: PPL = 125.7
- ▶ LSTM: PPL ~ 60-80 (depending on how much you optimize it)
- Melis et al.: many neural LM improvements from 2014-2017 are subsumed by just using the right regularization (right dropout settings). So LSTMs are pretty good

Merity et al. (2017), Melis et al. (2017)

Decoding

Phrase-Based Decoding

- Inputs:
 - Language model that scores $P(e_i|e_1,\ldots,e_{i-1})\approx P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- ▶ What we want to find: **e** produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:



Phrase lattices are big!

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	-
the	7 people	including	by some		and	the russian	the	the astronauts		,
it	7 people inc	luded	by france		and the	the russian		international astronautical	of rapporteur .	
this	7 out	including the	from	the french	and the	russian	the fift	h		
these	7 among	including from		the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	2 24 1
	7 include		from the	of france and russian		russian	31	astronauts		. the
	7 numbers i	7 numbers include fro		and russiar		an	of astro	of astronauts who		. 29
	7 populations include		those from france		and russian		astronauts.			
4 43	7 deportees	included	come from	france	and ru	ssia	in	astronautical	personnel	;
	7 philtrum	including those	e from france an		nd russia a space		ce member			
		including repre	esentatives from	france and the russia		¥:	astronaut			
		include	came from	france and russia			by cosmonauts			
		include represe	include representatives from		french and russia		A. 101	cosmonauts		
		include	came from franc	ce and russia 's				cosmonauts .		
		includes	coming from	french and	russia 's		77	cosmonaut		
				french and	russian		's	astronavigation	member .	
				french	and russia		astro	auts		
		D.			and russia 's		special rapp		special rapporteur	
					, and	russia			rapporteur	
		ĵ			, and rus	sia			rapporteur.	
					, and rus	sia			2 (2)(2)(
				2	or	russia 's				

Slide credit: Dan Klein

Phrase-Based Decoding

Input

lo haré rápidamente.

Translations

I'll do it quickly .

quickly I'll do it . and considers reorderings.

The decoder...

tries different segmentations,

translates phrase by phrase,

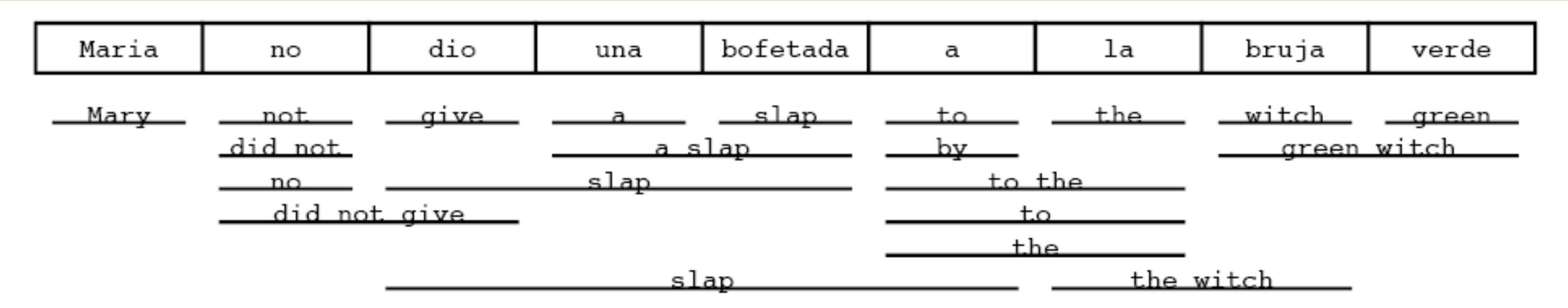
$$\arg \max_{\mathbf{e}} \left[P(\mathbf{f}|\mathbf{e}) \cdot P(\mathbf{e}) \right]$$

Decoding objective (for 3-gram LM)

$$\arg \max_{\mathbf{e}} \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1}, e_{i-2}) \right]$$

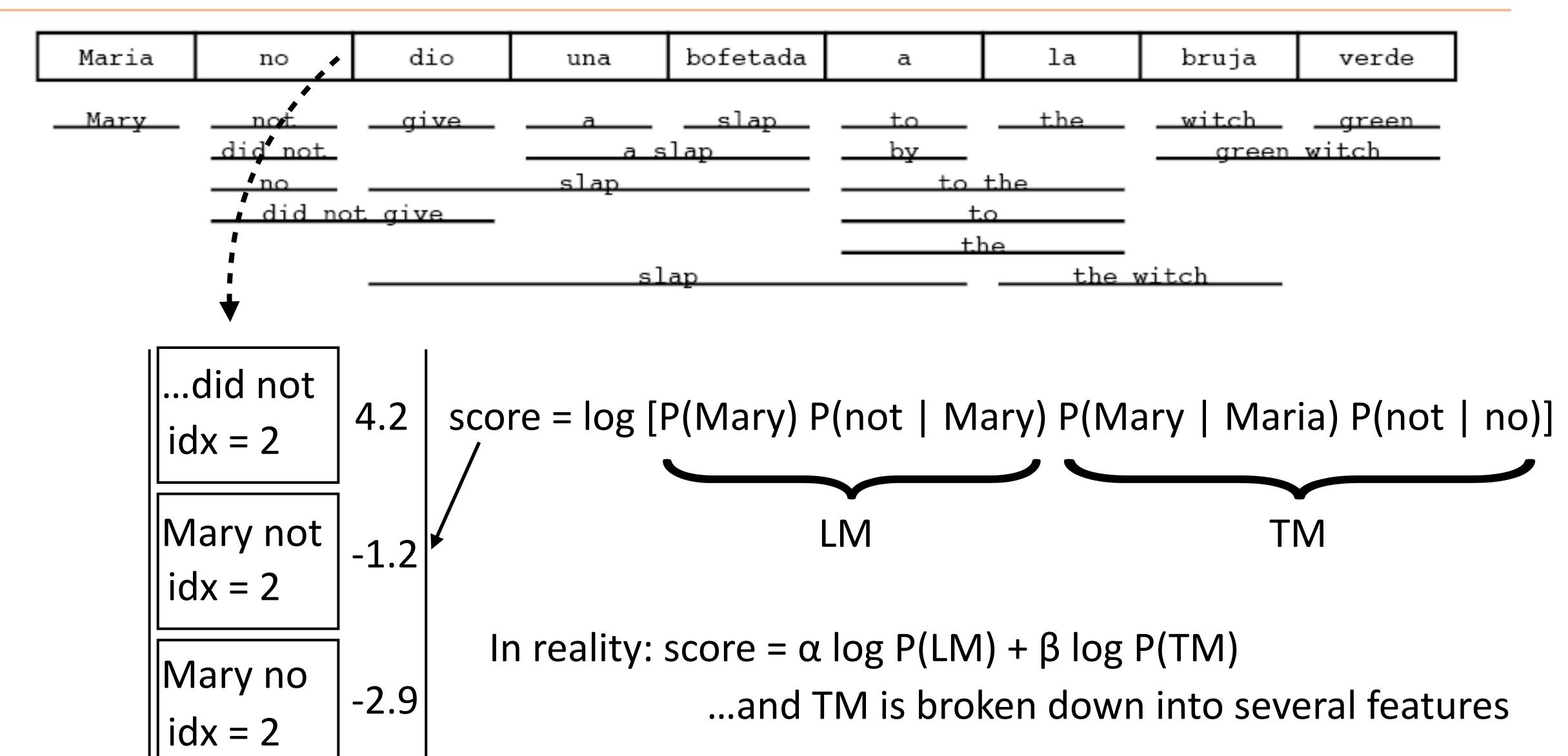
Slide credit: Dan Klein

Monotonic Translation

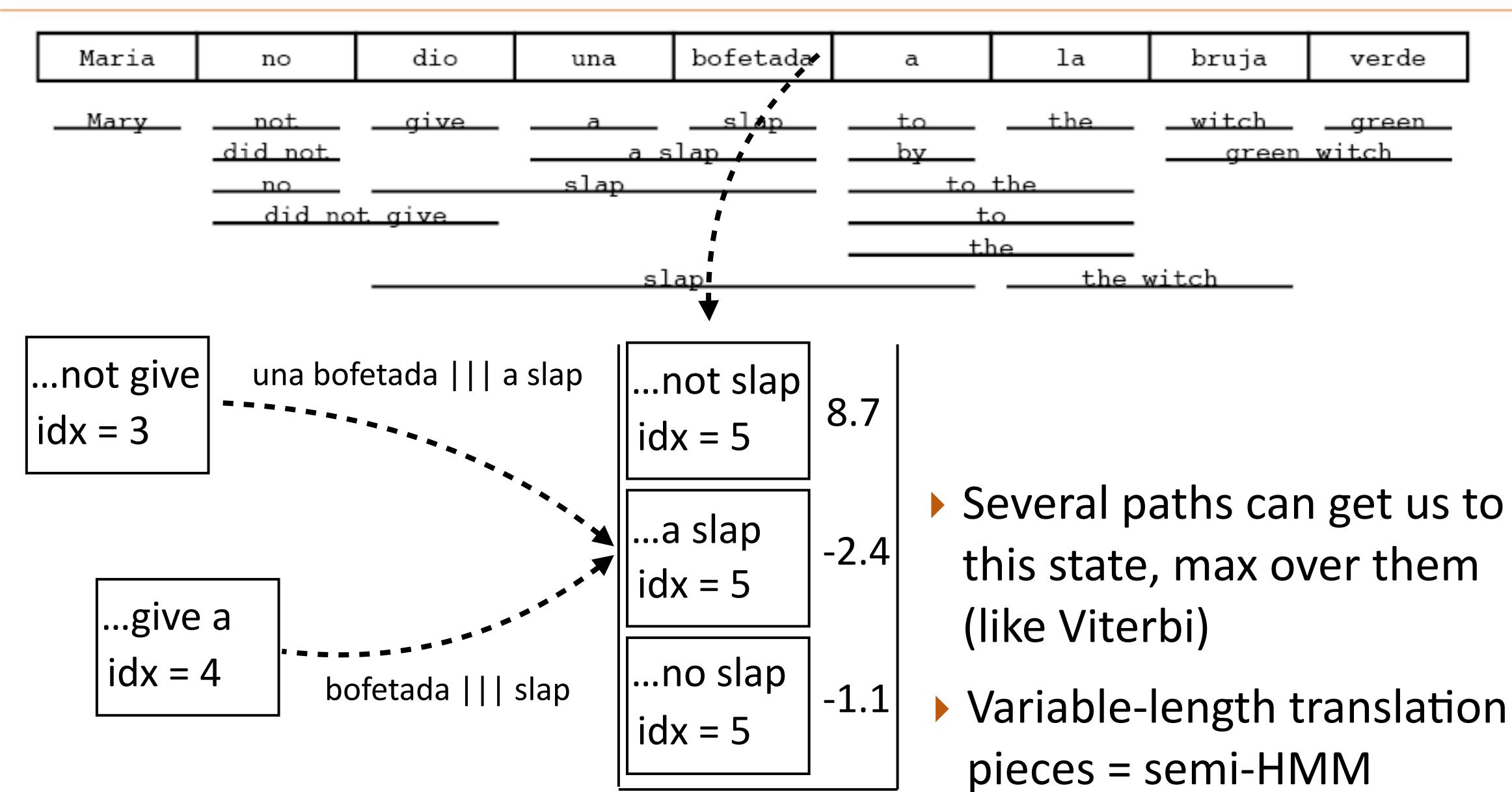


- ▶ If we translate with beam search, what state do we need to keep in the beam?
 - What have we translated so far? $\arg\max_{\mathbf{e}}\left|\prod_{\langle \bar{e},\bar{f}\rangle}P(\bar{f}|\bar{e})\cdot\prod_{i=1}^{|\mathbf{e}|}P(e_i|e_{i-1},e_{i-2})\right|$
 - What words have we produced so far?
 - ▶ When using a 3-gram LM, only need to remember the last 2 words!

Monotonic Translation



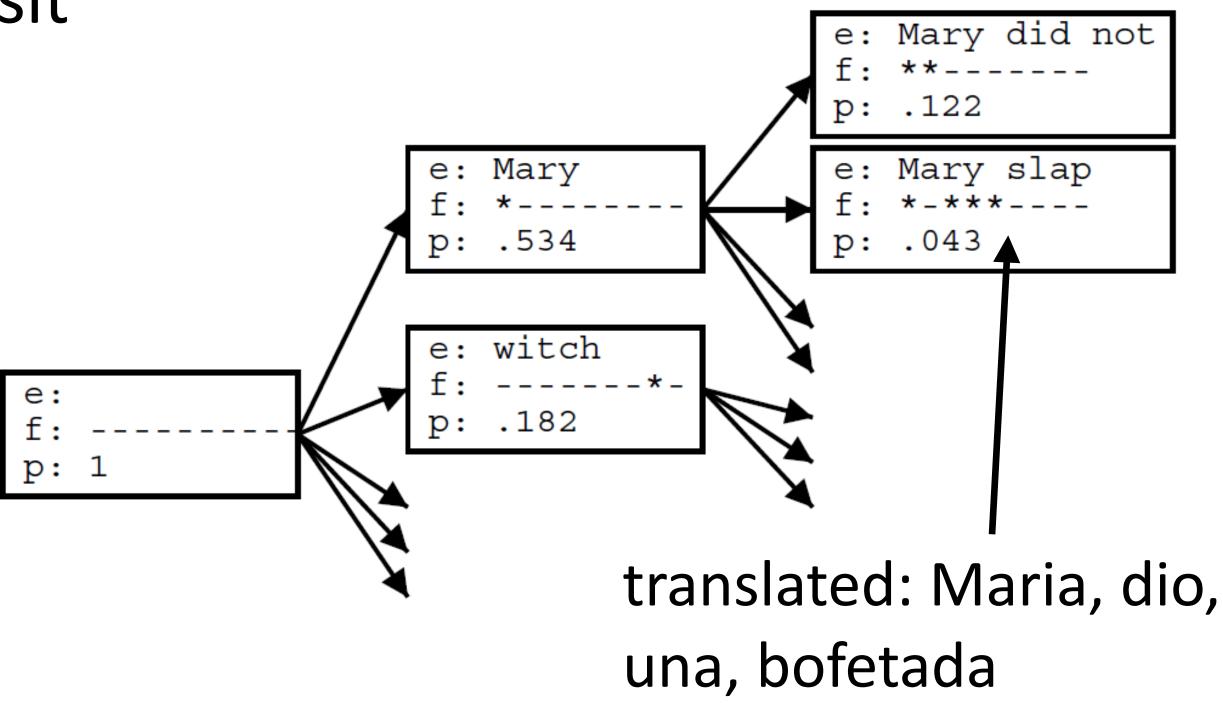
Monotonic Translation



Non-Monotonic Translation

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not_ did not.	<u>give</u>	aslap a_slap		to	<u>the</u>	wit.ch_ green	green_ witch
	no did_no	slap give				t.he		
	slap			ap		the v	witch	

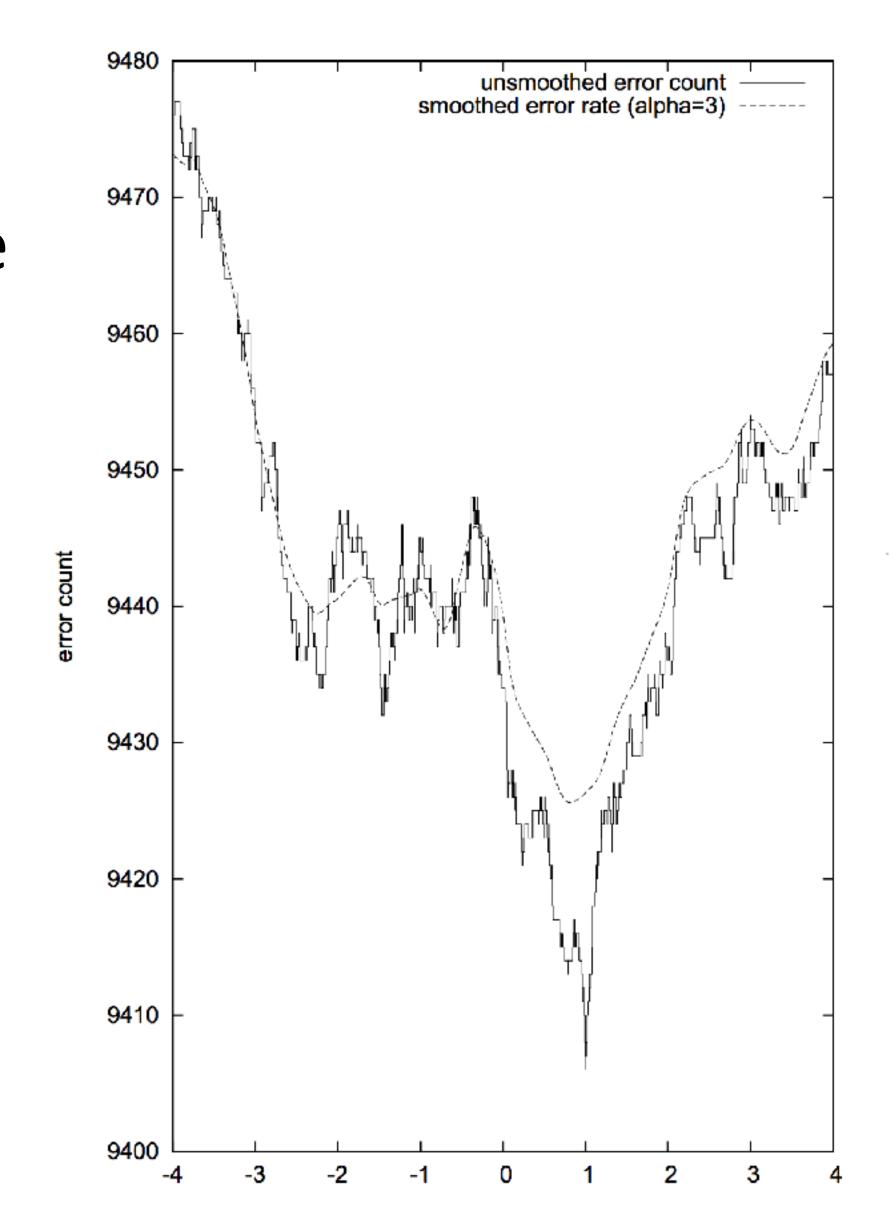
- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't
- Big enough phrases already capture lots of reorderings, so this isn't as important as you think



Training Decoders

score = $\alpha \log P(LM) + \beta \log P(TM)$...and TM is broken down into several feature

- Usually 5-20 feature weights to set, want to optimize for BLEU score which is not differentiable
- MERT (Och 2003): decode to get 1000best translations for each sentence in a small training set (<1000 sentences), do line search on parameters to directly optimize for BLEU



Moses

- ▶ Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 - Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
 - ▶ Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2013
- Next time: results on these and comparisons to neural methods

Syntax

Syntactic MT

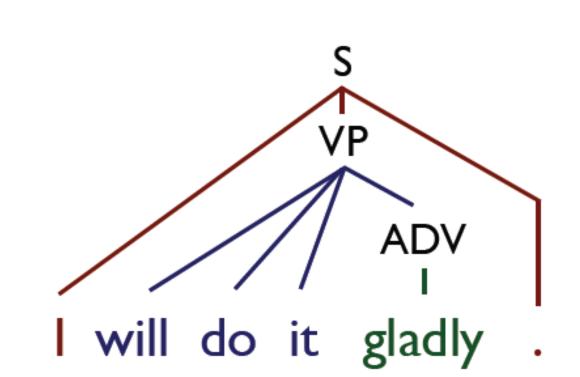
Rather than use phrases, use a synchronous context-free grammar

```
NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]
DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]
DT_1 JJ_2 NN_3 DT_1 NN_3 JJ_2
the yellow car la voiture jaune
```

- Translation = parse the input with "half" of the grammar, read off the other half
- Assumes parallel syntax up to reordering

Syntactic MT

Input S VP ADV lo haré de muy buen grado .



Slide credit: Dan Klein

Output

- Use lexicalized rules, look like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

Grammar

```
S \rightarrow \langle VP .; I VP . \rangle OR S \rightarrow \langle VP .; you VP . \rangle

VP \rightarrow \langle Io haré ADV ; will do it ADV \rangle

S \rightarrow \langle Io haré ADV .; I will do it ADV . \rangle

ADV \rightarrow \langle de muy buen grado ; gladly \rangle
```

Takeaways

- Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - HMMs work well for alignment
 - N-gram language models are scalable and historically worked well
 - Decoder requires searching through a complex state space
- Lots of system variants incorporating syntax
- Next time: neural MT